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Simple and complex cells
revisited: toward a
selectivity-invariance model of
object recognition

Xin Li1* and Shuo Wang2

1Department of Computer Science, University at Albany, Albany, NY, United States, 2Department of

Radiology, Washington University at St. Louis, St. Louis, MO, United States

This paper presents a theoretical perspective on modeling ventral stream

processing by revisiting the computational abstraction of simple and complex

cells. In parallel to David Marr’s vision theory, we organize the new perspective

into three levels. At the computational level, we abstract simple and complex

cells into space partitioning and composition in a topological space based on

the redundancy exploitation hypothesis of Horace Barlow. At the algorithmic

level, we present a hierarchical extension of sparse coding by exploiting the

manifold constraint in high-dimensional space (i.e., the blessing of dimensionality).

The resulting over-parameterized models for object recognition di�er from

existing hierarchical models by disentangling the objectives of selectivity and

invariance computation. It is possible to interpret our hierarchical construction as

a computational implementation of cortically local subspace untangling for object

recognition and face representation, which are closely related to exemplar-based

and axis-based coding in the medial temporal lobe. At the implementation level,

we briefly discuss two possible implementations based on asymmetric sparse

autoencoders and divergent spiking neural networks.

KEYWORDS

simple and complex cells, selectivity computation, invariance computation, object
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1. Introduction

How do we learn to see in the first 6 months after birth? To answer this question, David

Hubel and Torsten Wiesel conducted pioneering experiments in the 1950s, leading to the

discovery of simple and complex cells (Hubel, 1995). Inspired by their discovery, DavidMarr

developed a theory of the neocortex (Marr and Thach, 1991) in 1970 and a theory of the

hippocampus (Marr et al., 1991) in 1971. His computational investigation of vision (Marr,

2010) was published in 1982 after his death. The construction of neocognitron (Fukushima,

1984) and connectionist models (Rumelhart et al., 1985) in the 1980s represented the

continuing effort to construct biologically plausible computational models for object

recognition. Wavelet theory (Mallat, 1989) and sparse coding (Olshausen and Field, 1996)

in the 1990s further supplied mathematical formulations of multi-resolution analysis for

scale-invariant representation of images. Rapid advances in deep learning (Goodfellow

et al., 2016), especially the class of over-parameterized models (Arora et al., 2018; Allen-

Zhu et al., 2019) have expedited both the theory and practice of learning-based visual

information processing.

Despite the remarkable progress of today, the gap between biological and artificial

vision remains significant in the following aspects. First, the network architecture of the
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convolutional neural network (CNN) is characterized by the

pooling of layers, which reduces the dimensionality of the input

data. This is in sharp contrast to the increase in the number of

neurons and synapses as we move from the lower layer (e.g., V1)

to the higher layer (e.g., V4). This anatomical finding inspired

Barlow (2001) to revise his redundancy reduction hypothesis

into the redundancy exploitation hypothesis in 2001. Second,

CNN still lacks generalizability, which extends far beyond our

direct experience (Greff et al., 2020). This shortcoming has been

conceived to be related to the binding problem, closely related

to consciousness (Treisman, 1996), which has been extensively

studied in psychology. A compositional approach to AI is

fundamentally important in achieving human-level generalization.

Finally, it remains a mystery how the human brain can manage

to achieve the objectives of learning and memory with more than

100–1,000 trillion synapses but a power budget of <20W.

The motivation behind this paper is 2-fold. On the one hand,

both the human brain and CNN are characterized by the ability

to optimize an astronomical number of synaptic weights. The

class of over-parameterized models (Arora et al., 2018; Allen-Zhu

et al., 2019) has shown some counterintuitive properties, such as

double descent (Nakkiran et al., 2021). Analytical tools such as

neural tangent kernel (NTK) (Jacot et al., 2018) offer an approach

to understanding over-parameterization, but, as with all kernel

methods, the assumption with the mathematical structure of the

Hilbert space is never justified (Poggio and Girosi, 1990). We

seek to understand over-parameterization under the framework

of exploring the tradeoff between selectivity and invariance (a.k.a.

tolerance) computation instead (DiCarlo et al., 2012). Since nature

does not have foresight, it recycles old solutions (e.g., cognitive

maps Whittington et al., 2022b) to solve new problems (e.g.,

object recognition). On the other hand, an evolutionary perspective

on biological and artificial neural networks (Hasson et al., 2020)

offers a direct-fit approach to understanding biological neural

networks. Such a deceivingly simple model, when combined with

over-parameterized optimization, offers an appealing solution to

increase the generalization (predictive) power without explicitly

modeling the unknown generative structure underlying sensory

inputs. Along this line of reasoning, neural population geometry

offers a “manifold untangling” (DiCarlo et al., 2012; Chung

and Abbott, 2021; Li and Wang, 2023) perspective toward

understanding the mechanism of ventral stream processing.

In this paper, we follow Marr (2010) vision and study

the problem of object recognition at three different levels. At

the computational level, we construct an over-parameterized

selectivity-invariance model for object recognition. Inspired

by the contrast between the mechanisms of selectivity and

invariance/tolerance in ventral stream processing (DiCarlo et al.,

2012), we make a new proposal to abstract simple and complex

cells into space partitioning and composition in a topological

space. Unlike existing hierarchical models for object recognition,

we advocate a direct-fit approach on the topological manifold

that is both biologically plausible and computationally efficient.

At the algorithmic level, we connect our construction with a

hierarchical generalization of the sparse coding strategy, making

it suitable for disentangling object identity from environmental

uncertainty factors (e.g., pose, scale, position, and clutter). A

new insight brought about by our hierarchical generalization of

sparse coding is the dynamic programming (DP)-like solution

to approximate nearest neighbor (ANN) for object recognition.

Finally, at the implementational level, we briefly discuss two

possible implementations based on asymmetric sparse autoencoder

(Ng et al., 2011) and divergent spiking neural networks (SNN)

(Izhikevich, 2006), respectively. Unlike the original construction,

asymmetric sparse autoencoder (Ng et al., 2011) exploits the

blessing of dimensionality by formulating mask-task learning in

the latent space. Similarly, a divergent SNN attempts to simulate

the parallel and sequential binding mechanism of polychronization

neural groups (PNGs), which solves the problem of combinatorial

arrangement (Damasio, 1989).

2. Computational level:
over-parameterized
selectivity-invariance model for object
recognition

In neuroscience, the principle of hierarchical organization

can be roughly stated as follows. The nested structure of the

physical world is mirrored by the hierarchical organization of the

neocortex. This principle was partially inspired by Mountcastle

(1957) universal cortical processing algorithm. If Mountcastle were

correct, the “simple discovery” made by Hubel and Wiesel might

have deeper implications in the mechanism of visual processing

beyond V1. The solution, as manifested by an infant’s development

of the visual cortex (primarily for the ventral stream for object

vision) during the first 6 months after birth (Mumford, 2002),

lies in a novel construction of an over-parameterized selectivity-

invariance model based on the hierarchical organization of simple

and complex cells. We advocate the following principle as the key

to unlocking the secret of ventral stream processing.

Principle of dichotomy learning

Based on the principle of Hebbian learning, the population of

neurons participates in either selectivity or invariance computation.

The former generates new patterns/objects about the external

environment and is expansive in nature; the latter clusters

perceptually equivalent patterns about internal representations

(Rumelhart et al., 1985) [a.k.a. mental models (Sterman, 1994)] and

is compressive in nature.

Simple and complex cells discovered by Hubel and Wiesel are

two concrete examples of selectivity and invariance computation.

In this paper, we revisit the problem of modeling simple and

complex cells and propose a generalized abstraction/strategy from

the perspective of dichotomy learning.

2.1. Computational abstraction of simple
and complex cells

A contemporary view of ventral stream processing is that

the visual ventral pathway gradually untangles information about

objects through nonlinear selectivity and invariance computation

(DiCarlo et al., 2012). From V1 and V2 to V4 and inferior temporal
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(IT), each area in the visual cortex plays the role of conveying

a neural population-based re-representation of visually presented

images. Despite the extensive study of V1 (Olshausen and Field,

2005), our understanding of the processing of the ventral stream

in higher stages (V4 and IT) remains poor. It is unclear how the

ventral stream produces an IT population representation that can

achieve the objective of robust and invariant object recognition.

It has been speculated that the problem of manifold untangling is

solved hierarchically by a canonical meta-job description of each

local cortical subpopulation. This has been called “cortically local

subspace untangling” (DiCarlo et al., 2012), which aims to best

untangle the object manifold locally (i.e., within the data subspace

provided by the input afferents).

Existing bottom-up encoding models are often inspired by

Hubel and Wiesel’s ground-breaking discoveries of simple and

complex cells in 1962. Simple cells implement AND-like operations

on lateral geniculate nucleus (LGN) inputs to promote the

selectivity of visual stimuli (e.g., directional selectivity). Complex

cells implement OR-like operations to achieve a form of invariance

(e.g., translational invariance). The combination of simple and

complex cells has been the basis of many vision models including

neocognitron (Fukushima, 1984), convolutional neural network

(CNN) (LeCun et al., 1995), and HMAX (Riesenhuber and Poggio,

1999). However, these existing models share a common convergent

architecture due to the max-pooling operator and the associated

misconception about the curse of dimensionality. None of them is

consistent with Barlow (2001) redundancy exploitation hypothesis

based on the observation that the number of neurons does not

decrease but increases dramatically at higher stages. Why do we

need more neurons in IT than in V2 or V4?

The purpose of this work is to shed some new insight

from the perspective of selectivity and invariance computation.

The objective of constructing a selectivity-invariance model is

to facilitate the task of manifold untangling (DiCarlo et al.,

2012)—i.e., how does a population of neurons simultaneously

distinguish different stimuli (selectivity) and recognize the same

class (invariance)? Our intuition is that nature has discovered

an elegant solution to the manifold untangling problem—i.e., the

resulting population-based representation of IT single neurons is

so powerful that it simultaneously conveys explicit information

about all tangled factors including identity, position, size, pose,

context, and so on. To understand how a selectivity-invariance

model facilitates manifold untangling, we revisit the computational

abstraction of simple and complex cells by articulating specific

objectives of selectivity-invariance computation. To facilitate our

computational abstraction, we briefly review the definitions of

subspace and product topology (Lee et al., 2009) below.

Subspace topology: Let X be a topological space and let

S ⊆ X be any subset. Then TS = {U ⊆ S :U = S ∩

V for some open subset V ⊆ X} is the subspace topology.

Product topology: Suppose that X1, ...,Xn are topological

spaces. In its Cartesian product X1 × ... × Xn, the product

topology is generated on the following basis: B = {U1 × ... ×

Un :Ui is an open subset of Xi, i = 1, ..., n}.

Simple cells play the role of vector quantization or space

partitioning, which generalizes the conventional wisdom of

direction selectivity (Hubel, 1995) and can be abstracted as

subspace topology (Kelley, 2017). A good example to understand

space partitioning is the k-dimensional tree (k-d tree) (Bentley,

1975), a space partitioning data structure to organize points in a

k-dimensional space. The k-d tree structure directly fits the data,

using hyperplanes to recursively partition the k-dimensional space.

A simple variant of the k-d tree, named the random projection

tree (Dasgupta and Freund, 2008), is capable of automatically

adapting to the low-dimensional structure of the data without

explicit manifold learning. In summary, simple cells distinguish

different classes of stimuli by selective firing; from this perspective,

even grandmother cells (a.k.a. “Jennifer Aniston neuron”) that only

respond to a specific class of stimulus (Quiroga et al., 2005) can

be categorized as simple cells regardless of their affiliation with the

higher-level cortical regions.

Complex cells play the role of product quantization (Jegou

et al., 2010) or space composition, which generalizes existing

grouping operations and can be abstracted by product topology

(Kelley, 2017). Note that our intuition is consistent with the

max/sum-pooling operations in the HMAX model (Riesenhuber

and Poggio, 1999) because the objective of complex cells is to

achieve spatial invariance within an increased field of view. The

difference lies in the way of abstraction—from simple to complex

cells, we ask what will be its dual operation of space partitioning.

Along this line of reasoning, if simple cells are responsible for linear

separability without the change of dimensionality; complex cells

must increase the dimensionality for handling more sophisticated

objects with a larger field of view (up to a certain class of geometric

transformations). In summary, complex cells are responsible for

invariant recognition—they achieve this objective by explicitly

encoding identity-preserving transformations (DiCarlo et al.,

2012).

To illustrate the difference between space partitioning and

space composition, Figure 1 contains several examples in varying

dimensions. Figures 1A–C show how a 2D/6D/32D space can

be partitioned into overlapping and nonoverlapping subspaces.

Such subspace topology promotes the selectivity computation by

simple cells in the space of sensory stimuli. Figure 1D illustrates

the composition of subspaces (i.e., the pair of green/vertical

or blue/horizontal planes) into a product topology (the higher-

dimensional space R3). Such product topology is useful for

abstracting invariance computation of complex cells.

2.2. Selectivity and invariance computation
along the hierarchy

Hierarchical model construction combines layers of simple

and complex cells similar to HMAX (Riesenhuber and Poggio,

1999) or neocognitron (Fukushima, 1984), but with an important

distinction. The network architecture of our model is not

convergent, but divergent—one way of generalizing is to still

use pooling layers, but we will consider many parallel pooling

layers simultaneously. This divergent architecture is inspired

by the hypothesis of redundancy exploitation (Barlow, 2001)

advocated by H. Barlow, since the number of neurons increases

significantly as we move to the higher level of the visual
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FIGURE 1

Abstraction of simple/complex cells into space partitioning or subspace topology (A–C) and space composition or product topology (D). Note that

space partitioning and composition promote selectivity and invariance computation, respectively.

cortex (e.g., from V4 to IT). In addition to the argument

with combinatorial coding (Damasio, 1989), we note that

achieving spatial invariance by max-pooling loses resolution.

To compensate for this sacrifice, context aggregation by dilated

convolutions (Yu and Koltun, 2015) has been developed for

semantic segmentation. Mathematically, a dilated convolution

is equivalent to a convolution without the follow-up max-

pooling operation. Alternatively, we can still use max-pooling, but

consider the generalization of dilated convolutions to multiple

deformable convolutions in parallel. To achieve invariance of object

recognition to geometric transformations, we need to construct

identity-preserving transformations from local to global along

the hierarchy.

To construct a hierarchical model, we note that the

combination of space partitioning (by simple cells) and space

composition (by complex cells) can be recursively applied

to achieve the objective selectivity-invariant computation

in an increasingly higher-dimensional space. This recursion

is conceptually similar to multi-resolution analysis (Mallat,

1989) but operates in a data-adaptive manner. At each level,

the concatenation of simple and complex cells will map

visual stimuli to a sequence of invariant representations with

increasing dimensionality, selectively requiring more and more

polychronization neural group (PNG) (Eguchi et al., 2018) at

varying time scales (Murray et al., 2014). Meanwhile, invariance

by identity-preserving transformations helps avoid the exponential

explosion of PNG numbers. At the core of computation lies

the task of novelty detection (e.g., by hippocampus Knight,

1996)—i.e., when should a new PNG be recruited to represent the

sensory stimuli?

We note that the definition of novelty is also scale-dependent.

Generally speaking, the hierarchical formation of PNGs reflects

the mirroring of the internal representation with respect to the

nested structures of the sensory stimuli. A stimulus that is locally

familiar (e.g., a simple edge) might be globally novel (e.g., a

new combination of simple edges). How do simple features get

integrated into complex ones is a long-standing open problem

called binding (Treisman, 1996) in the literature. We conjecture

that two mechanisms play a fundamental role in scale-dependent

novelty detection and the related binding problem: (1) sequential

firing (generalizing a simple cell) that concludes the selective

recognition of a sensory stimulus from a cluttered background, and

(2) parallel firing (generalizing a complex cell) (Treisman, 1996)

that contributes to the invariant recognition of the object identity

regardless of various transformations. Together, they contribute

to the formulation of PNGs representing both novel identities

and identity-preserving transformations from the local to the

global scale.

How do PNGs encode identity-preserving transformations?

The temporal stability of sensory stimuli (e.g., the grandmother’s

face) serves as an implicit supervision signal during object

recognition. Environmental uncertainty factors, such as varying

poses and positions within a short time span (e.g., 100 m), are

assumed to be associated with the same object identity. Therefore,

conceptually similar to the spatial invariance achieved by complex

cells, we can generalize it to higher-order geometric invariance

by a similar max-pooling operation. However, we note that the

objective of parallel firing (in contrast to the sequential one) is to

simultaneously convey the identity information along with those

uncertainty factors. Along this line of reasoning, both the selective

recognition of complex patterns (as the superposition of simple

ones) and their invariance recognition (through encoding identity-

preserving transformations) require an astronomical number of

PNGs. We believe that nature has discovered an elegant solution

to this problem—i.e., the combinatorial barrier can be overcome

by the exponential growth of PNGs from V1 to IT (or over-

parameterization). As shown in Izhikevich (2006), the total number

of PNGs can be much larger than the number of neurons due to

their self-organization by spike timing-dependent plasticity (STDP)

(Caporale and Dan, 2008).

In summary, the objective of object recognition at the

computational level is to strike a trade-off between selectivity and

invariance along the hierarchy. From localized simple patterns to

globally integrated features, the nested organization of the physical

world is hierarchically mirrored by the internal representation

(Rumelhart et al., 1985) (a.k.a. mental model Gentner and Stevens,

2014) of an organism. Such internal representation will serve

as the foundation of intelligence for predictive coding. Our

generalization of simple and complex cells attempts to unify

selectivity and invariance computation by distinguishing between

sequential and parallel firing mechanisms. Even though both count

on an astronomical number of PNGs as the information carrier,

we have found that the evolution of mammalian brains does

support such a simple yet elegant solution to object recognition

(i.e., recruit more PNGs for selective and invariant computation

along the hierarchy). Next, we elaborate on specific algorithms to
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perform the computations required by object recognition at the

algorithmic level.

3. Algorithmic level: unsupervised
clustering via hierarchical sparse
coding

At this level, we break down the computational goal of the

previous section into specific processes including data structures

and coding algorithms. The unifying theme is to exploit the

blessing of dimensionality by generalizing the existing multi-

resolution analysis in the Hilbert space (Mallat, 1989) to a

high-dimensional topological manifold. A common criticism

of increasing dimensionality is concerned with the so-called

curse of dimensionality (Bellman, 1966) from the perspective of

computational complexity. There are several ways to address

this problem. First, experimental studies such as Chen et al.

(2013) have demonstrated the blessing of dimensionality in

face verification applications, which is consistent with biological

findings (McNaughton, 2010). Second, recently proposed over-

parameterized models (Arora et al., 2018) and direct fit to nature

(Hasson et al., 2020) suggest that dimensionality can be a blessing

when a large amount of training data is available due to a

counterintuitive phenomenon called “concentration of measure”

(Ledoux, 2001). Over-parameterization has been shown to be

beneficial for both representation learning and few-shot learning

(Sun et al., 2021). Third, as dimensionality increases, the existence

of many comparable solutions can be exploited by a global

optimization algorithm to accelerate the search (assuming any

solution works equally well).

3.1. Unsupervised clustering on product
manifold

As argued by Jean Piaget, the order of grasping mathematical

structures in early childhood cognitive development (topology

before geometry) is the opposite of what we have learned in school

(topology after geometry) (Piaget and Cook, 1952). Therefore, we

attempt to construct a biologically plausible object recognition

model in a topological space with the least number of assumed

mathematical structures before discussing its implementation at the

algorithmic level. In this paper, we formalize the biological object

recognition as the following unsupervised clustering problem and

present algorithmic solution based on sparse coding.

Problem formulation of biological object recognition

Given visual stimuli with a combinatorial number of patterns in

varying dimensions, group them into different classes/objects in an

unsupervised manner.

Both subspace and product topologies have their uniqueness

in terms of satisfying the characteristic property (Kelley, 2017).

The geometric intuition behind our construction of the new

hierarchical model is best illustrated by the duality between

space partitioning (i.e., subspace topology) and composition (i.e.,

product topology). Manifold structure under subspace projection

has beenwell studied in the literature (e.g., Johnson—Lindenstrauss

lemma Ailon and Chazelle, 2006). By contrast, the other direction

(i.e., product topology) has been under-researched. The low-

dimensional manifold structure can still be preserved after space

composition due to the following lemma.

Lemma 1: Topological manifold with Cartesian product (Lee

et al., 2009)

In topology, a topological manifold is a topological space that

locally resembles the real n-dimensional Euclidean space. Let M be a

topological m-manifold and N be a topological n-manifold, thenM×

N (Cartesian product of M and N) is a topological (m+n)-manifold.

This lemma explains the blessing of dimensionality in

that the manifold structure is easier to discover in a high-

dimensional space. Note that manifold learning in a higher-

dimensional space requires more training data. For example,

the Cartesian product of a horizontal edge and a vertical

edge will produce several combinations including “T,” “+,” “⊢,”

“⊣,” and “⊥”. Through combinatorial coding, our selectivity-

invariance model stores different patterns like the k-d tree (i.e.,

the centroids of vector quantization or dictionary atoms of sparse

coding), but the combination of these basic patterns will be

enumerated through product topology to support the direct-fit by

approximate neighborhood search to achieve invariant recognition.

This combinatorial perspective differs from the HMAX model

(Riesenhuber and Poggio, 1999) in which no discrimination was

considered for the combination of basic patterns. We argue that

the combinatorial coding argument is consistent with the direct-

fit model (Hasson et al., 2020) and the theory of PNG (Izhikevich,

2006).

Empirical evidence to support such combinatorial coding

arguments is that dynamic and transient synchronization of neural

groups self-organizes into functionally coherent assemblies (Singer,

2001). This iteration of self-similar cognitive operations is achieved

by the higher-level layers that process the output of the lower-

level layers in the same way as these low-level layers process their

respective input. To achieve the objective of parallel firing for

invariance computation, we consider an extension of the k-d tree

fromfixed-dimension to varying-dimension to exploit themanifold

constraint (Lemma 1) as follows.

Definition: Product manifold tree (PM-Tree)

The product manifold tree (pm tree) can be defined as the dual

operation of the classic k-d/rp tree. Instead of space partitioning,

we recursively merge low-dimensional manifolds in subspaces into

higher-dimensional manifolds through product topology.

How to directly fit the data in a varying-dimensional space to

the PM-tree? This problem has been formulated as unsupervised

learning in the literature on machine learning (ML) (Barlow, 1989).

Unfortunately, all existing work on unsupervised learning and

cluster analysis assumes a fixed dimensionality with the input data

and focuses on learning a distance metric to discover the local

geometry of the manifold (Davis et al., 2007). Our construction of

the PM-tree attempts to overcome such a barrier by generalizing

k-d tree-based clustering with product topology. The performance

of the nearest neighbor (NN) search is known to degrade in high-

dimensional space, partly due to the surprising behavior of the

distance metric as the dimensionality increases (Aggarwal et al.,

2001). However, such limitations can be overcome by using the

following lemma (note that we do not assume any definition of a

distance metric on a topological manifold).
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Lemma 2: Unsupervised clustering on PM-tree.

Let Z = X × Y be the Cartesian product of two topological

manifolds. For a concatenated vector z = [xy], its neighborhood

search can be carried out by taking the intersection of the

neighborhoods of x ∈ X and y ∈ Y, respectively.

Sketch of the proof. It is known that the subspaces and

products of the Hausdorff spaces are Hausdorff. One property of

product topology is that if Bi is a basis for the topology of Xi, then

the set {B1 × ... × Bn :Bi ∈ Bi} is a basis for the product topology

on X1 × ...× Xn (Lee et al., 2009). The result follows directly from

the definition of a neighborhood basis in the topological manifold.

From local to global, such hierarchical construction with simple

and complex cell layers allows an organism to directly fit the visual

stimuli of varying dimensionality into the hierarchical model by an

approximate nearest neighbor (ANN) search in the latent space.

Both object recognition and identity-preserving transformations

boil down to the search of ANN along the hierarchy. Through

recursive space partitioning and composition, our constructed

hierarchical model solves the problem of untangling the object

representation by directly fitting the stimuli to the PM-tree

characterizing the geometry of the neural population (Chung and

Abbott, 2021). In the literature, the neural collapse has been

observed as a signature of over-parameterized neural networks

(Papyan et al., 2020) despite the lack of biological connection.

Note that over-parameterized models also need to be parsimonious

due to ecological constraints such as non-negativity and energy

efficiency (Whittington et al., 2022a). To implement selectivity and

invariance computation, we first present a hierarchical extension

of convolutional sparse coding (CSC) and then advocate a

dynamic-programming (DP)-like approach to object recognition

by approximate nearest neighbor (ANN) search.

3.2. Hierarchical extension of convolutional
sparse coding

It is well-known that sparse coding offers a powerful

analysis of the mechanism of V1 (Olshausen and Field, 1996,

1997). Meanwhile, sparse representations have also found

promising applications in unsupervised learning, such as K-SVD

dictionary learning (Aharon et al., 2006) and non-negative matrix

factorization (Lee and Seung, 1999). Unlike predetermined

dictionaries (e.g., wavelet Mallat, 1989), data-adaptive dictionary

learning such as K-SVD-based sparseland (Aharon et al., 2006)

has led to a multilayer formulation of convolutional sparse coding

(ML-CSC) (Papyan et al., 2017, 2018), which provided an attractive

new theoretical framework for analyzing CNN.

Multi-layer convolutional sparse coding for selectivity

computation. The new insight brought about by ML-CSC (Papyan

et al., 2017, 2018) is to generalize the original sparse coding in a

multilayer manner. Specifically, a multilayer convolutional sparse

coding (ML-CSC) model can be constructed as follows. Suppose

thatX is the input signal and a set of dictionaries is given by {Dk}
K
k=1

where Dk denotes the dictionary at the level k. Then an ML-CSC

model can be written as:X = D1Ŵ1,Ŵ1 = D2Ŵ2,...,ŴK−1 = DKŴK

where Ŵi = [w1, ...,wk] denotes the sparse coefficients at the level i.

Following the convex approximation of ℓ0-optimization in Papyan

et al. (2017), a layered thresholding algorithm runs recursively

as follows.

Ŵk = Pβk (D
T
k Ŵk−1), (k = 1, 2, ...,K) (1)

where Pβk is the standard thresholding operator and {βk}
K
k=1

is the

set of thresholds at level k.

As shown in Papyan et al. (2018), the ML-CSC model manages

to decompose a signal X ∈ Rn into the superposition of multiple

dictionaries D = D1D2...DK but the concatenation of these

atoms, although it is overcomplete, remains in the space of the

same dimension Rn. Unfortunately, both K-SVD and ML-CSC

are still constructed within the Hilbert space without a change

of dimensionality, therefore matching our space partitioning

abstraction of simple cells. To our knowledge, there is almost no

previous work in the open literature that extends the data-adaptive

sparse representation to varying dimensions for space composition

abstraction of complex cells.

Parallel to the product-manifold lemma, we are interested in

developing a recursive strategy to decompose a high-dimensional

sparse coding problem into the “product” of multiple lower-

dimensional ones, which gives the name “product sparse coding”

(PSC) (Ge et al., 2014). Let X = DxŴx and Y = DyŴy denote

two dictionary coding schemes with Dx,Dy ∈ Rn×m, (m > n).

Then we start with a coding scheme in the direct-sum or Cartesian

product space R2n by

[

X

Y

]

=

[

Dx 0

0 Dy

][

Ŵx

Ŵy

]

and improve the

sparsity by basis pursuit algorithm (Chen et al., 2001) using the

composite dictionary [Dx,iDy,j], (1 ≤ i, j ≤ m) (total m2 atoms).

Such a process of basis composition via Cartesian product can be

recursively applied to obtain sparse bases in higher-dimensional

spaces (i.e., Rn → R2n → R4n...). A two-level hierarchy of product

sparse coding is shown in Figure 2D, which extends previous

designs in Figures 2A–C. In summary, the manifold constraint

can still be exploited by selectivity computation regardless of the

dimensionality. We only need to focus on the objective of achieving

invariance next.

Identity-preserving transformation for invariance

computation. In the hypothesis of cortically local subspace

untangling (DiCarlo et al., 2012), parallel efforts from ventral

streams are to gradually untangle the object manifold like an

assembly line until reaching an untangled object representation

at the top level (inferior temporal cortex). At the core of this

hypothesis is the algorithm implementing identity-preserving

transformation (IPT)—i.e., how to simultaneously convey explicit

information about an object’s identity as well as its contextual

information (e.g., pose, scale, position). If each local subpopulation

of neurons encodes contextual information associated with an

object, we can cast the objective of disentanglement learning as the

following sparse coding problem.

X = DŴ,D = [D1,D2, ...,DK],Ŵ ∈ {0, 1}K (2)

where D denotes the exemplars (locally sampled points from

the object manifold) of the same object but at varying position,

scale, and pose. The sparsity of IPT coefficient vector Ŵ explicitly

reflects the physical constraint in the real world—i.e., any object

can only occupy a signal spot in the space of position, scale,
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FIGURE 2

Illustration of hierarchical product sparse coding. (A) Product quantization (PQ), (B) sparse coding (SC), (C) product sparse coding (PSC), and (D)

hierarchical extension of PSC. (A–C) The green circle denotes a codeword, and the red triangle denotes a vector to be encoded; (D) the blue square

denotes the vector to be encoded at the next level when red triangles become codewords.

and pose. This disentanglement of object identity from other

contextual information is a significantly new insight brought about

by this work. It is both biologically plausible [e.g., there is no

need to rebind the identity with contextual information at a later

stage, nullifying the so-called binding problem (Treisman, 1996)]

and computationally efficient because the subspaces associated

with contextual information are independent of each other [i.e.,

admitting one-hot coding (He and Chua, 2017)]. The biological

plausibility of IPT has been well documented by the study of IT

population firing (DiCarlo et al., 2012).

3.3. Object recognition via approximate
nearest neighbor search

Our hierarchical extension of CSC for selectivity and

invariance computation shares a spirit similar to that of dynamic

programming in that optimal substructures contribute to the

(nearly) optimal solution. Mathematically, ℓ0-optimization is an

NP-hard problem; but in biology, evolution does not have foresight,

and therefore the hierarchical systems generated by evolution

might not have a globally optimal structure. What matters more

appears to be the nearly decomposability of complex systems

(Simon, 1962), which is closely related to the principle of dynamic

programming (DP) (Bellman, 1966). Our intuition is that evolution

does not need to pursue a globally optimal solution such as nearest

neighbor (NN), but be satisfied with an approximate yet flexible

solution so that the organism can adapt to the constantly evolving

environment. Based on this observation, we next connect object

recognition with a DP-like recursive solution to approximate NN

(ANN) search.

Instead of ℓ0-optimization, we conjecture that ℓ∞-optimization

[a.k.a., minimax optimization (Hayakawa and Suzuki, 2020)] is

a more appropriate framework for analyzing the processing of

ventral streams for the following reasons. First, redundancy has

been extensively exploited in information theory for reliable

communication (Shannon, 1948). The neocortex faces a similar

challenge of robustness to errors (e.g., sensory deprivation

and lesions), especially for the high-level layers responsible for

important decisions related to behavior. In the literature, it has been

shown in Lyubarskii and Vershynin (2010); Fuchs (2011) that ℓ∞-

optimization leads to the so-called spread representation (Fuchs,

2011) where all coefficients are of the same order of magnitude.

Such a class of representations is known to robustly withstand

errors in their coefficients. Second, the anti-sparse coding scheme

based on ℓ∞-optimization is known to facilitate the search for ANN

(Jégou et al., 2012).

Now we see how both selectivity and invariance computation

can be implemented by ANN search. For selectivity computation,

we have identity-related dictionaries constructed from the recursive

application of Equation (1), which essentially determines the inter-

class decision boundary between different objects. For invariance

computation, we have identity-excluded dictionaries constructed

by Equation (2), which is responsible for shaping the intra-class

distribution dictated by IPT. ANN search will simultaneously

resolve the uncertainty of both identity(ID)-related and non-ID-

related codes in the latent space. Such formulation can also be

interpreted as multi-task learning (Caruana, 1997) where object

recognition and uncertainty modeling (e.g., pose estimation)

mutually serve as the tool of regularization. As the field-of-view

(dimensionality of visual stimuli) increases, the sparsity of spread

representations also increases, contributing to the acceleration of

ANN search (Cherian, 2014). More importantly, simultaneously

learning multiple tasks can facilitate the exploitation of the

similarity between selectivity and invariance computation to

improve the joint sparsity (Calandriello et al., 2014).

The above interesting connection implies that it is easier to

construct a DP-like solution by decomposing the high-dimensional

ANN search problem into several subproblems in projected

subspaces (Jegou et al., 2010). Combining anti-sparse coding with

hierarchical CSC, we can envision a DP-like recursive solution

to object recognition via ANN search in high-dimensional space.

Thanks to the construction of hierarchical CSC, we can recursively

construct a dictionary in a high-dimensional space from the direct

product of dictionaries in low-dimensional spaces [similar to

product quantization (Jegou et al., 2010)]. It follows that an anti-

sparse coding scheme in high-dimensional space can be obtained

by decomposing it into subproblems in low-dimensional spaces

(conceptually similar to the principle of dynamic programming).

It should be noted that space partitioning, such as the k-d tree

and the random projection forest (Yan et al., 2019) also supports
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the NN/ANN search (Friedman et al., 1977). Therefore, it is

plausible that approximate neighborhood search strategy without the

involvement of a distance metric but supported by the selectivity

and invariance computation could serve as a common currency

to unify the top-down and bottom-up processing mechanisms in

ventral stream processing.

4. Implementational level: two
possible neural network
implementations

In this paper, we present two experimental ideas for testing

hierarchical selectivity-invariance algorithms by two network

implementations: asymmetric sparse autoencoder (Ng et al., 2011)

and divergent spiking neural networks (SNN) (Eguchi et al., 2018).

It is conjectured that these network architectures might have higher

brain hierarchy scores (Nonaka et al., 2021) than existing deep

neural networks.

4.1. Asymmetric sparse autoencoder

The autoencoder represents a popular network architecture for

unsupervised learning. A straightforward application of the sparse

coding principle to the autoencoder is possible (Ng et al., 2011).

The hierarchical extension of the CSC inspires us to consider the

design of an asymmetric autoencoder, as shown in Figure 3A. Its

asymmetric design is also biologically inspired by Barlow (2001)

redundancy exploitation hypothesis. The hierarchical organization

of the neocortex is believed to reflect the nested structure of the

physical world, indicating that the decoder (responsible for the

reconstruction of internal representations) plays a more important

role than the encoder. More specifically, we can implement a

prototype by combining an over-parameterized autoencoder

(Radhakrishnan et al., 2019) with manifold-based novelty

detection. In the literature, autoencoder-based representation

learning (Tschannen et al., 2018) is known to be capable of learning

disentangled and hierarchical representations. Instead of storing

training samples as attractors (Radhakrishnan et al., 2019), we

envision that the latent space of the autoencoder includes not

only identity information but also IPT-related information (e.g.,

latent codes representing the pose, position, scale, and context of

an object).

The new insight brought about by our asymmetric design is

the increasing dimensionality of the latent space (e.g., from V2

to V4 and IT). Unlike VQ-VAE (Van Den Oord et al., 2017), we

do not constrain the latent capacity but allow the space of latent

codes to have even higher dimensionality than the input data.

Our intuition is that in the presence of a new category/object, the

decoder will be further expanded to accommodate the novelty class

like in the hippocampus (i.e., consolidation of new memory). Such

unsupervised and continual learning can lead to a monotonically

increased memory capacity for associative memory implemented

by the asymmetric autoencoder. Unlike (Radhakrishnan et al.,

2019) treating sequence encoding as composition maps and limit

cycles, we argue that a biologically more plausible mechanism for

memory storage is based on the rich interaction between sensory

and motor systems. From the selectivity-invariance perspective,

motion dictates the regime within which the organism achieves

invariance to the composition of geometric transformations. The

rich interaction between sensory and motor systems contributes to

the formulation of reconstruction problems onmultiple scales from

parts to the whole (Hinton, 2021) as an unsupervised mechanism

for learning invariant representations. When the sensory motion

goes out of the normal range (e.g., rotating a book continuously),

the asymmetric sparse autoencoder is supposed to fail to recognize

the object (i.e., it will be treated as a novelty), which is a

testable prediction.

To implement hierarchical PSC on asymmetric autoencoder,

we can extend the existing supervised translation-invariant sparse

coding (Yang et al., 2010) in the following aspects. First, instead

of sparse subspace modeling, our selectivity-invariance perspective

allows us to pursue a sparse product-space modeling of visual

stimuli. Locally image descriptors from two classes can be made

most separable by sparse coding; globally, such linear separability

is generalized into an ensemble of linearly separable functions in

a higher dimensional space after Cartesian product. Biologically,

the population of IT neurons corresponds to this collection of

linearly separable functions (e.g., the binary facial attributes of a

face image). Second, instead of translation-invariant sparse coding,

asymmetric autoencoder allows us to achieve invariance to more

generic geometric transformations (e.g., pose, scale, rotation).

One concrete idea of implementation is to extend dilated/atrous

convolutions into a rotated convolution (Pu et al., 2023) or

even deformable convolutions (Dai et al., 2017), which can be

interpreted as identity-preserving transformations (DiCarlo et al.,

2012).

4.2. Divergent spiking neural networks

In previous work (Izhikevich, 2006), polychronization was

conceived as a basic mechanism for computing with spikes.

It is built upon Hebb’s postulate but extends it by relaxing

the synchronous firing into polychronous time-locked patterns.

Therefore, the group of neurons that are spontaneously organized

by the fundamental process of spike-timing-dependent plasticity

(STDP) is called Polychronous Neuronal Group (PNG). The

mechanism of polychronization has recently been studied in Eguchi

et al. (2018), Isbister et al. (2018) as a plausible solution to

the problem of feature binding. Using a spiking neural network

(SNN), input training images (sensory stimuli) can be mapped to

a hierarchy of PNGs by the emergence of polychronization across

hierarchical timescales (Murray et al., 2014).

Unlike previous studies (Eguchi et al., 2018; Isbister et al.,

2018), our over-parameterized selectivity-invariance model can be

implemented on SNN with a divergent or expansive architecture

(Babadi and Sompolinsky, 2014), as shown in Figure 3B. Such

a divergent architecture directly matches our intuition of

generalizing complex cells by space composition. It is easy to see

that the number of PNGs can grow exponentially as the number

of neurons increases. Even though theoretically it is difficult to

exactly count the total number of PNGs, this number is estimated
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FIGURE 3

(A) Architecture of an asymmetrical autoencoder (the dashed line marks the boundary between environment and organism; the red box corresponds

to the standard symmetric autoencoder). (B) Divergent SNN (there are more cells and synapses at higher levels than at lower levels).

to be much larger than the total number of neurons. Therefore, the

memory capacity of PNG is exponential, surpassing the capacity of

any known models of associative memory [e.g., Hopfield network

(Hopfield, 1982)]. What is less known is how such an astronomical

number of PNGs supports neural computation, including sensory

perception and cognitive functions. The new insight brought by

PNG theory is that the occurrence of polychronization signifies

something important or meaningful—e.g., recognized objects,

bound features, or shifted attention.

The hierarchical formation of PNGs reflects the mirroring of

the internal representation with respect to the nested structures

of the sensory stimuli. The causality of STDP dictates the

compositional relationship between low-level and high-level visual

features. The superposition requires an astronomical number of

PNGs, but this barrier can be overcome by the exponential

growth of PNGs from V1 to IT. The biological constraint such

as processing latency, helps us better appreciate the potential (i.e.,

unprecedented memory capacity with realistic delay) of Hebbian

plasticity. One way to experiment with our divergent SNN is to

focus on its memory capacity—e.g., recently developed variable

binding implementation (Frady et al., 2021) can be considered in

combination with hierarchical timescales (Murray et al., 2014). A

testable prediction is that our divergent SNN can recognize more

patterns than the original SNN with a convergent architecture

(Eguchi et al., 2018).

The training of the proposed SNN can be implemented

by a recently developed algorithm named backpropagated

neighborhood aggregation (BP-NA) (Yang et al., 2021) or

evolutionary structure learning (ESL) (Shen et al., 2023). The

key insight behind BP-NA is closely related to the approximate

NN search in our previous section. Instead of attempting to

differentiate the non-differentiable spiking activation functions,

BP-NA computes the aggregated gradient from a properly defined

neighborhood. It is worth noting that the latest advance in

neuromorphic computing [e.g., Intel’s Pohoiki Springs (Frady

et al., 2020)] has demonstrated a scalable approximate-NN (ANN)

algorithm for searching large databases. We can further accelerate

the ANN search by decomposing a high-dimensional ANN search

into several subproblems in the projected subspaces [e.g., DP-based

optimized product quantization (Cai et al., 2016)]. It is possible

to convert the asymmetric autoencoder into an SNN-based

implementation based on recent works (Xu et al., 2021, 2022,

2023a,b).

5. Application to face identity coding
and thatcher illusion

5.1. Face identity coding

In face representation, there exist two competing hypotheses

about the coding of facial identities. In exemplar-based coding

(a.k.a., grandmother cell hypothesis), a subset of neurons in the

medial temporal lobe (MTL) fire selectively to strikingly different

images of an individual (e.g., Jennifer Aniston), landmarks, or

objects and in some cases even by letter strings with their

names (Quiroga et al., 2005). In axis-based coding (a.k.a., feature-

based coding), face-selective neurons display flat tuning along

dimensions orthogonal to the axis being coded; single neurons

in the inferotemporal (IT) cortex project input faces, represented

as vectors in face space, onto specific axes. Apparently, from the

IT cortex to the MTL, we observe a transformation of complex

visual percepts into long-term and more abstract memories.

Our selectivity-invariance model along the hierarchy offers a

possible implementation of such a transformation—from V1 to

IT, selectivity and invariance computation jointly contribute to

the encoding of facial identities into a latent feature space;

from IT to hippocampus, the identity information along with

other latent features (e.g., age, race, gender, social trait) and

possibly other modalities (e.g., speech) will be passed together to

form an abstract concept such as one’s grandmother. One can

design a perturbation experiment to test how much distortion

is needed to change the perception of a grandmother to a

different identity.
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FIGURE 4

Thatcher e�ect. It is much easier to detect inverted eyes from (A) an upright face than from (B) an upside-down face. This is due to the top-down

prediction made by the PNG at the IT layer. Only in the upright face can the discrepancy between predicted and actual orientations of facial

landmarks be detected as a novelty. In the upside-down face, we can only tell the global orientation because there is no binding for local landmarks

and global impressions (Thatcher e�ect.jpg, 2020).

5.2. Thatcher illusion

Thatcher illusion (refer to Figure 4) occurs when it is difficult

to detect local feature changes in an upside-down face, despite

identical changes being obvious in an upright face (Thompson,

1980). To explain this illusion, we note that (1) this illusion

can be viewed as a special case of anomaly detection where

local perception has a conflict with global one; and (2) face is

unique due to its significant role in our social communication.

Through evolution and development, humans have developed

specific processes for recognizing holistic faces as well as salient

facial landmarks (i.e., eyes, nose, and mouth). In the situation of

upright faces, inverted eyes, andmouths become anomalies because

their positions and relationships as characterized by the one-hot

encoded vector Ŵ in Equation (2) have changed. By contrast, in

the case of an inverted face, the holistic impression (the novelty

of upside-down) is prevalent, but our brain does not have the

corresponding prediction about the local orientations and spatial

relationships of facial landmarks. Each landmark is processed

independently, making it more difficult to tell whether it is inverted

or not. One canmake a testable prediction about themiddle ground

between Figures 4A, B—as the image pair is rotated clockwise from

0◦ to 180◦, there must exist a phase transition period for the

activation of the Thatcher effect.

5.3. Kanisza’s illusion

. Kanisza’s illusion (Von der Heydt et al., 1984) is a classical

example of illustrating an illusory contour (e.g., the impression of

seeing a white triangle on top of the black triangle in Figure 5).

What has been less studied is the perturbed version of this illusion—

e.g., as one increases the size of the black triangle and the distance

between three Pacmans by zoom-in (the displayed ratio is 400%),

it will become more and more difficult to perceive the illusory

“white triangle” at the center. Such experimental findings cannot

be explained by Gestalt theory because there is no prediction of the

critical boundary condition for the perceptual organization to fall

FIGURE 5

The illusory triangle in the original Kanizsa’s triangle (Left)

disappears as the image scales up/zooms in (Right) due to the

increased distance among three Pacman objects. This example

demonstrates the relativity of perceptual organization.

apart. Our selectivity-invariance computation principle can predict

that the threshold for scale invariance is determined by the size of

the fovea centralis. When the distance is above this threshold, there

is no previous experience (visual stimulus) to evoke the formation

of PNG supporting the perceptual grouping of white triangles. This

is another concrete evidence supporting the relevance of optical

illusion to previous experience.

6. Conclusion

This paper advocates a selectivity-invariance model approach

to understanding ventral stream processing at computational,

algorithmic, and implementation levels. From the point of

view of blessing dimensionality, we revisit the model of simple
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and complex cells and generalize them into sequential and

parallel firing of polychronization neural groups. Through

this new perspective of selectivity-invariance computation, we

can extend the existing k-d tree into the PM-tree to construct

a hierarchical sparse coding model. Inspired by the close

relationship between object recognition and approximate

nearest-neighbor search, we recast the role played by object

identity selectivity and identity-preserving transformations

from the perspective of manifold untangling. Two possible

network implementations and potential applications in the

coding of facial identity and the perception of visual illusion are

briefly discussed.
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