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Burst and Memory-aware
Transformer: capturing temporal
heterogeneity

Byounghwa Lee*, Jung-Hoon Lee, Sungyup Lee and

Cheol Ho Kim

CybreBrain Research Section, Electronics and Telecommunications Research Institute, Daejeon,

Republic of Korea

Burst patterns, characterized by their temporal heterogeneity, have been observed

across a wide range of domains, encompassing event sequences from neuronal

firing to various facets of human activities. Recent research on predicting event

sequences leveraged a Transformer based on the Hawkes process, incorporating

a self-attention mechanism to capture long-term temporal dependencies. To

e�ectively handle bursty temporal patterns, we propose a Burst and Memory-

aware Transformer (BMT) model, designed to explicitly address temporal

heterogeneity. The BMT model embeds the burstiness and memory coe�cient

into the self-attention module, enhancing the learning process with insights

derived from the bursty patterns. Furthermore, we employed a novel loss function

designed to optimize the burstiness and memory coe�cient values, as well as

their corresponding discretized one-hot vectors, both individually and jointly.

Numerical experiments conducted on diverse synthetic and real-world datasets

demonstrated the outstanding performance of the BMT model in terms of

accurately predicting event times and intensity functions compared to existing

models and control groups. In particular, the BMT model exhibits remarkable

performance for temporally heterogeneous data, such as those with power-law

inter-event time distributions. Our findings suggest that the incorporation of burst-

related parameters assists the Transformer in comprehending heterogeneous

event sequences, leading to an enhanced predictive performance.

KEYWORDS

burst, temporal heterogeneity, event sequence, timestamp, inter-event time, temporal

point process, self-attention, Transformer

1 Introduction

Temporal heterogeneity is frequently referred to as burst within the context of complex
systems. Numerous natural and social phenomena exhibit bursty temporal patterns such
as single-neuron firing (Kemuriyama et al., 2010; Chan et al., 2016; Metzen et al., 2016;
Zeldenrust et al., 2018), earthquakes (Corral, 2004; de Arcangelis et al., 2006), solar flares
(Wheatland et al., 1998), and human activity (Barabasi, 2005; Karsai et al., 2018). The term
temporal heterogeneity rigorously implies that the distribution of inter-event times, which
is the time intervals between two consecutive events, exhibits a heavy-tailed distribution
such as a power-law distribution. Moreover, when the system is generally temporally
heterogeneous, it implies the presence of temporal correlations among inter-event times.
For example, the inter-spike interval distribution display temporally heterogeneous patterns,
which cannot be simply interpreted as a random or regular process. Numerous studies
have addressed temporal correlations between bursty spikes using approaches such as the
non-renewal process (Shahi et al., 2016), intensity functions with voltage-dependent terms

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1292842
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1292842&domain=pdf&date_stamp=2023-12-12
mailto:byounghwa.lee@etri.re.kr
https://doi.org/10.3389/fncom.2023.1292842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1292842/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lee et al. 10.3389/fncom.2023.1292842

(Yamauchi et al., 2011), and transitions between burst and non-
burst states (Dashevskiy and Cymbalyuk, 2018). To quantify
temporal heterogeneity, two commonly employed single-value
metrics are burstiness and memory coefficient.

Figure 1 illustrates the distinction between temporally
heterogeneous inter-event times and those that tend toward
homogeneity. The event sequences in Figures 1A, D, F serve as
examples of temporal heterogeneity with a power-law inter-event
time distribution. The event sequences in Figures 1B, C, E, G
present instances that exhibit a more homogeneous random
characteristic with an exponential inter-event time distribution.
Evidently, the bursty event sequence exhibits clustered events
within burst trains, in contrast to the non-burst sequence. Such
uneven event occurrences can affect the prediction of event
sequences. Without properly accounting for the complicated
correlation structure and heterogeneity therein, naive models may
struggle to effectively discern hidden patterns.

Event sequence data encompass the temporal occurrences
of events spanning various domains, ranging from natural
phenomena to social activities. Unlike time series data, event
sequence data are defined by sequentially ordered timestamps
that signify the timing of individual event occurrences. Numerous
studies have focused on predicting the timing of subsequent events
have been conducted using temporal point processes (TPPs) (Daley
and Vere-Jones, 2008). One of the most widely employed TPP
is the Hawkes process (Hawkes, 1971). This process embodies
a self-exciting mechanism, wherein preceding events stimulate
the occurrence of subsequent events. In contrast to the Hawkes
process, the self-correcting process provides a feasible method for
establishing regular point patterns (Isham and Westcott, 1979).

The Poisson point process can be employed to generate
entirely random and memory-less events (Kingman, 1992). In the

FIGURE 1

(A, D, F) Heterogeneous event sequences with a power-law inter-event time distribution. These event sequences exhibit a high burstiness parameter

with significant temporal heterogeneity. (B, C, E, G) Event sequences with an exponential inter-event time distribution. These event sequences have

burstiness parameters close to 0 and memory coe�cients clustered around 0.

Poisson process, the inter-event time (IET) follows an exponential
distribution. The Cox process is a generalized Poisson process in
which the intensity function varies with the stochastic process (Cox,
1955); thus, it is also referred to as a doubly stochastic Poisson
process. Cox processes are frequently employed to model and
predict the arrival of insurance claims, enabling insurers to assess
risk and manage resources effectively (Rolski et al., 2009). If the
intensity function is not entirely random, as in the Cox process, but
given as a deterministic time-varying function, it is referred to as an
inhomogeneous Poisson process.

Leveraging advancements in deep neural networks, recent
studies have introduced Hawkes process models based on neural
network frameworks. Specifically, the models of Marked Temporal
Point Processes (RMTPP) (Du et al., 2016) and Continuous Time
LSTM (CTLSTM) (Mei and Eisner, 2017), utilizing Recurrent
Neural Networks (RNN) and Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), exhibited better performance
than Hawkes processes. More recently, the Transformer Hawkes
Process (THP) (Zuo et al., 2020) and the Self-Attentive Hawkes
Process (SAHP) (Zhang et al., 2020), both grounded in self-
attention mechanisms, have demonstrated improved performance.

Our research was primarily motivated by the idea that
incorporating temporal heterogeneous characteristics into
event sequence predictions yields a superior performance in
forecasting events. We propose a Burst and Memory-aware

Transformer (BMT) model, signifying its capability to train the
Transformer by leveraging insights derived from burstiness and
memory coefficient, both of which are associated with temporal
heterogeneity. Notably, these two metrics were incorporated as
embedding inputs for the Transformer architecture. Moreover,
a loss function related to these metrics was formulated and
employed, thereby enabling the model to naturally capture
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FIGURE 2

Schematic diagram of the Burst and Memory-aware Transformer model. Leveraging information from the preceding events, including burstiness B

and memory coe�cient M, the model predicts the timing of the next event through B & M embedding and the corresponding B & M loss.

temporal heterogeneity. The overall schematic diagram of the BMT
model is depicted in Figure 2.

The main contributions of this paper is summarized as
follows:

• The BMT model was developed to integrate insights from the
complex systems theory into the Transformer-based temporal
point process model, enhancing the capability to incorporate
temporal heterogeneity. This study offers a preliminary
approach to connect these two distinct disciplines.

• The BMT model surpasses state-of-the-art models by
effectively integrating burstiness and memory coefficient into
both the embedding procedure and associated loss functions.
This is confirmed through extensive numerical experiments
across a range of scenarios, including those with and without
burstiness and memory coefficient embedding and related loss
functions, using real-world datasets and synthetic datasets
generated via a copula-based algorithm.

• Our investigation revealed that the BMT model offers
particular advantages when dealing with temporally
heterogeneous data, such as datasets characterized by a
power-law inter-event time distribution, commonly observed
in bursty event sequences.

• Our research indicates that excluding either burstiness and
memory coefficient embedding or their corresponding loss
functions leads to a noticeable reduction in performance. This
emphasizes the imperative nature of integrating both elements
to achieve optimal performance.

In cases where the inter-event time distribution of the target
event sequence exhibits a heavy-tailed distribution, such as a
power-law distribution, or where the values of burstiness and
memory coefficient significantly deviate from zero, the BMTmodel
ensures superior performance compared to basic Transformer-
based models.

The structure of the paper is outlined as follows: Section 2
introduces the background pertaining to the temporal point
process, temporal heterogeneity, and generating method

for synthetic datasets; Section 3 introduces our Burst and
Memory-aware Transformer model; Section 4 presents numerical
experiments on synthetic and real-world datasets; Section 5
presents the performance evaluation results; and Section 6 presents
the conclusion.

2 Background

2.1 Temporal point process

A temporal point process (TPP) is a stochastic process
involving the occurrence of multiple events as time progresses. The
foundational data employed to construct the TPP model consists
of event sequence data, encompassing event times {ti}ni=1 along
with optional marks {κi}ni=1. For example, spike train sequences of
neurons are composed of timings of occurrences, along with action
potential as associated marks.

In this study, we examine the unmarked case to specifically
investigate the effects of burst and memory phenomena, while
excluding the influence of correlations with marks that do not align
with the research direction. For the prediction of the marked TPP
model, one approach involves the independent modeling of the
target’s marks by thresholding. Alternatively, based on contextual
analysis (Jo et al., 2013), interactions with multiple neighbors
within an egocentric network can be considered as marks and
subsequently modeled.

TPP encompasses the modeling of the conditional intensity
function λ(t|Ht) given the history of event times Ht ≡
(t1, ...tn). The notation for the history of event times, Ht will be
omitted for convenience. The intensity function characterizes the
instantaneous event rate at any given time by considering past event
occurrences. The probability density function P(t) and cumulative
distribution function F(t) can be derived based on the intensity
function, as follows (Rasmussen, 2018):

P(t) = λ(t) exp

(

−
∫ t

ti−1

λ(t′)dt′
)

, (1)
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F(t) = 1− exp

(

−
∫ t

ti−1

λ(t′)dt′
)

. (2)

2.1.1 Hawkes process
The Hawkes process, also known as the self-exciting point

process, is for a situation where a preceding event excites the
occurrence of a subsequent event (Hawkes, 1971). The intensity
function λ(t) of the Hawkes process is defined as

λ(t) = ζ + η
∑

ti<t

exp
(

−(t − ti)
)

, (3)

where the base intensity ζ and η are positive parameters. When a
new event occurs during this process, the intensity increases with η

and immediately decays exponentially. The probability of the next
event occurring is highest immediately following the incidence of
the previous event, and it gradually decreases as time elapses. As a
result, this process causes events to cluster together. This includes
events that happen quickly in a short time and then long times
when nothing happens. The generalized Hawkes process is defined
as follows:

λ(t) = ζ + η
∑

ti<t

γ (t − ti), (4)

where ζ ≥ 0, η > 0, and γ (t) is a density on (0,∞).

2.1.2 Self-correcting process
In contrast to the Hawkes process, the self-correcting process

generates regular inter-event time sequences with randomness
(Isham and Westcott, 1979). The intensity function λ(t) for the
self-correcting process is defined as follows:

λ(t) = exp
(

ζ t −
∑

ti<t

η

)

, (5)

where ζ and η are positive parameters.

2.1.3 Neural Hawkes process
A limitation of the Hawkes process is that the preceding event

cannot inhibit the occurrence of a subsequent event. To overcome
these limitations, the neural Hawkes process, which considers the
nonlinear relationship with past events using recurrent neural
networks, was introduced (Mei and Eisner, 2017). The intensity
function λ(t) for the neural Hawkes process is defined as follows:

λ(t) = f
(

w⊤h(t)
)

, (6)

where f (x) = β log
(

1 + exp(x/β)
)

is the softplus function
with parameter β which guarantees a positive intensity, and
h(t)s are hidden representations of the event sequence from a
continuous-time LSTM model. Here, the intensity we refer to is
not the marked intensity λk; Instead, our focus is on the inherent
temporal heterogeneity structure, excluding any interference from
correlations between event types and times.

2.1.4 Transformer-based Hawkes process
The Transformer is a deep learning architecture for sequence

processing such as natural language processing, with a multi-
head self-attention module that captures long-range dependencies
within sequences (Vaswani et al., 2017). The Transformer is used
not only in language models but also in computer vision, audio
processing, and time series forecasting (Lim et al., 2021; Wen
et al., 2022; Ma et al., 2023). Recently, the Transformer architecture
has also been applied to modeling temporal point processes. The
Transformer Hawkes Process (Zuo et al., 2020) and the Self-
Attentive Hawkes Process (Zhang et al., 2020) were introduced
to model the Hawkes process with a self-attention mechanism to
capture the long-range correlations underlying both event times
and types.

THP and SAHP differ in two aspects: their use of positional
encoding and the form of the intensity function. SAHP employs
time-shifted positional encoding to address the limitations of
conventional methods, which solely account for the sequence
order and neglect inter-event times. The intensity function of
the THP model is the softplus function of the weighted sum of
three terms: ratio of elapsed time from the previous event, hidden
representation vector from the encoder, and base. Conversely, the
intensity function of the SAHP model is formulated as a softplus
of the Hawkes process terms, each of which is derived from the
scalar transformation and nonlinear activation function applied to
the hidden representation vector from the encoder.

For both the THP and SAHP models, across synthetic and
real-world datasets, their performances in event type prediction
and event time prediction surpassed that of the baseline model:
Hawkes Process as described in Equation (3), Fully Neural Network
model (Omi et al., 2019), Log-normal Mixture model (Shchur et al.,
2019), Time Series Event Sequence (TSES) (Xiao et al., 2017),
Recurrent Marked Temporal Point Processes (Du et al., 2016), and
Continuous Time LSTM (Mei and Eisner, 2017). Given the superior
performance of THP over the remaining baselinemodels, this study
refrains from direct performance comparison with the SAHP and
baseline models (Zuo et al., 2020), opting to concentrate exclusively
on performance comparison with the THP model.

2.2 Temporal heterogeneity

Temporal heterogeneity or burst is characterized by various
metrics. The most fundamental quantity is the probability density
function of the inter-event times. The inter-event time is defined
as the time interval between two consecutive events, that is, τi ≡
ti+1 − ti, where ti is i-th event time of the event sequence.

When the inter-event time distribution is heavy-tailed, the
corresponding event sequence exhibits temporal heterogeneity.
Specifically, the power-law inter-event distribution found in diverse
natural and social phenomena is as follows:

P(τ ) ∼ τ−α , (7)

where a is a constant and α is a power-law exponent.
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2.2.1 Burstiness parameter
Several metrics characterize the properties of temporal

heterogeneity. Burstiness B measures the burst phenomenon (Goh
and Barabási, 2008), and is defined as follows:

B ≡ r − 1

r + 1
= σ − 〈τ 〉

σ + 〈τ 〉 , (8)

where r ≡ σ/〈τ 〉 is the coefficient of variation (CV) of the inter-
event time and σ and 〈τ 〉 is the standard deviation and average of
τ s, respectively. Here, B = −1 for regular event sequences, B = 0
for Poissonian random cases, and B = 1 for extremely bursty cases.

When the number of events is sufficiently small, the
burstiness parameter causes errors. The fixed burstiness parameter
considering the finite-size effect is as follows (Kim and Jo, 2016):

Bn ≡
√
n+ 1r −

√
n− 1

(
√
n+ 1− 2)r +

√
n− 1

. (9)

We employed the fixed burstiness parameter (9) to handle
short-length event sequences throughout this study.

2.2.2 Memory coe�cient
The memory coefficient M quantifies the correlations between

consecutive inter-event times within a sequence consisting of n
inter-event times, that is, {τi}i=1,...,n, as follows (Goh and Barabási,
2008):

M ≡ 1

n− 1

n−1
∑

i=1

(

τi − 〈τ 〉1
)(

τi+1 − 〈τ 〉2
)

σ1σ2
, (10)

where 〈τ 〉1 (〈τ 〉2) and σ1 (σ2) are the average and standard
deviation of the inter-event times τ1, τ2, ..., τn−1 (τ2, τ3, ..., τn),
respectively. This is the Pearson correlation coefficient between
consecutive inter-event times. Here, M = 0 indicates no
correlation, and M > 0 indicates a positive correlation, which
means that a large inter-event time follows after a large inter-event
time and vice versa for small inter-event time. M < 0 indicates
a negative correlation, which means small inter-event time follows
after the large inter-event time and vice versa for a large inter-event
time.

2.2.3 Applications of B and M to BMT model
When plottingM on the x-axis and B on the y-axis for datasets

with various inter-event time distributions, it can be observed that
event sequences with similar inter-event time distributions tend to
cluster at similar positions (Goh and Barabási, 2008). Essentially, if
the ranges of B and M values are known, a rough estimate of the
inter-event time distribution can be anticipated. Building on this
insight, we devised a BMTmodel to facilitate learning by designing
a method in which the values of B and M were combined and fed
into the encoder as inputs. Specifically, when the values of B andM
exhibit temporal heterogeneity in their ranges, the encoder of the
Transformer can produce inter-event time prediction values with a
heavy-tailed inter-event time distribution.

Moreover, B and M are not independent: they are intertwined
and move in conjunction. For instance, even when attempting to

alter only M by shuffling the inter-event times, B can also change.
This serves as evidence that embedding both B andM concurrently
yields superior performance compared with embedding either one
of them individually.

2.3 Copula-based algorithm for generating
sequence of inter-event times

To comprehend the impact of burstiness and memory
coefficient on the model, we generated synthetic datasets using
a copula-based algorithm (Jo et al., 2019). The content of the
copula-based algorithm in this study was obtained from Jo et al.
(2019). For convenience, we provide a brief overview of the
relevant content. The copula-based algorithm models the joint
probability distribution of two consecutive inter-event times, that
is, P(τi, τi+1), by adopting the Farlie-Gumbel-Morgenstern (FGM)
copula (Nelsen, 2006). The joint probability distribution according
to the FGM copula is formulated as follows:

P(τi, τi+1) = P(τi)P(τi+1)[1+ rf (τi)f (τi+1)], (11)

where

f (τ ) ≡ 2F(τ )− 1, F(τ ) ≡
∫ τ

0
dτ ′P(τ ′). (12)

Parameter r is used to control the correlation between τi

and τi+1 and is in the range of −1 ≤ r ≤ 1. F(τ ) is the
cumulative distribution function (CDF) of P(τ ). After applying
the transformation method (Clauset and Shalizi, 2009), the next
inter-event time τi+1 can be obtained as Jo et al. (2019)

τi+1 = F−1

[

ci − 1+
√

(ci + 1)2 − 4cix

2ci

]

, (13)

where F−1 is the inverse of F(τ ), ci ≡ rf (τi), and x is a random
number sampled from a uniform distribution within interval 0 ≤
x < 1. The copula-based algorithm has the advantage of generating
event sequences with independent control of the inter-event time
distribution and memory coefficient.

3 Burst and Memory-aware
Transformer

3.1 Discretization of B and M

Given that the burstiness parameter and memory coefficient
are real numbers within the range of [−1, 1], it is necessary
to discretize them for embedding within the Transformer. We
adopt the uniform discretization transform; the range [−1, 1] is
divided into segments of fixed length by the number of bins b,
respectively, and subsequently mapped to a single natural number.
The continuous values of the burstiness parameter B and memory
coefficient M are discretized into natural numbers dB and dM ,
respectively. For example, when the number of bins is b = 4, then
dB = 3 if M = 0.2, and it dB = 1 if M = −0.7. Then, one can
obtain the discretized pairs of B and M as (dB, dM), where dB and
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dM are ranging from 1 to b. To map the pair into a unique natural
number, the Cantor pairing function was employed. The Cantor
pairing function maps discretized dB and dM into a unique natural
number dB,M as

dB,M ≡ 1

2
(dB + dM)(dB + dM + 1)+ dM . (14)

When the number of discretization bins is b, the number of
dB,M is b2, corresponding to the vocabulary size of the Transformer.
Then, we can obtain the one-hot vector of the discretized B &M as
dB,M ∈ R

b2 .

3.2 Embedding event times, and B and M

The event sequence S = {ti}ni=1 of n events and discretized
and one-hot B & M, dB,M are fed into the self-attention module
after proper encoding. First, the event times are transformed using
the positional encoding method (Vaswani et al., 2017) to embed
the temporal order information into an event sequence. The j-th
element of sinusoidal positional encoding for the i-th event time ti
is calculated as:

[zt(ti)]j =
{

sin(ωkti), if j = 2k

cos(ωkti), if j = 2k+ 1,
(15)

where ωk = 1/10, 0002k/d, the embedding index k is the quotient
when dividing j by 2, and zt(ti) ∈ R

d, where d is the encoding
dimension. By multiplying ωk with the event time ti, it is converted
into an angle, which is then mapped to sine and cosine functions,
providing different positional information for each event time.

For the given event times {ti}ni=1, the inter-event times are
τi ≡ ti+1 − ti for i = 1, ..., n − 1. The burstiness parameter
(9) and memory coefficient (10) were calculated for all partial
sequences. This essentially implies that the input to the encoder is
fed sequentially from t1, ..., ti,..., tn, and for each of these instances,
the B & M embedding incorporates the calculated B and M values
up to t1 (i.e., B1 and M1), ..., up to ti (i.e., Bi and Mi), ..., and up
to tn (Bn = B and Mn = M for the entire sequence). Note that,
during the actual operation of the Transformer, computations are
performed in parallel; thus, the sliding B & M embedding vectors
form a lower triangular matrix.

The B &M embedding vector ze(Bi,Mi) for the one-hot vector
of the discretized Bi and Mi, dBi ,Mi , is calculated using a linear
embedding layer as follows:

ze(Bi,Mi) = WEdBi ,Mi , (16)

whereWE ∈ R
d×b2 denotes an embeddingmatrix. Then for the i-th

event, the event time embedding vector zt(ti) ∈ R
d and the B &M

embedding vector ze(Bi,Mi) ∈ R
d are summed together to acquire

the hidden representation of the i-th event zi ∈ R
d as:

zi = zt(ti)+ ze(Bi,Mi). (17)

Then the embedding matrix for a whole single event sequence
is given by:

Z = [zi]i=1,...,n, (18)

where Z ∈ R
n×d and n is the length of the event sequence, that is,

the number of events in a single sequence.

3.3 Self-attention module

After acquiring the embedding matrix Z for each event
sequence according to Equation (18), we propagated Z into the
input of the self-attention module. The resulting attention output
S is defined as follows:

S = Softmax

(

QK⊤
√
dK

)

V, (19)

where Q = ZWQ, K = ZWK, V = ZWV, and S ∈ R
n×dV .

Here, Q, K, and V represent the query, key, and value matrices,
respectively, obtained by applying distinct transformations to Z.
The transformation parameters are WQ ∈ R

d×dK ,WK ∈ R
d×dK ,

and WV ∈ R
d×dV , respectively. In contrast to conventional

RNN models, the self-attention mechanism enables an equitable
comparison of not only recent values but also the significance of
distant past values of the sequence. Consequently, this facilitates
the learning of long-term dependencies.

The BMTmodel employs multi-head attention, similar to other
Transformers. Multi-head attention enables the model to manage
diverse patterns and contexts of the input sequence. The multi-
head attention output S is given by S = [S1, ..., Si, ..., Sm]WO, where
Si ∈ R

n×dV/m is the attention output for the i-th multi-head and
WO ∈ R

m·dV×d is aggregation parameters.
After the multi-head attention, the resulting attention output S

is subsequently passed into a position-wise feed-forward network,
yielding hidden representations h(t) for the event sequence as:

H = ReLU(SWFC1 + b1)WFC2 + b2, (20)

whereWFC1 ∈ R
d×dH ,WFC2 ∈ R

dH×d, b1 ∈ R
dH , and b2 ∈ R

d are
the parameters of each neural network. The i-th event of the event
sequence corresponds to the i-th row of the hidden representation
matrixH, that is, h(ti) = H(i, :). Furthermore, masks are employed
to prevent the model from learning about the future in advance.
The hidden representation H ∈ R

n×d encapsulates insights
regarding burstiness and memory coefficient for each event within
the sequence, acquired through the self-attention mechanism. We
further enhanced the incorporation of sequential information by
applying LSTM to the hidden representation.

3.4 Training and loss function

The BMT model employs five types of loss functions: (1)
squared error of the event time, (2) event log-likelihood loss as
described in Equation (22), (3) cross entropy of discretized B &M,
(4) squared error of B, and (5) squared error ofM.

3.4.1 Event time loss
The most crucial loss function within the model is how

accurately it predicts the next event times. The next event time
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prediction is t̂i+1 = Wth(ti), where Wt ∈ R
1×d is the parameter

of the event time predictor. To address this, the squared error loss
function of the event times for the event sequence is defined as:

Lt =
n
∑

i=2

(ti − t̂i)
2, (21)

where t̂i is the predicted event time.

3.4.2 Event log-likelihood
The typical approach for optimizing the parameters of the

Hawkes process involves utilizingMaximumLikelihood Estimation
(MLE). There are two constraints: (1) no events before time 0,
and (2) unobserved event time must appear after the observed
time interval. When the observed event sequences are t1, ..., tn ∈
[0,T), then likelihood of an event sequence is given by L′ =
P(t1) · · ·P(tn−1)(1−F(T)), where F(·) is the cumulative distribution
function, and the last term is for the second constraint. Using
(1) and (2), and applying the logarithm function, we obtain the
following log-likelihood:

Lλ =
n
∑

i=1

log λ(ti)−
∫ T

0
λ(t′)dt′. (22)

The first term denotes the sum of the log-intensity functions
for the past n events, and the second term represents the non-event
log-likelihood.

Here, the intensity function λ(t) is defined in the interval t ∈
[ti, ti+1] according to the following expression:

λ(t) = β log
(

1+ exp(w⊤
λ h(ti)β

−1)
)

, (23)

where β is the softness parameter, wλ ∈ R
d×1 is a parameter that

converts the term inside the exponential function into a scalar,
and h is the hidden representation derived from the encoder. The
essence of this intensity function aligns with that of the Neural
Hawkes Process, as shown in Equation (6). The softplus function
formulation was employed to guarantee non-negativity of the
intensity.

3.4.3 Discretized B and M loss
The model predicts the discretized B̂i & M̂i, d̂Bi ,Mi , based on the

hidden representations h(ti−1) as:

p̂i = Softmax(WB,Mh(ti−1)), (24)

d̂Bi ,Mi = argmax
d′

p̂i(d
′), (25)

where WB,M ∈ R
b2×d is the parameter of the discretized Bi &

Mi predictor, and p̂i(d′) is the d′-th element of p̂i. To measure
the accuracy of Bi & Mi embedding, the following cross-entropy
between the ground truth discretized Bi & Mi, dBi ,Mi , and the
predicted discretized B̂i & M̂i, d̂Bi ,Mi , is calculated:

LB,M = −
n
∑

i=2

d⊤Bi ,Mi
log (p̂i), (26)

where dBi ,Mi ∈ R
b2 is the ground truth one-hot encoding vector.

3.4.4 B loss and M loss
Additionally, the model utilizes the squared errors of the

burstiness parameter directly as:

LB =
n
∑

i=2

(Bi − B̂i)
2, (27)

where Bi and B̂i are the ground truth and predicted burstiness
parameters, respectively. The squared errors of the memory
coefficient value can be defined in a similar manner.

LM =
n
∑

i=2

(Mi − M̂i)
2, (28)

whereMi and M̂i is ground truth and predictedmemory coefficient,
respectively.

3.4.5 Overall loss
By aggregating the aforementioned loss functions (21), (22),

and (26)–(28), the overall loss function of the model is defined as
follows:

L = Lt + α1Lλ + α2LB,M + α3LB + α4LM , (29)

where α1 to α4 are the hyperparameters that balance each loss
function determined using the validation datasets. The overall
framework of the BMT model is illustrated in Figure 3.

4 Experiments

4.1 Synthetic datasets

We generated synthetic data using the copula-based algorithm
for two different inter-event time distributions. The model
was tested for the exponential and power-law inter-event time
distribution, which also have a different range of memory
coefficient and burstiness, to directly understand the impact of
temporal heterogeneity on the BMT model and other models.
Along with the two synthetic datasets below, we tested the regular
event sequences generated by the self-correcting process, as in
Equation (5). The statistics of the datasets are displayed in Table 1.

4.1.1 Power-law inter-event time distribution
The power-law inter-event time distribution with a power-law

exponent α is defined as P(τ ) = (α − 1)τ−αθ(τ − 1) and the
corresponding cumulative distribution function is F(τ ) = (1 −
τ 1−α)θ(τ − 1), where θ(·) represents the Heaviside step function
with a lower bound of 1. After substituting the inter-event time
distribution into Equation (13), we obtain the next inter-event time
τi+1 from a given previous inter-event time τi and random number
x in 0 ≤ x < 1 as

τi+1 =
[

2ci

ci + 1−
√

(ci + 1)2 − 4cix

]1/(α−1)

, (30)

where ci = (2α−3)2

(α−1)(α−3)M(1− 2τ 1−α
i ) (Jo et al., 2019).
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A total of 1,000 sequences with a power-law inter-event time
distribution were generated with different parameters according to
Equation (30). The power-law exponent α, memory coefficient M,
and the number of events for each event sequence are randomly
and independently drawn from 2.1 ≤ α ≤ 2.9, −1/3 ≤ M ≤ 1/3,
and 50 ≤ n ≤ 500, respectively. The initial inter-event time
was randomly drawn from 1 to 2. Depending on the power-law
exponent andmemory coefficient, the burstiness ranged from 0.297
to 0.962.

As depicted in Figure 4, the power-law inter-event time
datasets exhibit pronounced dispersion toward the region of

FIGURE 3

Architecture of the Burst and Memory-aware Transformer model.

IET; inter-event time; FF, feed-forward neural network; B, burstiness;

M, memory coe�cient.

larger burstiness and memory coefficients (B and M scatter
plots). Moreover, these datasets show a power-law inter-event time
distribution with exponent values α = 2.4 close to the average
within the range of exponents 2.1 < α < 2.9.

4.1.2 Exponential inter-event time distribution
The exponential inter-event time distribution with mean µ is

defined as P(τ ) = µ−1e−τ/µ and the corresponding cumulative
distribution function is F(τ ) = 1 − e−τ/µ and the relationship
between the parameter and memory coefficient is r = 4M. After
substituting the inter-event time distribution into Equation (13),
we obtain the next inter-event time τi+1 from a given previous
inter-event time τi and random number x in 0 ≤ x < 1 as follows:

τi+1 = µ ln

[

2ci

ci + 1−
√

(ci + 1)2 − 4cix

]

, (31)

where ci = 4M(1− 2e−τi/µ) (Jo et al., 2019).
A total of 1,000 sequences with an exponential inter-event time

distribution were generated using different parameters, according
to Equation (31). The mean inter-event time µ, memory coefficient
M, and the number of events n for each event sequence were
randomly and independently drawn from 1 ≤ µ ≤ 100, −1/3 ≤
M ≤ 1/3, and 50 ≤ n ≤ 500, respectively. The initial inter-event
time was set to µ for each event sequence.

As illustrated in Figure 4, the B and M scatter plots of
the exponential inter-event time datasets show that B values
are concentrated in the lower range, whereas M values exhibit
a broader distribution spread both above and below. This
contrasts with the self-correcting process datasets, where the B

and M scatter plots show that both B and M clustered at ∼0.
Although both datasets have an exponential inter-event time
distribution, their heterogeneity differs owing to variations in the
relationship between B and M. Even with an exponential inter-
event time distribution, appropriately shuffling inter-event times
can generate event sequences with temporal heterogeneity (i.e.,
burst) characteristics. We examine this difference further later, as
it plays a role in generating variations in performance.

4.2 Real-world datasets

We adopted four real-world datasets to evaluate the models:
the Retweets, StackOverflow, Financial Transaction, and 911 Calls

TABLE 1 Datasets statistics.

Datasets Power-law Exponential Self-correcting Retweets StackOverflow Financial 911 Calls

IET Mean 3.4645 57.495 0.20015 2,840.8 0.58677 1.5853 338.14

S.D. 2.9372 32.938 0.00193 2,157.8 0.16667 5.6152 249.20

B Mean 0.176 −0.008 −0.048 0.754 0.052 0.522 0.100

S.D. 0.335 0.068 0.028 0.137 0.083 0.069 0.100

M Mean −0.021 −0.059 −0.084 0.442 0.031 0.155 0.009

S.D. 0.195 0.200 0.058 0.274 0.119 0.078 0.158

IET, inter-event time; B, burstiness; M, memory coefficient; S.D., standard deviation.
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FIGURE 4

Relationship between burstiness and memory coe�cient (left) and inter-event time distribution (right) across three synthetic datasets: (A, B)

power-law inter-event time, (C, D) exponential inter-event time, and (E, F) self-correcting process. For calculating the inter-event time distribution,

logarithmic binning was employed.

datasets. The Retweets dataset (Zhao et al., 2015) contains
sequences of tweets and follow-up tweets. The original datasets
contained three categories, based on the number of followers. The
StackOverflow dataset (Leskovec and Krevl, 2014) contains each
user’s reward history, that is, the timestamp of users receiving
the badge and the type of the badge. The Financial Transaction
dataset (Du et al., 2016) includes raw order book records from
the New York Stock Exchange (NYSE) for a stock in one day,
with a millisecond-level time granularity. The events correspond
to two types of actions: buy and sell orders. The 911 Calls

datasets1 contains emergency phone call records for Montgomery
County, PA. This dataset contains information such as calling times
and location, and we conducted aggregation based on location,
utilizing zip codes as identifiers. The dataset covers a five-year
period, which is a relatively extensive time frame for prediction
purposes. Therefore, we partitioned the data intomonthly intervals.
Additionally, to ensure statistical significance, we included only

1 The dataset is available on https://www.kaggle.com/datasets/mchirico/

montcoalert/.
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those locations where the number of events exceeded 50 in the
data.

Although there are other commonly used datasets, the
burst and memory-aware characteristics assumed by the BMT
model are applicable when the sequence length is sufficiently
long. Furthermore, we sampled event sequences in quantities
comparable to synthetic data while concurrently excluding
sequences with short lengths. The time units for each dataset are as
follows: Retweet and StackOverflow datasets are in days, Financial
Transaction datasets are in milliseconds, and 911 Calls datasets are
in minutes. The statistics of the datasets are displayed in Table 1.

As shown in Figure 5, when comparing the Retweets datasets
(or Financial Transaction datasets) to the StackOverflow datasets
(or 911 Calls datasets), it is evident that the Retweets datasets and
Financial Transaction datasets are more temporally heterogeneous.
In the B and M scatter plots, the Retweets datasets (or
Financial Transaction datasets) are concentrated in regions with
larger values for both B and M, whereas the StackOverflow
datasets (or 911 Calls datasets) are centered around values
near 0 for both B and M. However, when compared to
the self-correcting process datasets, the StackOverflow (or 911
Calls datasets) datasets exhibit greater dispersion. Additionally,
the inter-event time distribution reveals that the Retweets
datasets and Financial Transaction datasets follow a power-law
distribution (exponent of 1.36 and 1.70, respectively), whereas
the StackOverflow datasets and 911 Calls datasets follow an
exponential distribution.

4.3 Impact of B and M embedding and
losses

While altering the combination of loss functions during the
experimental process, there were five control groups.

1. BMT-NoE&NoL (BMT without B &M embedding and without
corresponding losses). The simplest scenario occurs when α2 =
α3 = α4 = 0, utilizing only time and event losses. In this case,
only event time and intensity were considered.

2. BMT-NoE&L (BMT without embedding for B & M, but with
losses for either B orM). To incorporate the effects of the B&M

losses, we also consider the case of α2 = 0,α3 > 0, and α4 > 0
with time and event losses. Note that the case for α2 > 0 relates
to predicting the discretized on-hot B & M, and hence it is not
applicable in this scenario.

3. BMT-E&NoL (BMT without losses related to B & M, but with
embedding for B &M). The control group examines the impact
of loss for B & M; the representation vector remains consistent
with the BMT model, as shown in Equation (18), but without
LB,M , LB, and LM , that is, α2 = α3 = α4 = 0.

4. BMT-B (BMT with B embedding only and the corresponding
loss). In the case where only B is embedded and the model
is trained, the loss is also computed exclusively based on B as
α2 = 0,α3 > 0, and α4 = 0 with time and event losses.

5. BMT-M (BMT with M embedding only and corresponding
loss). In the case where only M is embedded and the model
is trained, the loss is also computed exclusively based on M as
α2 = α3 = 0, and α4 > 0 with time and event losses.

5 Results and discussion

We tested several hyperparameters for both the BMT and THP
models and chose the configuration that yielded the best validation
performance. The hyperparameters are as follows: the number of
bins for discretization (b) is set to 40, mini-batch size is 16, dropout
rate is 0.1, embedding dimensions (d and dH) are both 128, self-
attention dimensions (dK and dV ) are 32, with eight layers in
the encoder and 8 heads. For the loss function, hyperparameters
were fine-tuned, mainly as follows: α1 = 1e3,α2 = 4e3,α3 =
α4 = 1e4. We employed the ADAM (adaptive moment estimation)
optimizer with hyperparameters β set to (0.9, 0.999). Regarding
the learning rate, we utilized PyTorch StepLR, initializing it at
1e-4 and reducing the learning rate by a factor of 0.9 every
15 steps.

The performance evaluation results for different models across
diverse datasets are presented in Table 2. The results indicate that
BMT achieves superior performance compared to THP and other
control models in terms of the root mean squared error (RMSE)
of the event times and log-likelihood. The main metric, RMSE,
is a unit-adjusted value obtained by taking the square root of
Equation (21). It measures how much predicted event times of
the model differ from the actual event times. However, RMSE has
a drawback, especially in the case of heterogeneous data, where
it can perform well by accurately predicting large values while
potentially struggling with smaller ones. To address this limitation,
we introduce the event log-likelihood, defined in Equation (22),
as a second metric. This metric arises when probabilistically
modeling event sequences using the intensity function λ derived
from Equation (1). A higher likelihood of the intensity function
calculated with predicted event times of the model indicates that
the model better probabilistically mimics the actual event sequence.
Consequently, larger values of this metric correspond to better
performance. Additionally, when considering the B and M losses
in Equation (26), they represent how well the model captures
discretized burstiness and discretized memory coefficients. Smaller
values of these losses indicate better performance in replicating
these aspects.

In particular, as the data became more heterogeneous,
performance improvement became more pronounced. In synthetic
datasets, the performance enhancement of the BMT model was
greater for power-law inter-event time data than for self-correcting
data, which is a less heterogeneous exponential inter-event time
distribution (see Figure 4). Similarly, in real-world datasets, the
overall performance of the BMT model was superior in the
Retweets dataset, which exhibited a more power-law inter-event
time distribution, compared to the StackOverflow datasets with a
less heterogeneous exponential inter-event time distribution (see
Figure 5).

When compared to the BMT-NoE&L model with respect to
the RMSE of the event times, the BMT model shows that superior
performance across all datasets except StackOverflow. This suggests
that the inclusion of B & M embedding processes aids in
augmenting the performance of the model by enabling the encoder
to grasp the burst structure of event sequences. Compared with
the BMT-E&NoL model, the BMT model demonstrates enhanced
performance across all datasets, indicating that the integration of
B & M losses into the overall loss function contributes to the
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FIGURE 5

Relationship between burstiness and memory coe�cient (left) and inter-event time distribution (right) for four real-world datasets: (A, B) Retweets,

(C, D) StackOverflow, (E, F) Financial Transaction, and (G, H) 911 Calls. For calculating the inter-event time distribution, logarithmic binning was

employed.
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TABLE 2 Performance evaluation results across diverse datasets for

di�erent models.

Dataset Model RMSEof
time

LL CE of
BM

Power- law THP 238.0 −2.303 N/A

BMT-NoE&NoL 66.6 −2.451 N/A

BMT-NoE&L 68.2 −2.493 N/A

BMT-E&NoL 82.0 −2.348 12.46

BMT-B 107.6 −2.712 N/A

BMT-M 52.3 −2.730 N/A

BMT 40.5 −2.302 8.05

Exponential THP 1,973.7 −19.910 N/A

BMT-NoE&NoL 158.7 −6.486 N/A

BMT-NoE&L 208.8 −15.640 N/A

BMT-E&NoL 102.2 −5.633 12.70

BMT-B 106.1 −7.201 N/A

BMT-M 140.8 −9.912 N/A

BMT 80.1 −5.171 5.77

Self-correcting THP 0.184 0.200 N/A

BMT-NoE&NoL 0.192 −0.281 N/A

BMT-NoE&L 0.185 0.329 N/A

BMT-E&NoL 0.183 0.592 7.30

BMT-B 0.198 −0.425 N/A

BMT-M 0.209 −0.456 N/A

BMT 0.181 0.605 5.43

Retweets THP 36,080.8 −9.01 N/A

BMT-NoE&NoL 16,360.8 −111.13 N/A

BMT-NoE&L 16,362.9 −110.95 N/A

BMT-E&NoL 16,257.7 −8.14 28.92

BMT-B 16,090.8 −16.21 N/A

BMT-M 16,266.5 −11.19 N/A

BMT 15,825.8 −11.28 2.70

Stack Overflow THP 127.0 −0.373 N/A

BMT-NoE&NoL 0.658 −0.266 N/A

BMT-NoE&L 0.643 −0.277 N/A

BMT-E&NoL 0.726 −0.339 17.81

BMT-B 0.858 −0.718 N/A

BMT-M 3.969 −0.505 N/A

BMT 0.663 −0.358 6.38

Financial THP 38.13 −1.826 N/A

BMT-NoE&NoL 44.26 −11.843 N/A

BMT-NoE&L 62.72 −11.759 N/A

BMT-E&NoL 38.39 −2.104 7.39

BMT-B 37.93 −1.848 N/A

BMT-M 77.58 −1.796 N/A

(Continued)

TABLE 2 (Continued)

Dataset Model RMSEof
time

LL CE of
BM

BMT 37.92 −1.775 4.41

911 Calls THP 6,183.4 −7.190 N/A

BMT-NoE&NoL 358.3 −17.662 N/A

BMT-NoE&L 469.3 −41.818 N/A

BMT-E&NoL 342.4 −6.608 28.49

BMT-B 353.4 −6.832 N/A

BMT-M 364.8 −6.835 N/A

BMT 339.6 −6.883 8.56

RMSE, root mean squared error; LL, log-likelihood; CE, cross entropy; B, burstiness;

M, memory coefficient. The bold value indicates the metric of the model with the best

performance for each individual dataset.

improved performance of the model. Even in the prediction of
one-hot discretized B & M, it can be observed that including
B & M losses contributes to a reduction in cross entropy. No
significant differences in performance were observed between the
BMT-NoE&NoL and BMT-NoE&L models. This suggests that the
incorporation of B &M losses is less significant in the absence of B
&M embedding.

Summarizing the aforementioned findings, it is evident that
both B & M embedding and B & M losses contribute to
performance enhancement. Excluding either of these components
would likely impede the attainment of a substantial performance
improvement, comparable to that observed with the BMTmodel. If
either of the B embedding orM embedding is omitted, a significant
performance improvement comparable to that of the BMT model
cannot be expected. This was substantiated by comparing the
BMT model with the BMT-B and BMT-M models, which revealed
the superior performance of the BMT model across all datasets.
These results can also be observed in the training curves shown in
Figure 6.

We also conducted experiments on mixed synthetic datasets,
the results of which are presented in Table 3. The mixed synthetic
datasets comprised a combination of three individual datasets:
power-law, exponential, and self-correcting datasets. However,
when separately examining the RMSE of event time and log-
likelihood, the performance of the original BMT model appeared
slightly inferior compared to some of the control BMT models,
demonstrating an overall superior performance when considering
both metrics together.

In summary, the BMT model demonstrates improved
performance on heterogeneous data owing to its capability to
capture heterogeneous characteristics through the embedding of B
&M, combined with the inclusion of corresponding loss functions.

The BMT model has two limitations. First, in cases where
the event sequence length is short, the incorporation of B and
M into the BMT model may result in reduced effectiveness.
This aspect originates from the statistical characteristics of B

and M, because their meaningful representation is hindered by
fluctuations and noise, particularly when the number of events
is small. In the BMT model, during the calculation of sliding
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FIGURE 6

Training curves of RMSE for event times fitted on Financial Transaction datasets are presented for various BMT model scenarios: BMT-NoE&NoL,

BMT-NoE&L, BMT-E&NoL, BMT-B, BMT-M, and the standard BMT model.

TABLE 3 Performance evaluation results for the mixed synthetic datasets:

power-law, exponential, and self-correcting datasets.

Model RMSEof time LL CE of BM

THP 1,338.65 −14.190 N/A

BMT-NoE&NoL 261.20 −9.015 N/A

BMT-NoE&L 64.19 −8.228 N/A

BMT-E&NoL 77.14 −4.414 12.593

BMT-B 64.74 −7.439 N/A

BMT-M 71.31 −10.476 N/A

BMT 66.98 −4.748 6.269

The bold value indicates themetric of themodel with the best performance for each individual

dataset.

B and M values, masking was applied to exclude the first
three events. However, considering that temporal heterogeneity
becomes a meaningful characteristic only when the length of the
event sequence is sufficiently long, this limitation can be viewed
as unavoidable.

The second limitation is the inability to consider event
types, which will be addressed in future studies. To account for
event types, it is necessary to reflect the correlation structure
between inter-event times and event types to generate synthetic
data and subsequently test the model using these data. In
the context of performance enhancement, the improvement of
the BMT model over the THP model can also be attributed
to the fact that the BMT model does not embed event
types. This allows the model to focus more on predicting the
event times. Because the BMT-NoE&NoL model is analogous
to a version of the THP model that does not consider
event types, comparing the performance of the BMT-NoE&NoL
model with the BMT model would provide a more equitable
assessment. However, upon comparing the BMT-NoE&NoL model
with the BMT model, it becomes evident that the BMT
model exhibits superior performance across all datasets, except
for StackOverflow.

6 Conclusion

Our study addresses the challenges presented by bursty
temporal patterns in event sequences across various domains.
By leveraging recent advancements in predicting event sequences
using Transformer models based on the Hawkes process with self-
attention mechanisms, we introduced a Burst and Memory-aware
Transformer (BMT) model. This model effectively captures the
nuances of burst patterns by embedding burstiness and memory
coefficient within its self-attention module. The incorporation of
a specialized loss function tailored for burstiness and memory
coefficient further refines the model’s predictive capabilities.

Through comprehensive numerical experiments conducted on
a diverse array of synthetic and real-world datasets encompassing
various scenarios, we validated the outstanding performance
of the BMT model by comparing it with the existing models
and control groups. This is particularly evident in scenarios
involving heterogeneous data, such as power-law inter-event
time distributions. Hence, the explicit consideration of burst-
related parameters within the Transformer contributes to a deeper
comprehension of complex event sequences, ultimately leading to
an enhanced predictive performance. In future work, we will focus
on integrating a multitude of insights from complex systems into
the development of deep neural network models for temporal data.
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