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Computational intelligence for signal and image processing

1. Introduction

The contemporary world features an array of sensors, each with distinct functions.

Data from these sensors primarily come in the form of signals, images, videos, and similar

formats (Cheng D. et al., 2022). Effectively deciphering this data holds the key to enhancing

daily life and industrial efficiency (Wang et al., 2023). Initially, humans were responsible

for processing and interpreting signal and image data, a process with limited accuracy

and efficiency (Liu F. et al., 2023). However, the evolution of computational intelligence,

includingmachine learning and deep learning, has enabled the automated handling of sensor

measurements, reducing the need for human involvement (Jiang et al., 2023). Consequently,

vast amounts of signal and image data can be efficiently processed for diverse applications

(Cheng L. et al., 2022; Wang et al., 2022; Fu et al., 2023), given their varied and abundant

nature, which encompasses radar signals, biomedical signals, optical images, and distinctive

medical images (Zhuang et al., 2022a). To this end, distinct computational intelligence

algorithms are necessary for various signal and image types (Zhuang et al., 2022b; Dang et al.,

2023; Lu et al., 2023). Recent strides in machine learning and deep learning have introduced

a suite of tools for signal and image processing like convolutional neural networks, deep

belief networks, and deep generative models (Liu et al., 2021). Integrating these pioneering

computational intelligence techniques into the realm of signal and image processing holds

the promise of delivering accurate and rapid interpretations (Cong et al., 2023; Liu H. et al.,

2023).

2. Contributions

Within this research domain, a total of 10 articles have been published. Pan et al.

introduced a stepped image semantic segmentation network structure that incorporated

a multi-scale feature fusion scheme and boundary optimization. It enhanced the model

accuracy by optimizing the spatial pooling pyramid module in the Deeplab V3+ network by

employing the Funnel ReLU activation function for accuracy improvement. Experimental

results have shown that the enhanced networks achieved a 96.35% accuracy. Furthermore,

Zhijian et al. explored a method for simulating the infrared data, fusing simulated 3D
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infrared targets with real infrared images. Real infrared images

were fused into panoramic backgrounds, simulating infrared

characteristics on aircraft components like the tail nozzle, skin,

and tail flame. This approach, driven by Unity3D, allowed

flexible aircraft trajectory and attitude editing, generating

diverse multi-target infrared data. The experimental results

have shown that the simulated image closely resembled the real

infrared images and aligned with real data’s target detection

algorithm performance. Another study by Prabhakar et al.

focused on EEG signal modeling and classification. With a

sparse representation model and sparseness measurement

analysis for EEG signals, Swarm Intelligence (SI) techniques were

harnessed for Hidden Markov Model (HMM)-based classification.

Additionally, a Convolutional Neural Network (CNN)-powered

deep learning methodology achieved a remarkable 98.94%

classification accuracy.

Additionally, Fan et al. have given insights to elucidate the

association between Tic disorder and gut microbiota. A total of

78 stool samples were examined from Tic disorder cases and

62 from healthy controls, utilizing a case-control design for all

studies. The results have shown variations in gut microbiota

taxonomy between Tic disorder cases and controls, albeit with

inconsistencies across studies. In another study, Saikumar et al.

integrated the Internet of Things sensor data into a deep learning-

based application for diagnosing heart conditions. The Internet of

Things sensor data related to heart disease was utilized to train

the deep graph convolutional network (DG_ConvoNet). The K-

means technique was employed to reduce sensor data noise, aiding

the clustering of unstructured data. Extracted features were then

used in Linear Quadratic Discriminant Analysis. DG_ConvoNet, a

deep learning approach, exhibited 96% accuracy, 80% sensitivity,

73% specificity, 90% precision, 79% F-Score, and a 75% area

under the ROC curve, proficiently classifying and predicting heart

ailments. Furthermore, Yan et al. have discussed urban street

color analysis schemes by merging the color cards with efficient

software recognition by addressing the challenges in quantifying

urban color research. Using the China Building Color Card and

Python’s HSV color segmentation, Avenida de Almeida Ribeiro’s

colors from various angles have been assessed. This approach

combined color card colorimetry and computer recognition by

capturing both building and environmental influences. Themethod

comprehensively quantified, compiled, summarized, and compared

the architectural and environmental colors, offering practical

universality. The findings aided Macao’s color planning and

urban renewal, presenting a novel urban color study approach.

Gezawa et al. introduced a fused feature network that handled

the shape classification and segmentation tasks by a dual-branch

approach and feature learning. A feature encoding network was

devised for network simplification by integrating two distinct

building blocks with interposed batch normalization and rectified

linear unit layers. It accelerated learning, mitigating gradient

vanishing due to the limited number of layers for propagation. The

framework also introduced a grid feature extraction module using

convolution blocks and max-pooling to hierarchically represent

input grid features. The max-pooling reduced the overfitting risk

by gradually diminishing spatial dimensions, network parameters,

and processing load. The grid size limitations were handled

by locally sampling a constant point number from each grid

region via a basic K-nearest neighbor by enhancing approximation

functions for detailed feature characterization. It has shown

superior performance with state-of-the-art techniques.

In another study, Ming et al. introduced deep CNN using

CT scans for the diagnosis of severe pneumonia with pulmonary

infection. An EC-U-net model has been employed on 120

patients to find accuracy in comparison to the traditional

CNN. The learning rate of the model has decreased in over

40 training cycles by yielding results nearer to mask images.

The given EC-U-net has outperformed the CNN with a higher

Dice coefficient and lower loss. The method has increased

diagnostic accuracy by reducing false rates and improving the

recognition of infection-related features in CT scans by showing

potential for clinical applications. Zhang et al. discussed a

neural learning approach for the prediction of the best grasp

configuration for each detected object from the image. A 3D-

plane-based approach was used to filter the cluttered background

and then the objects and grasp candidates by two separate

branches were detected by an additional alignment module. A

series of experiments are conducted on two public datasets to

evaluate the performance of the proposed model in predicting

reasonable grasp configurations “from a cluttered scene.” A

deep learning-based method was proposed by Liu et al. to

classify the data, screen out double-peak data, and realize the

segmentation of the integral regions through the given U-Net

segmentation model. The presented classification model exhibited

an accuracy of 99.59%, while the segmentation model achieved an

intersection over a union value of 0.9680 by using the combined

loss function.

3. Conclusion

This editorial presented 10 research articles focused on

the applications of Computational Intelligence for Signal and

Image Processing. The aim was to gather related articles in

the Signal and Image Processing industry, such as education,

healthcare, and security. The findings presented in this Research

Topic showcased more active development and research within

the field of Computational Intelligence methods in the times

ahead. To facilitate this progression, future approaches might

encompass harnessing Computational Intelligence techniques to

improve prediction precision and enhance the reliability of

prediction models.
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