AUTHOR=Bhutta M. Raheel , Ali Muhammad Umair , Zafar Amad , Kim Kwang Su , Byun Jong Hyuk , Lee Seung Won TITLE=Artificial neural network models: implementation of functional near-infrared spectroscopy-based spontaneous lie detection in an interactive scenario JOURNAL=Frontiers in Computational Neuroscience VOLUME=17 YEAR=2024 URL=https://www.frontiersin.org/journals/computational-neuroscience/articles/10.3389/fncom.2023.1286664 DOI=10.3389/fncom.2023.1286664 ISSN=1662-5188 ABSTRACT=
Deception is an inevitable occurrence in daily life. Various methods have been used to understand the mechanisms underlying brain deception. Moreover, numerous efforts have been undertaken to detect deception and truth-telling. Functional near-infrared spectroscopy (fNIRS) has great potential for neurological applications compared with other state-of-the-art methods. Therefore, an fNIRS-based spontaneous lie detection model was used in the present study. We interviewed 10 healthy subjects to identify deception using the fNIRS system. A card game frequently referred to as a bluff or cheat was introduced. This game was selected because its rules are ideal for testing our hypotheses. The optical probe of the fNIRS was placed on the subject’s forehead, and we acquired optical density signals, which were then converted into oxy-hemoglobin and deoxy-hemoglobin signals using the Modified Beer–Lambert law. The oxy-hemoglobin signal was preprocessed to eliminate noise. In this study, we proposed three artificial neural networks inspired by deep learning models, including AlexNet, ResNet, and GoogleNet, to classify deception and truth-telling. The proposed models achieved accuracies of 88.5%, 88.0%, and 90.0%, respectively. These proposed models were compared with other classification models, including k-nearest neighbor, linear support vector machines (SVM), quadratic SVM, cubic SVM, simple decision trees, and complex decision trees. These comparisons showed that the proposed models performed better than the other state-of-the-art methods.