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graph and nodewise autonomous,
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Laboratory of Algorithms for Cognitive Models, School of Computer Science, Shanghai Key Laboratory

of Data Science, Fudan University, Shanghai, China

The brain, an exceedingly intricate information processing system, poses a

constant challenge to memory research, particularly in comprehending how it

encodes, stores, and retrieves information. Cognitive psychology studies memory

mechanism from behavioral experiment level and fMRI level, and neurobiology

studies memory mechanism from anatomy and electrophysiology level. Current

research findings are insu�cient to provide a comprehensive, detailed explanation

of memory processes within the brain. Numerous unknown details must be

addressed to establish a complete information processingmechanism connecting

micro molecular cellular levels with macro cognitive behavioral levels. Key issues

include characterizing and distributing content within biological neural networks,

coexisting information with varying content, and sharing limited resources and

storage capacity. Compared with the hard disk of computer mass storage, it

is very clear from the polarity of magnetic particles in the bottom layer, the

division of tracks and sectors in the middle layer, to the directory tree and file

management system in the high layer, but the understanding of memory is not

su�cient. Biological neural networks are abstracted as directed graphs, and the

encoding, storage, and retrieval of information within directed graphs at the

cellular level are explored. A memory computational model based on active

directed graphs and node-adaptive learning is proposed. First, based on neuronal

local perspectives, autonomous initiative, limited resource competition, and other

neurobiological characteristics, a resource-based adaptive learning algorithm

for directed graph nodes is designed. To minimize resource consumption of

memory content in directed graphs, two resource-occupancy optimization

strategies—lateral inhibition and path pruning—are proposed. Second, this paper

introduces a novel memory mechanism grounded in graph theory, which

considers connected subgraphs as the physical manifestation of memory content

in directed graphs. The encoding, storage, consolidation, and retrieval of the

brain’s memory system correspond to specific operations such as forming

subgraphs, accommodating multiple subgraphs, strengthening connections and

connectivity of subgraphs, and activating subgraphs. Lastly, a series of experiments

were designed to simulate cognitive processes and evaluate the performance of

the directed graph model. Experimental results reveal that the proposed adaptive

connectivity learning algorithm for directed graphs in this paper possesses the

following four features: (1) Demonstrating distributed, self-organizing, and self-

adaptive properties, the algorithm achieves global-level functions through local

node interactions; (2) Enabling incremental storage and supporting continuous

learning capabilities; (3) Displaying stable memory performance, it surpasses the

Hopfield network in memory accuracy, capacity, and diversity, as demonstrated in

experimental comparisons. Moreover, it maintains highmemory performancewith
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large-scale datasets; (4) Exhibiting a degree of generalization ability, the

algorithm’s macroscopic performance remains una�ected by the topological

structure of the directed graph. Large-scale, decentralized, and node-

autonomous directed graphs are suitable simulation methods. Examining

storage problems within directed graphs can reveal the essence of phenomena

and uncover fundamental storage rules hidden within complex neuronal

mechanisms, such as synaptic plasticity, ion channels, neurotransmitters, and

electrochemical activities.

KEYWORDS

directed graph, storage, parallel distributed learning,memorymodel, associativememory

1. Introduction

In computer science, a graph serves as a data structure

for modeling elements from a specific set and their pairwise

relationships. A graph comprises a set of nodes and a

set of edges connecting node pairs (Biggs et al., 1986).

As a classical data structure, graphs offer an abstract

representation of system components and their interactions

when depicting natural and engineering systems. Consequently,

graph theory is extensively applied in studying multiple

relationships and process dynamics across disciplines such as

computer science, economics, biology, chemistry, and social

sciences.

Directed graphs can characterize systems in various domains,

including road traffic, social networks, ecological networks,

neural systems, and financial networks. Traditional directed

graph models tend to be static, focusing on the structure of

directed graphs, i.e., the static properties of elements and their

relationships within a set. Static directed graphs, lacking dynamic

behavior, primarily function as data structures for recording data

from a global perspective. However, most applications involve

dynamic interactions between system elements, necessitating the

construction of dynamic directed graph models. These models

can be divided into constant-topology dynamic directed graphs

and variable-topology dynamic directed graphs, depending on

whether the graph topology changes. Constant-topology dynamic

directed graph models encompass flow models (Ahuja et al.,

1993), graph random walks and diffusion models (Blanchard and

Volchenkov, 2011; Riascos et al., 2020). Variable-topology dynamic

directed graph models include growth models (Barabási and

Albert, 1999) and random evolution models (Watts and Strogatz,

1998).

Multi-agent systems are often characterized by graph

structures, which facilitate the emergence of global behavior

through local interactions such as cluster collaboration or holistic

optimization (Chen et al., 2019). Dynamic directed graphs, based

on multi-agent systems, demonstrate distributed computing

and self-organization. This category of dynamic directed graphs

exhibits two primary characteristics: (1) Nodes in a directed

graph have autonomous computational capabilities, rather than

simply functioning as numerical representations. The internal

properties of each node, along with upstream and downstream

node interactions, vary and are computed independently. (2)

In the directed graph, there is no centralized decision-maker or

omniscient perspective; each node can only adapt its behavior

based on local neighborhood information. Numerous examples of

dynamic directed graph models based on multi-agent systems exist

in nature, including biological neural networks, ant colonies, and

bee colonies.

Directed graphs may consist of a vast number of nodes and

edges, forming large, distinct connected subgraphs. If a connected

subgraph is regarded as a state representation, a directed graph

can potentially offer a considerable resource based on the diversity

of combinations. A direct application involves utilizing such

dynamic directed graphs, which are distributed, self-organizing,

adaptive, easily scalable, and loss-resistant, for implementing

associative memory. A connected subgraph represents the physical

realization of memory content in a directed graph, potentially

providing substantial storage capacity. A directed graph can

contain numerous connected subgraphs corresponding to different

memory contents. The self-organized incremental learning of

directed graphs enables the distinction, compatibility, minimal

interference, and efficient use of limited node resources among

connected subgraphs. The challenge in this research is ensuring

collaboration and optimization of all nodes autonomously and

independently without a centralized perspective. Such a directed

graph transforms from a static recorder or passive visitor awaiting

traversal by a search algorithm into a dynamic network of

capable nodes.

In this paper, we integrate concepts from neurobiology, graph

theory, multi-agent systems, parallel distributed processing, and

ubiquitous learning to construct directed graphs that mirror the

connectivity properties of biological cortical neural networks. We

design node adaptive connectivity learning algorithms based on

limited resource competition to investigate the storage capacity of

an active directed graph from a graph theory perspective.

The main contributions of this work are summarized

as follows.

(1) we design directed graphs based on biological cortical neural

networks, with nodes having autonomy and limited resources,

and the node adaptive connectivity learning algorithm

achieves associative memory through local information,

aligning more closely with neurobiology.

(2) we apply active directed graphs to associative memory and

propose a novel memory mechanism based on graph theory,
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considering connected subgraphs as directed graph resources

related to memory capacity.

(3) The directed graph model demonstrates consistent memory

performance, outperforming the Hopfield network in terms

of memory accuracy, capacity, and diversity, as evidenced by

experimental comparisons. It also maintains strong memory

performance when handling large-scale datasets.

(4) The directed graphmodel facilitates incremental storage and

facilitates continuous learning capabilities.

2. Related work

Graphs represent a significant data structure in various fields,

such as computer science, neuroscience, and sociology, leading to

graph theory becoming a popular research area for many scholars.

Graph theory has demonstrated unique advantages in domains

such as big data analysis (Yıldırım et al., 2021), brain networks

(Bullmore and Sporns, 2009; He and Evans, 2010; Zhao et al., 2019;

Sporns, 2022), social networks (Trolliet et al., 2022), clustering

(Malliaros and Vazirgiannis, 2013; Gao et al., 2022), security (He

et al., 2019; Zhu et al., 2019), and robotics (Cheng et al., 2019; Lyu

et al., 2021). In studies related to associative memory, graph theory

is primarily employed to analyze the impact of network topology

on associative memory performance. Kaviani and Sohn (2021)

examined associative memory performance in different networks,

including random complex networks, small-world networks, scale-

free networks, and regular networks. Berend et al. (2014) analyzed

the influence of network topology on the stability of Hopfield

networks. The aforementioned research on graph theory-based

associative memory primarily focuses on static networks and

explores the impact of network topology on associative memory.

Associative memory network models store memory

information in the weights of neuronal networks, with the

dynamic evolution of the network representing associative

memory. Associative memory is classified into self-associative

memory and hetero-associative memory. Self-associative memory

outputs a memory sample based on partial input memory sample

information, while hetero-associative memory retrieves other

memory samples related to the input memory sample. Classical

associative memory models, such as Hopfield network (Hopfield,

1982) and BAM network (Kosko, 1988), leverage neural dynamics

for information storage and retrieval. The Hopfield network is a

single-layer feedback neural network with interconnected neurons

that function as both input and output units. The BAMnetwork is a

two-layer bidirectional neural network enabling hetero-associative

memory. Energy functions are defined in both Hopfield and BAM

networks, where the network’s stable states correspond to local

energy minima. These stable states, called attractors, provide the

basis for distributed memory storage of information.

Hopfield network, BAM network, and their improved models

(Knoblauch and Palm, 2019; Marullo and Agliari, 2020; Ladwani

and Ramasubramanian, 2021; Li et al., 2021; Sun et al.,

2021), although used as computational models for memory

implementation, do not satisfy neurobiological constraints on the

connectivity properties of biological cortical networks. The high

regularity of connection methods, the preset weight matrix, and

the limited capacity of these models preclude considering them

as explorations of the internal memory realization mechanisms.

At the neuronal network level, the design of node connections in

these networkmodels does not correspond to biological reality. The

probability of establishing connections between cortical regions

or neurons decreases rapidly with increasing distance in primate

cortical and Caenorhabditis elegans neuronal networks.

According to neurobiology, associative memory models should

be characterized by local connections rather than extensive

connections. Consequently, many studies have applied small-

world networks and random networks to associative memory.

Duan et al. (2016) proposed a novel associative memory model

based on small-world networks and memristors, exhibiting

similar performance to the fully connected Hopfield network in

sparse networks. Löwe and Vermet (2015) demonstrated that

associative memory models based on small-world networks possess

comparable memory performance to random networks while

using fewer network resources (Bohland and Minai, 2001). Löwe

et al. developed a concept of storage capacity associated with

graph topology and analyzed the storage capacity of Hopfield

networks based on random graphs. Although these models adhere

to the neurobiological constraints of local connectivity, their

nodes are simple numerical representations lacking autonomous

computation abilities.

Inspired by brain networks, many scholars have utilized

different neurobiological features to construct associative memory

models, respectively. Inspired by the chunking mechanism of

the brain, Huang et al. (2019) proposed an associative memory

model based on the chunking mechanism. The model has an

associative memory recall module (AMR) and a learning module

(KID), respectively. The KID model is used to learn associative

knowledge, while the AMR continuously searches for associations

between knowledge units and uses a merging mechanism to

merge the relevant units. Tyulmankov et al. (2021) proposed a

key-value-based associative memory model, KVMN (Key-Value

Memory Network), which uses biologically plausible three-element

combinations to store inputs. Salvatori et al. (2021) proposed

an associative memory model based on predictive coding, which

imitates the behavior of the hippocampus as a memory indexing

and generating model.These associative memory models described

above need to be manipulated by an algorithm with a global

perspective. However, biological neurons themselves are complex

information processing units, and such a design ignores the micro-

level complexity of the molecular mechanisms and subcellular

structures behind biological neurons, which allows each unit to

operate independently, learn autonomously, and adjust based

on local information, without the need for a supercommand to

command from above.

In neurobiology, current memory models based on dynamic

directed graphs focus more on changes in the topology of the

directed graph than on the dynamic behavior of the directed

graph nodes themselves. Millán et al. (2021) propose an adaptive

neural network model that reproduces the temporal distribution of

synaptic density observed in the brain. In that study it was shown

that intermediate synaptic densities provide optimal developmental

pathways with minimal energy, providing a viable design strategy

for building neural networks with specific information processing

capabilities. In another research work by Millán et al. (2019) it

was explored how evolutionary mechanisms of brain structure
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FIGURE 1

Steps of directed graph generation. (A) Candidate nodes. (B) Random node selection. (C) Probability-based node connections.

affect memory storage processes. The interaction of brain regions

at the network level may provide the necessary infrastructure for

the development of cognitive processes. The work of Woodburn

et al. (2021) describes the maturation of network separation and

integration in the child’s brain, suggesting that a specific trajectory

of maturation of brain networks contributes to cognitive outcomes

after growth. The research work described above has focused on

studying the structural and functional connectivity of neurons or

brain regions and has not examined the information processing

mechanisms of memory at the scale of neuronal networks.

3. Design of directed graphs based on
real biological neural networks

In this section, a limited resource competition mechanism

and a directed graph generation strategy are designed based on

neurobiology, and the implementation of memory content in

dynamic directed graphs is illustrated from a graph-theoretic

perspective.

3.1. Directed graph path resources

The competition for limited resources is crucial in shaping

individual neuron morphology and establishing interneuron

connections. This paper proposes a limited resource competition

mechanism in active directed graphs, inspired by this

neurobiological feature. Axonal migration to the target is

facilitated by neurotrophic factors during axonal growth (Tessier-

Lavigne and Goodman, 1996; Alsina et al., 2001). In the mature

nervous system, a finite number of neurotrophic factors play a vital

role in regulating synaptic function, synaptic plasticity, and neural

network remodeling (Huang and Reichardt, 2001; Jeanneteau

et al., 2020). The competition mechanism involving neurotrophic

factors is characterized by a restricted supply to target neurons

and dynamically adjustable topological connections between

neurons. The concept of limited resources is evident not only in

the competition among different neuronal axons for the target

neuron but also in the tubulin dynamics revealing competition

between neurites of the same neuron (Van Ooyen, 2005; Hjorth

et al., 2014). Moreover, limited resource competition mechanisms

have been demonstrated for calmodulin (Okamoto and Ichikawa,

2000), PSD (surface area of the postsynaptic density) (Bourne and

Harris, 2011), AMPAR (Triesch et al., 2018), and synaptic space

(Takeo et al., 2021).

These studies highlight the significance of limited resource

competition mechanisms in neuronal signal processing. In the

directed graph model proposed here, the total amount of

postsynaptic resources for a single neuron is maintained constant,

and the signal strength of the input neuron is related to the

postsynaptic resources it competes for, thus abstracting biological

neurons as nodes with a constant total contact area in the directed

graph.

3.2. Directed graph generation strategy

According to neurobiology, the topological and physical

distances between neurons in brain neural networks are typically

intricately related. Connections between spatially proximate

neurons or brain regions are relatively likely, while connections

between spatially distant neurons or regions are less probable

(Averbeck and Seo, 2008). The reasons behind the probabilistic

distance dependence of connectivity in brain neural networks have

been extensively debated. Borisyuk et al. (2008) suggested that

predetermined deterministic rules in genetic instructions play a

dominant role in neural growth, while Braitenberg and Schüz

(2013) posited that nerve growth is fundamentally stochastic, with

connection specificity correlating with the overlap of specific sets

of neurons. This paper designs the directed graph structure based

on the latter viewpoint. The directed graph model’s primary feature

is that its nodes form finite and random connections within the

local neighborhood, and the connection probability varies with the

distance between nodes.

Neural networks in the biological cerebral cortex exhibit

variations among individuals and localities. These networks

may only demonstrate statistical consistency without identical

details. Consequently, a directed graph generation strategy is

essential for batch-building large-scale, statistically similar directed
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graphs for performance testing. The directed graph features five

characteristics: (1) The out-degree and in-degree of each node may

vary. (2) The connection probability between nodes is distance-

dependent, favoring short-range connections over long-range ones.

(3) The contact area of inter-nodal connections corresponds to

the synaptic efficacy of neurons, and each node’s contact area is

randomly generated within a predetermined range. (4) Each node

accumulates input values from its upstream nodes, which positively

correlate with the occupied contact area. (5) The activation

threshold of each node is randomly generated within a specified

range. When a node’s cumulative input value exceeds the threshold,

the node activates, accesses its downstream nodes, and clears the

cumulative input value.

In this paper, 10,000 candidate nodes are generated within

a 500 × 500 region, and each node’s position is randomized.

During directed graph generation, nodes are randomly selected

from the 10,000 candidates with a specific probability (2% in

this paper), and each node’s contact area is randomly generated

within a predetermined range. The contact area of a node is a

limited resource.When establishing a directed edge, the connection

probability between two nodes is related to their Euclidean

distance. The connection probabilities for nodes with Euclidean

distances of 0–50, 50–100, and 100–200 are 10, 20, and 5%,

respectively. Figure 1 illustrates the directed graph generation

process, which involves three steps: generating candidate nodes,

selecting directed graph nodes, and establishing directed edges.

The primary feature of the directed graph model constructed

in this paper is that the nodes form finite, random connections

within a local neighborhood, and the connection probability varies

depending on the distance between nodes. The pseudo-code for the

directed graph generation strategy is presented in Algorithm 1.

3.3. Directed graph memory mechanism

In this paper, we represent neuronal networks as directed

graph models and investigate the working mechanism of memory

from the perspective of directed graphs. Nodes in a directed

graph symbolize individual neurons, while directed edges denote

connections between neurons.

In a directed graph, nodes can be categorized into information

nodes and communication nodes. Information nodes serve to

represent content or cluster-encode stimuli, such as the shape, size,

color, taste, and other physical attributes of apples. Information

nodes are responsible for the input and output of memory

content, which is represented in the directed graph as an

activated combination of information nodes. To maintain the

activation combination of information nodes, communication

nodes must establish activation paths. The connected subgraphs

formed by these activation paths constitute the physical realization

of memory content in the directed graph. A directed graph

can encompass multiple paths, each corresponding to different

memory contents. The ability to distinguish these activation paths,

ensure their compatibility, minimize interference, and efficiently

utilize limited node resources is attained through self-organized

incremental learning of directed graphs. During the directed graph

training process, communication nodes coordinate activation paths

according to the directed graph node adaptive connectivity learning

Input: The set of candidate nodes, Vopt; The number of

candidate nodes, Nopt.

Output: The nodes of directed graph, Vgraph; The number

of nodes in the directed graph, Ngraph; The adjacency

matrix of directed graph, E; The maximum available

resources for the nodes in the directed graph,

R; The activation threshold for the nodes in the

directed graph, T = {t1 , t2 , ..., tNgraph
}.

1: Vgraph ⇐ ∅,Ngraph ⇐ 0

2: for i = 1 → Nopt do

3: Bi ⇐ Node_Random_Selection_Judgment()//Bi is a boolean

value. True and false correspond to selected and

unselected respectively.

4: if Bi == True then

5: Vgraph ⇐ Vgraph ∪ {Vopt[i]}

6: Ngraph ⇐ Ngraph + 1

7: end if

8: end for

9: R ⇐ Random_Node_Resource(Ngraph)//R records the maximum

available resources of each node.

10: T ⇐ Random_Node_Threshold(Ngraph)//T records the

activation threshold of each node.

11: E ⇐ Init_Adjacency_Matrix(Ngraph)//E is an adjacency matrix

of size Ngraph × Ngraph

12: for i = 1 → Ngraph do

13: for j = 1 → Ngraph do

14: Bij ⇐ Node_Random_Connection_Judgment(i, j) //Bij is

a boolean value. True and false correspond to

connected and disconnected respectively.

15: if Bij == True then

16: E[i][j] ⇐ True

17: end if

18: end for

19: end for

20: return Vgraph, Ngraph, E, R, T

Algorithm 1. Directed graph generation algorithm.

algorithm. The directed graph is trained to align the activation

combinations of awakened information nodes as closely as possible

with the initial input combinations. Figure 2 illustrates the memory

implementation on a directed graph. Figure 2A displays an empty

directed graph without memory content loaded, while Figure 2B

presents a directed graph with memory content loaded.

In this study, the directed graph model utilizes communication

nodes to connect active information nodes and form connected

subgraphs based on the adaptive connectivity learning algorithm.

These subgraphs physically represent the memory content within

the directed graph. The stability of the memory content relies on

the strength of bidirectional connectivity in the subgraphs, such as

the accessibility of information nodes to one another.

As depicted in Figures 2C, D, various memory contents are

stored in a directed graph, with apples and bananas corresponding

to distinct activation combinations. The connected subgraphs,

formed by communication nodes linking information nodes,

implement these memory contents within the directed graph.

During the storage and consolidation phase, it is crucial to
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FIGURE 2

Physical mechanism of memory based on directed graph. (A) A blank directed graph. (B) A directed graph being loaded a memory. (C) The directed

graph being loaded the memory of apple. (D) The directed graph being loaded the memory of banana.

distinguish and ensure compatibility between these subgraphs

while minimizing interference, ultimately enhancing the storage

capacity and quality of directed graphs. Consequently, the

adaptive connectivity learning algorithm for directed graph nodes

must fulfill three requirements: (1) store memory content using

minimal directed graph resources, (2) differentiate connected

subgraphs representing distinct memory contents, and (3)

minimize interference between connected subgraphs. This serves

as the foundation for designing the adaptive connectivity learning

algorithm for directed graph nodes based on resource competition.

4. Adaptive connectivity learning
algorithm for directed graph nodes

In this study, we introduce the “Node-inner Autonomous

and Adaptive Connectivity Learning Algorithm Pervading in a

Directed Graph Based on Resource Competition and Path Pruning”

(RCPP-NCLA). Neurobiology suggests that synapses closer to

the cell body or the axon hillock are used more frequently and

possess a pronounced post-synaptic efficacy in both polarizing

and depolarizing effects, indicating the presence of synaptic

morphological plasticity (Tanaka et al., 2008; De Vincenti et al.,

2019). This understanding provides two critical insights. First, the

cell body’s surface area, where upstream axons form contact, is a

limited resource. Second, the occupation of these limited resources

can undergo dynamic adjustments through competitive learning.

Inspired by these insights, we devise a node-inner autonomous and

adaptive connectivity learning algorithm simulating node resource

competition, grounded in resource competition. We propose that

the memory content is represented as an activation combination of

information nodes in a directed graph, with its intrinsic physical

realization being a subgraph composed of activation paths. To

reduce the resource consumption of activation paths, we also

suggest a resource occupation optimization strategy based on path

pruning.

4.1. Neurobiological constraints

Biological neural networks commonly exhibit a small-world

topology, characterized by numerous locally connected nodes

and a relatively small number of remote connections. This

topology optimizes effective communication within brain networks

and reduces node connectivity costs (Stampanoni Bassi et al.,

2019). In the neocortex, where local circuits play a crucial

role in cortical computation, the majority of neuronal synapses

originate from neighboring neurons within the same cortical

region, with only a few stemming from long-distance connections

(Douglas and Martin, 2007). Owing to the topology of biological

neural networks, individual nodes cannot possess a global

view or overarching perspective; instead, each node adjusts its

behavior based on local information derived from upstream and

downstream node interactions. Consequently, biological neural

networks are distributed, self-organizing, and adaptive, with global-

level functions achieved by nodes through local interactions.

Although great progress has been made in artificial neural

networks, these models do not bear much resemblance to real
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neurobiological networks, and the success of artificial neural

networks simply cannot be used to explain the operating

mechanisms of biological neural networks. Most artificial neural

network models maintain consistency in node connectivity, with

the number of connections and their range remaining fixed,

even though the strength of these connections can vary. These

models often lack sparse behavior of nodes and exhibit low

resistance to localized network damage, deviating considerably

from biological reality. Current popular and successful deep

learning network models contain hundreds of layers, adjustable as

needed, and can display significant variation in network structure

for different tasks within the same category, illustrating task

specificity. Moreover, models like the Hopfield network possess a

fully connected topology, allowing each node to observe the entire

network’s behavior and thus granting each node a global view.

Yet, most artificial neural network models overlook differences

in neurons’ morphological and electrophysiological properties,

simplifying the complex neuronal structure to a singular point.

In contrast, biological neural networks are dynamic, with distinct

neuronal subtypes demonstrating varied stimulus selectivity and

contributing differently to cortical computation. The intricate

neural dynamics are a product of individual neuronal properties

and network connectivity, embodying the autonomous dynamics

of biological neural networks (Sadeh and Clopath, 2021).

The specific cognitive capabilities of humans and higher

mammals may hinge on distinct structural and functional

aspects of neurobiological networks and require interpretation

based on these neurobiological traits (Pulvermüller et al., 2021).

Consequently, this paper proposes node-inner autonomous and

adaptive connectivity learning algorithms for directed graph nodes,

grounded in neurobiological characteristics like neurons’ local field

of view, autonomy, and competition for limited resources, thereby

enhancing their bio-interpretability.

4.2. Node adaptive learning algorithm
based on resource competition

In the design of the RCPP-NCLA algorithm, every node

within the directed graph is allocated a fixed amount of resources.

Upstream nodes utilize their access frequency as a metric for

resource competition aimed at the target node. Should an upstream

node exhibit a high frequency of access, it has the potential to

occupy a majority of the available contact area within the target

node, potentially inhibiting input from other upstream nodes.

4.2.1. Access frequency
Let’s assume the indegree of node vi is denoted by n. The access

frequency, Fi = {f i1, f
i
2, ..., f

i
n}, characterizes the frequency with

which upstream nodes access node vi. The frequency of node access

inherently influences the contact area, with more frequent input

leading to a larger contact area.

4.2.2. Node resources
In this context, a node’s resources correspond to its contactable

area within the directed graph. Although the total area of each

node remains constant, the percentage of the contact area occupied

by each upstream node varies. This contact area is dynamically

adjusted according to the access frequency. The contact area of a

directed graph node R is the set of contact areas of each node in

the directed graph, denoted as R = {r1, r2, ..., rNgraph
}, where Ngraph

represents the number of nodes in the directed graph. Using node

vi (with an indegree of n) as an example, the total contact area of

node vi is ri.The contact area allocation table Ai = {ai1, a
i
2, ..., a

i
n}

for node vi showcases the contact area occupied by each upstream

node. Since the total contact area of node vi is finite, Ai must satisfy

the condition ri ≥
∑n

j=1 a
i
j.

4.2.3. Resource competition
The initial contact area for all upstream nodes is zero, and S

represents the contact area change step. When considering node

vi, a
i
j is the value assigned to the contact area of the jth upstream

node of node vi. If node vi possesses an assignable free contact area,

the equation aij = aij + S is applied. However, if node vi lacks an

assignable contact area, it seizes resources from other nodes based

on the access frequency.

According to the definition of access frequency, f ij represents

the access frequency of the jth upstream node of node vi. Suppose

the kth upstream node of node vi exhibits the lowest access

frequency among nodes with a contact area greater than zero. If

f ij ≥ f i
k
, then aij = aij + S and ai

k
= aia − S. If no node vk satisfies

these conditions, the contact area aij of node vj remains unchanged.

A schematic of resource competition is shown in Figures 3A–C.

Figures 3D–G illustrates how the RCPP-NCLA directed graph

model learns the activation path corresponding to a memory

sample by adjusting the contact area. The aim of the proposed

learning algorithm is to learn activation paths with limited

resources. In Figure 3E, node vi allocates the available free contact

area to node vj and node vk. Since there are two paths through

node vk to reach node vi, both the contact area ai
k
and the access

frequency f i
k
of node vk are equal to 2. In Figure 3F, node vi has

allocated all the available free contact area. In Figure 3G, because

node vk has a higher access frequency, it wins the contact area that

was previously assigned to node vj.

The resource competition algorithm serves to dynamically

allocate the contact area of targeted nodes. When the target node

contains unallocated contact areas, they can be directly occupied

by upstream nodes. However, if all contact areas within the target

node are already allocated, upstream nodes must compete for these

areas based on access frequency. In this scenario, upstream nodes

with a lower access frequency are more likely to lose their occupied

contact area to those with higher frequencies. The pseudocode for

this resource competition algorithm is presented in Algorithm 2.

4.3. Resource occupancy optimization
strategy based on path pruning

The path pruning module in RCPP-NCLA functions to

minimize the resource consumption of activation paths by pruning

those unable to reach an activated information node. This process

not only conserves the limited resources of nodes and paths but also

enhances the stability and recall of the activation paths.
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FIGURE 3

Illustration of resource competition among nodes. (A) Resource allocation in node vi prior to access by node vj. (B) Resource acquisition by node vj
from node vk for node vi given f ij ≥ f ik . (C) Unchanged resource allocation in node vi when f ij < f ik . (D) Initial state. (E) Node i allocates contact area to

node j and node k for the first time. (F) Node i allocates contact area to node j and node k for the second time. (G) Node k wins the resources

obtained by node j.

Let’s consider V as the set of nodes in the directed graph,

represented as V = {v1, v2, ..., vn}, where n denotes the total

number of nodes. This set includes both information nodes and

communication nodes. The set of information nodes,M, is defined

as M = {vm1 , v
m
2 , ..., v

m
s }, with vmi representing the i-th information

node and s indicating the quantity of information nodes. These

information nodes can be in two states: active (1) or inactive (0),

and the initial active state corresponds to the memory content.

During the learning process of the directed graph, if a node

vj visits an information node vmi from the set M, and the initial

activation state of vmi is active, it implies that a path from vj
to the information node in the active state exists. Node vj then

provides feedback to all its upstream nodes and laterally inhibits

other sibling nodes that cannot reach the activated information

nodes. The upstream nodes of node vj also reciprocate feedback

to their respective upstream nodes until it reaches the source of

the activation path. As the learning process proceeds, when node

vj activates a downstream node, only those downstream nodes

capable of reaching the activated information node get activated.

Figure 4 illustrates the process of path pruning.

RCPP-NCLA mitigates the consumption of node and path

resources related to memory samples by pruning invalid activation

paths, thereby enhancing the recall accuracy of memory samples.

Algorithm 2 outlines the pseudocode of RCPP-NCLA.

4.4. Resource occupancy optimization
strategy based on lateral inhibition

In this work, we also develop a resource occupation

optimization strategy that draws inspiration from the concept of

lateral inhibition in neurobiology. Lateral inhibition, a process in

which neuronal cells form synergy directly or indirectly, plays

a crucial role in controlling neuronal firing and shaping the

circuit’s output (Fan et al., 2020). Motivated by this mechanism,
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Input: Index of the accessing upstream node, Va;

Maximum available resources of the target node,

rtarget; Number of upstream nodes connected to the

target node, Indegree; Access frequency to the target

node, Ftarget; The resource allocation table of target

node,Atarget = {a
target
1 , a

target
2 , ..., a

target

Indegree
}; The step of resource

allocation, S.

Output: The number of visits to target node after

update, Ftarget; The resource allocation table of

target node after update, Atarget;

1: f
target
Va

⇐ f
target
Va

+ 1//Increment Va node’s access frequency

to the target node.

2: if S+
∑Indegree

i=1 a
target
i ≤ rtarget then

3: a
target
Va

⇐ a
target
Va

+ S

4: else

5: Vb ⇐ Comparison_Visit(Ftarget ,Atarget ,Va)//Vb denotes the

node that possesses the target node’s resources and

has a lower access frequency than Va.

6: if Vb > 0 then//Check if the node index is valid.

7: a
target
Va

⇐ a
target
Va

+ S

8: a
target
Vb

⇐ a
target
Vb

− S

9: end if

10: end if

11: return Ftarget, Atarget

Algorithm 2. Resource competition algorithm.

our strategy minimizes the number of activation paths via lateral

inhibition among sibling nodes, thereby diminishing the size of the

subgraphs corresponding to memory samples. This approach aims

tomitigate interference amongmemory samples and augment their

recall accuracy.

5. Experimental design and
performance analysis

In this section, we have designed an experimental approach

based on cognitive behavior to test the memory performance

of the active directed graph model proposed in this study. The

experiments in this section encompass directed graph testing,

activation path testing, performance testing of the learning

algorithm, ablation studies, and comparative experiments. These

experiments are conducted with a focus on three aspects: the

basic properties of directed graphs, the performance of adaptive

learning algorithms for directed graph nodes, and the performance

comparison of associative memory models.

5.1. Basic properties of directed graphs

i. Experimental objectives: Test of basic properties of directed

graphs.

In this paper, we propose a directed graph generation

strategy in Section 3.2, which can batch create a

number of larger and statistically similar directed

graphs for performance testing. In this section, we

Input: The number of directed graph nodes, Ngraph; The

number of initial activated nodes, Nin; Initial

activated nodes, Vin = {vin1 , v
in
2 , ..., v

in
Nin

}; The adjacency

matrix of directed graph, E = (eij)Ngraph×Ngraph
; The

maximum available resources of directed graph

nodes, R = {r1 , r2 , ..., rNgraph
}; The activation threshold of

directed graph nodes, T = {t1 , t2 , ..., tNgraph
}; The access

times table of directed graph node, F = (fij)Ngraph×Ngraph
;

The resource allocation table of directed graph

nodes, A = (aij)Ngraph×Ngraph
; The matrix of path

preference, P = (pij)Ngraph×Ngraph
.

Output: Output node set,Vout.

1: C ⇐ Init_Node_Charge()//The cumulative charge of

directed graph nodes, C = {c1 , c2 , ..., cNgraph
}.

2: Heap ⇐ Init_Heap()//The heap to manage the access order

of nodes according to the timestamp.

3: Time ⇐ Current_Time()//Current timestamp.

4: S ⇐ Set_Step()//S is the step of resource allocation.

The default value of S is 1.

5: Vout ⇐ ∅// Initializes the output node set.

6: for i = vin1 → vinNin
do

7: Target_Set ⇐ Get_All_Outdegree_Node(E, i)

8: Heap ⇐ Heap_Manager_Add(Heap,Target_Set,Head,E)//The

heap manager calculates the timestamp and adds the

target node to the heap.

9: end for

10: while Heap_Is_Not_Empty(Heap) do

11: Head,Tail ⇐ Heap_Pop(Heap)//The heap pops up the head

and tail of next arc. The head is the target node

to be accessed.

12: Indegree ⇐ Get_Indegree(E,Head)

13: F[Head],A[Head] ⇐ Resource_Competition_Algorithm(Tail,

R[Head], Indegree, F[Head],A[Head], S)

14: C[Head] ⇐ C[Head]+A[Head][Tail]//The cumulative charge

of target node.

15: if C[Head] ≥ T[Head] then

16: if Is_Info_Node(Head) and Is_Not_In_Set(Vout ,Head) then

17: Vout ⇐ Vout ∪ {Head}//Add the activated

information node to Vout.

18: P ⇐ Update_Path_Preference(P,Tail,Head,E)//In the

subsequent training, the path that can reach the

information node is preferred.

19: else

20: if Have_Preference_Node(P,Head) then

21: Target_Set ⇐ Get_Preference_Node(P,Head)//Node

Head preferentially activates the node that can

reach the information node.

22: else

23: Target_Set ⇐ Get_All_Outdegree_Node(E,Head)

24: end if

25: Heap ⇐ Heap_Manager_Add(Heap,Target_Set,Head,E)

26: end if

27: C[Head] ⇐ 0

28: end if

29: end while

30: return Vout

Algorithm 3. RCPP-NCLA.
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FIGURE 4

Illustration of path pruning. (A) Update of path preference upon access to an inactive information node vk by the communication node vj. (B) During

subsequent training, the communication node vj avoids accessing the information node vk .

evaluate the directed graphs generated by this strategy

for their reachability, clustering coefficient, and average

path length.

ii. Experimental methods

The directed graph’s node scale spans from 10 to 500, with

an increment of 10 units between scales, resulting in a total of 50

sets of test samples. Each set comprises 10 directed graphs with

identical node scales but varying topologies, and the experimental

outcomes are computed as the average across each set of test

samples. Let us denote the directed graph as G =< V ,E >, where

V = {v1, v2, . . . , vn}, and n represents the count of nodes in the

directed graph.

In graph theory, reachability refers to the ease of moving from

one node to another within a graph. In this study, we devised the

average percentage of reachable nodes as a metric for assessing

the reachability of directed graphs. (1) RM (Reachability Matrix):

The reachability matrix of the directed graph, denoted as RM =

(rmij)n× n, where rmij is 1 or 0, indicating whether vi to vj is

reachable or not, respectively. (2) NRPM (Number of Reachable

PathsMatrix): The number of reachable paths matrix is represented

asNRPM = RM+(RM)2+(RM)3+...+(RM)n−1. Based onNRPM,

we can determine the count of paths between two nodes with a

path length not exceeding n− 1. (3) APRN (Average Percentage of

Reachable Nodes): The proportion of reachable nodes to the total

nodes in the directed graph is derived from NRPM. We employ

the mean value of APRN as an evaluative index to measure the

reachability of directed graphs in this study.

The clustering coefficient, an evaluation metric used in

graph theory, depicts the degree of graph clustering. Clustering

coefficients can be categorized into global and local coefficients. The

global clustering coefficient assesses the overall graph’s clustering

degree, defined as the ratio of closed triple point groups to the

connected triple point groups within the graph. The local clustering

coefficient evaluates the clustering degree of a node in relation to

its neighboring nodes. For instance, for node vi, it is defined as the

ratio of the actual number of directed edges present between the

neighboring nodes of node vi to the potential maximum number of

directed edges. In this study, the average value of local clustering

coefficients of directed graph nodes is used as an evaluation index

to measure the degree of graph aggregation.

The average path length is the mean value of the path

lengths between nodes in the directed graph, with the path length

representing the shortest distance between nodes.

iii. Experimental results

Figure 5A presents the reachability statistics for directed graphs

of varying node scales. The experimental findings indicate that the
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Average Percentage of Reachable Nodes (APRN) escalates with the

node scale and remains above 90%when the node scale exceeds 200.

Consequently, we select directed graphs with a node scale of 200 for

the subsequent tests.

Figure 5B depicts the outcomes of the directed graph clustering

coefficient tests across various node scales. At smaller node scales,

the nodes within the directed graph are disjointed. However, with

the increment of node scales, the clustering coefficient progressively

stabilizes at ∼8–9%. This indicates that the degree of clustering

among the nodes in the directed graph eventually reaches stability.

Figure 5C presents the results of the average path length tests

across diverse node scales. As depicted in Figure 5B, the average

path length tends to increase with node scale until the node scale

reaches 110. As node size enlarges, reachable paths between nodes

gradually form, primarily through short-range edges, leading to a

progressive increase in the average path length. However, when

the node scale surpasses 110, the nodes in the directed graph

become denser, and the average path length starts to decline due

to the increasing presence of long-range edges in the path between

nodes, ultimately stabilizing between 3 and 4. In consideration of

Figures 5A, C, in directed graphs with substantial node scales, long-

range edges significantly reduce the path length between nodes

while preserving high reachability.

5.2. Activation path experiments

This subsection conducts activation path experiments on

RCPP-NCLA, designing both iterative training for a singular

memory sample and incremental training for multiple memory

samples. These experiments aim to assess the stability rate and

recall rate of the RCPP-NCLA activation path. Furthermore, this

subsection provides visual representations of the memory samples

within a directed graph.

5.2.1. Iterative training of a single memory sample
i. Experimental objectives: Evaluating single-sample iterative

training performance in RCPP-NCLA directed graph model.

This subsection evaluates the stability of the directed graph

model’s activation path, focusing on resource consumption,

time cost, and memory stability as key indices. The physical

manifestation of memory samples within directed graphs takes

the form of connected subgraphs. In this context, the experiment

calculates the number of directed edges associated with the

connected subgraph for each memory sample. The average of

memory samples of the same scale serves as the resource

consumption index for the directed graph. Time cost is assessed

through the number of training iterations, indicating the count of

iterations required for memory samples to form stable connected

subgraphs within the directed graphs. Memory stability, gauged

through the activation path stability rate, elucidates the stability

of the connected subgraph associated with the memory samples.

Additionally, this experiment offers a visual demonstration of a

single memory sample’s iterative training.

ii. Experimental methods

In the same directed graph, for each case, we generate 100

memory samples with scales of 1, 2, 3, 4, and 5 nodes randomly.

We denote the memory sample as Mi
j , where i represents the

memory sample scale, and j signifies the ordinal number among

the memory samples of the same scale. In the initial state of the

directed graph, we apply iterative training to a single memory

sample, capping the number of iterations at 100 and setting the

maximum depth for each iteration to 10. For clarity, we define

the directed graph obtained at the t-th iteration as Gt . The

iterative training halts if the activation path stabilizes. If there is

no change in the activation path and the node contact area over 20

iterations, we consider the activation path as stable. We define the

activation path corresponding to the memory sample Mi
j as APMi

j
.

Figures 6A, B presents the flowchart of iterative training for a single

memory sample.

iii. Experimental results

Figure 6C illustrates the progressive stabilization of the

activation path during the iterative training of a singular memory

sample. Initially, and in the mid-stages of training, communication

nodes aim to activate as many neighboring nodes as possible to

learn the routes leading to activated information nodes. As training

progresses to the latter stages, the routes reaching the activated

information nodes are continually reinforced until the activation

paths achieve a state of stability.

Figure 6D illustrates the activation path associated with the

recall test. As demonstrated in Figure 6D, the directed graph

node adaptive connectivity learning algorithm optimizes the

combination of activated information nodes to closely mirror the

initially deposited combination.

Figure 7E presents the experimental outcomes from the

iterative training of a single memory sample. This table provides

three evaluation metrics: Activation Path Stability Rate (APSR),

Average Number of Iterations (ANI), and Average Number of

Directed Edges (ANDE). APSR represents the proportion of

memory samples that can achieve stable activation paths, ANI

denotes the number of iterations required for the memory

samples to attain stability in activation paths, and ANDE indicates

the quantity of directed edges utilized by the activation path

corresponding to the memory samples. As demonstrated in

Figure 6E, the RCPP-NCLA directed graph model yields stable

activation paths, with APSR reaching 95.5% for the dataset with a

memory sample scale of 1 and achieving 100% for all other memory

sample scales.

5.2.2. Incremental training of multiple memory
samples
i. Experimental objectives: Assessing Incremental Training

Memory Performance in RCPP-NCLA directed graph model.

This subsection evaluates the incremental storage performance

of the RCPP-NCLA directed graph model. Additionally, it provides

a visual depiction of the incremental training process involving

multiple memory samples.

ii. Experimental methods

All experiments were conducted on the same directed graph.

Ten instances of memory samples, each with different scales and all

capable of achieving activation path stabilization, were selected for
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FIGURE 5

Experimental results on basic properties of directed graphs. (A) Reachability statistics of directed graphs with di�erent node scales. (B) Clustering

coe�cient statistics of directed graphs with di�erent node scales. (C) Average path length statistics of directed graphs with di�erent node scales.

incremental training. Here, each memory sample is denoted asMi,

where i stands for the number of the memory sample. In this study,

100 sets of incremental training were executed on an initial state

directed graph. For each incremental training set, a total of 1,000

rounds of memory training were performed. The memory samples

for each round were randomly selected, with each round having a

maximum depth of 10. Each of the 1,000 memory trainings was

based on the current state of the directed graph, allowing for the

subsequent memory training. The directed graph obtained after the

t-th round of training is defined as Gt .

Upon completion of 1,000 sessions in each set of incremental

training, recall tests were conducted on each of the ten memory

samples. The primarymetric for these recall tests was the Activation

Path Recall Rate (APRR). Let the stable activation path obtained

from iterative training of a single memory sample be denoted as ET ,

and ET is defined as the positive class. The activation path obtained

from incremental training of multiple memory samples is defined

as Ep. FN represents the unactivated correct path. TP refers to the

path that is correctly activated within Ep. Figures 7A, B presents the

flowchart for the incremental training of multiple memory samples.

APRR =
TP

TP + FN
(1)

Figures 7C, D gives a demonstration of activation paths,

Figure 7C shows valid activation paths where information nodes

are correctly activated and Figure 7D shows incomplete activation

paths where some of the information nodes are not activated

and the activation paths take up too much of the directed

graph resources.

iii. Experimental results

Figure 7E illustrates the process of incremental training with

multiple memory samples within a directed graph model. This

method involves randomly selecting different memory samples for

inclusion in the directed graph. Compared to the iterative training

of a single memory sample, the incremental training of multiple

memory samples introduces competition and interference between

memory samples. The recall accuracy ofmemory samples is directly

related to the stability and connectivity of their corresponding

subgraphs. Figure 7F presents the results of incremental training

for ten memory samples, demonstrating that the RCPP-NCLA

directed graph model can achieve a high activation path recall

rate and can effectively retain most of the activation paths

corresponding to each memory sample.

5.3. Performance experiments

In this section, we will evaluate the directed graph preference

and capacity of the RCPP-NCLA directed graph model. The

experimental details are outlined in Table 1 to provide a

comprehensive overview of the conducted experiments.

5.3.1. Training sample preference experiments
i. Experimental objectives: Evaluating the preference of directed

graph models toward training samples.

The experiment involved the random generation of 1,000

memory samples for incremental training. Subsequently, the recall

test was conducted on these 1,000 memory samples. The recall

test results were used to analyze and validate the memory samples

preferred and not preferred by the directed graph model.The

objectives of this experiment are twofold: (1) To test the potential

preferences of the directed graph model based on the recall test

results after incremental training. (2) To design subsequent positive

and negative examples based on the initial test results.

ii. Experimental methods

In this experiment, 1,000 memory samples were randomly

generated for incremental training with a memory sample

dimension of 30. The evaluation index is IRA (Information Node

State Recall Accuracy), which is the correct rate of information

node state output by the directed graph. Information nodes have

both active (1) and inactive (0) states. Information nodes are used

to characterize content, i.e., they are responsible for the input

and output of memory content. Memory content is represented in

the directed graph as the activation combinations of information

nodes. Let the number of information nodes be Ninfo, and the

number of information nodes with correct activation status in the

output information node activation combinations is Ntrue.

IRA =
Ntrue

Ninfo
(2)
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FIGURE 6

Experimental results for iterative training of a single memory sample. (A) Initial state of a blank directed graph. (B) Memory sample uploading and

process of directed graph state transformation. (C) Activation path iteration diagram for a single memory sample. (D) Example diagram of recall test

after iterative training of a single memory sample. (E) Activation path stability of RCPP-NCLA directed graph model.
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FIGURE 7

Experimental results for incremental training of multiple memory samples. (A) An initial blank directed graph. (B) Memory sample uploading and

directed graph state change process.(C) E�ective memory retrieval. (D) Incomplete memory retrieval. (E) Iteration diagram for incremental training of

multiple memory samples. (F) Recall rate of activation path of RCPP-NCLA directed graph model.
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TABLE 1 Introduction to the performance experiments.

Experiments Objectives Methods Evaluation
metrics

Training sample preference experiments Analyzing the preference of the directed graph by
training it with 1,000 memory samples and evaluating
the recall test results.

Incremental training of
multiple memory samples

Information node status
recall accuracy

Directed graph topology preference experiments Analyzing the preferences of different directed graphs
by training them with 1,000 memory samples and
evaluating the recall test results.

Incremental training of
multiple memory samples

Information node status
recall accuracy

Directed graph storage capacity experiments Observing the storage capacity of the directed graphs
by training them with memory samples of varying sizes.

Incremental training of
multiple memory samples

Information node status
recall accuracy

The directed graph model underwent incremental training,

with each set of incremental training performed on the initially

defined directed graph. Within each set, a total of 10,000 memory

training iterations were conducted. The memory samples for each

training iteration were randomly selected, with a maximum depth

of 10. Throughout the 10,000 training sessions, each subsequent

session was based on the current state of the directed graph. This

experiment examines the recall accuracy of the directed graph

model after incremental training.

iii. Experimental results

After the 1,000 memory samples underwent recall testing, they

were screened based on their recall accuracy. In this experiment,

two sets of memory samples were selected based on the recall

accuracy threshold. The first set included memory samples with a

recall accuracy of 65% or higher, which were defined as memory

samples preferred by the directed graph. Additionally, memory

samples with a recall accuracy below 45% were included in the

second set and considered as memory samples not preferred by the

directed graph model.

Following the screening process, the two sets of memory

samples were subjected to analysis. The cumulative number of

activations of each information node in these two sets of memory

samples was calculated. A total of 30 information nodes were

assigned numbers from 0 to 29. The statistical analysis of the

cumulative number of activations for the information nodes is

presented in Figures 8A, B.

To statistically examine the hypothesis of directed graph

preference derived from Figures 8A, B, we designed four groups

of test cases for recall accuracy testing, each comprising 1,000

test cases. The generation rules for the test cases are detailed

in Figure 8C.

A total of four different test cases were generated based on

Figure 8C. For each of the four test cases, 100 sets of incremental

training and recall tests were conducted. The experimental results

are presented in Figure 8D.

The recall test results for all four test cases outperformed the

recall test results when training with 1,000 randomly generated

memory samples. The memory samples in the test cases exhibit

similarities, leading to shared resources within the directed graph.

As a result, the competition for resources among these memory

samples is smaller compared to the competition among the 1,000

randomly generated memory samples. A comparison between test

case one and test case three reveals that activatingmore information

nodes preferred by the directed graph can enhance memory sample

recall accuracy. Likewise, comparing Test Case I with Test Case II

demonstrates that information nodes in an activation state contrary

to the directed graph preference can lower the recall accuracy of the

memory samples.

This paper introduces connected subgraphs as mechanisms
for representing memory content in directed graphs. The node

adaptive learning algorithm maps the memory contents to
connected subgraphs in the directed graph. Through training
sample preference experiments, we demonstrate the existence of

preferences for training samples in directed graph models. Specific

combinations of activated information nodes can significantly

improve or impair the model’s performance compared to the

average. This phenomenon occurs because the experimental results

depend on the correspondence between input information and

previously learned connected subgraphs. For instance, if the

directed graphmodel has learned about apples with features like red

and circular, inputting features related to red and circular facilitates

the association between apples and the directed graph model, and

vice versa. Furthermore, the resource competition module enables

continuous learning capability within the directed graph model.

If the initial learning suggests that apples are blue but subsequent

extensive training indicates that apples are red, the model will

adjust and re-associate apples with the color red.

5.3.2. Directed graph topology preference
experiments
i. Experimental objectives: Investigating the Topology Preference

of Directed Graph Models.

This experiment involved incremental training on different

directed graphs and analyzed their preferences based on recall test

results. The objective was to examine the relationship between

variations in directed graph topology connections and their

preferences, and to determine if the overall memory performance

of the directed graph model remains unaffected by the graph’s

topology.

Four distinct directed graphs, labeled as A, B, C, and D, were

utilized for this experiment. In order to illustrate the disparities

between the graphs, Figures 9A, B depicts the topology of graphs

A and B.

ii. Experimental methods

In this experiment, the memory sample dimension was set

to 30, and the evaluation index used was the IRA (Information

Node State Recall Accuracy). Among the four directed graphs,

30 nodes were designated as information nodes with identical

numbering, while the remaining nodes served as communication
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FIGURE 8

Preference test for training memory samples. (A) Bar chart illustrating the number of activations for each information node in memory samples with

high recall accuracy. (B) Bar chart illustrating the number of activations for each information node in memory samples with low recall accuracy. (C)

Rules for generating test cases. (D) Results of training sample preference experiments.

nodes. The numbering of these 30 information nodes remained

consistent across the different directed graphs, while the topological

connections of each directed graph were generated randomly.

For the purpose of incremental training, 1,000memory samples

were generated randomly, and all four directed graphs were trained

using the same set of 1,000 memory samples. Each directed

graph underwent incremental training individually. Following the

completion of incremental training, recall tests were conducted on

the 1,000 memory samples. The results of the recall tests were then

used to analyze the preferences of each directed graph toward the

memory samples.

iii. Experimental results

Figure 9C presents the similarity statistics for the preferences of

the four directed graphs. It is worth noting that the 30 information

nodes in each directed graph are uniformly numbered, indicating

that the preference of each directed graph is closely tied to its

unique topology. Importantly, the overall performance of the

directed graph model remains unaffected by the specific topology

of the graph. The directed graph’s node adaptive algorithm learns

distinct connected subgraphs based on the topology of each specific

directed graph.

5.3.3. Directed graph storage capacity
experiments

In this subsection, we conduct information node correlation

analysis and capacity experiments to evaluate the storage

performance of the directed graph model. Connected subgraphs
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FIGURE 9

Di�erences in topological structures among di�erent directed graphs. (A) directed graph A. (B) directed graph B. (C) Preference similarity statistics of

di�erent directed graphs.

play a crucial role in constructing the graph structure for

storing information in the directed graph model. The information

node correlation analysis enables us to statistically identify pairs

of information nodes that are more likely to occur together.

Additionally, the capacity experiments are designed to assess

the storage capacity of directed graph models across datasets of

varying scales.

A. Information node correlation analysis

i. Experimental objectives: Analyzing the relevance of

information nodes.

A significant number of training samples exhibit specific

combinations of features, and the directed graph model has the

ability to capture these frequent combinations and form connected

subgraphs. These subgraphs serve as fundamental components

for storing information in the directed graph model. Information

nodes that consistently occur together are more likely to be part of

the same connected subgraph, which aligns with Hebb’s law.

The objective of this experiment is to investigate the

correlation among information nodes. The directed graphs are

trained using datasets of varying sizes, and the occurrence

frequency of different information nodes within the same subgraph

is recorded.

ii. Experimental methods

The memory samples in this experiment have a dimension

of 15, and their scale ranges from 1 to 1,000. The evaluation

index used is INC (Information Node Correlation). By conducting

recall tests, we can extract the connected subgraphs associated with

the memory samples. The frequency at which information nodes

appear together within the same connected subgraph is defined

as the information node correlation. INC = (incij)n× n, incij

FIGURE 10

Information node relevance statistics chart.

denotes the frequency of node vi and node vj appearing in the

same subgraph.

iii. Experimental results

According to the above experiments, we can get the connected

subgraphs corresponding to each memory sample in the directed

graph, analyze whether the information nodes appear in the same

connected subgraph and count the frequency. Taking node vi and
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node vj as an example, in a recall test, if these two nodes are in the

same connected subgraph, then incij = incij + 1, and incji = incij.

Figure 10 presents the information node relevance statistics chart.

B. RCPP-NCLA directed graph model storage capacity

experiments

i. Experimental objectives: Testing the storage capacity of the

RCPP-NCLA directed graph model.

The objective of this experiment is to conduct capacity tests

on the RCPP-NCLA directed graph model and evaluate the recall

accuracy of the model across different memory sample scales

and dimensions.

ii. Experimental methods

Thememory samples used in this experiment have a dimension

of 15, indicating that there are 15 information nodes, and the

evaluation index used is IRA (Information Node State Recall

Accuracy). We conducted two memory capacity tests. The first test

involved memory samples of different scales, ranging from 300

to 32,700 with 300-unit intervals. The second test compared the

memory performance of the proposed model for different memory

sample dimensions. Thememory sample dimensions are 15 and 20.

The memory sample scales range from 50 to 1,000 with an interval

of 10.

iii. Experimental results

Figure 11 illustrates the recall accuracy for various memory

sample sizes and dimensions. In Figure 11A, the RCPP-NCLA

directed graph model is capable of maintaining a recall accuracy

at or above 80% as the memory sample size increases. This

experimental result is closely related to the resource competition

module. Connected subgraphs represent the physical realization of

memory samples in a directed graph; a memory sample contains

one or more connected subgraphs, and those that occur more

frequently are more likely to be remembered. In Figure 11B, an

increase in the dimension of memory samples impacts the recall

accuracy of the RCPP-NCLA directed graph model. A higher

memory sample dimension implies that a single memory sample

needs to utilize more directed graph resources, consequently

leading to increased interference among memory samples.

5.4. Ablation experiments

i. Experimental objectives: Evaluating the impact of the path

pruning module on memory performance.

The PP (Path Pruning) module enhances memory performance

by reducing the resource consumption of activation paths. In

this subsection, the memory performance of three directed graph

node adaptive learning algorithms, namely RC-NCLA, RCLI-

NCLA, and RCPP-NCLA, is compared. RC-NCLA incorporates

the RC (Resource Competition) module, RCLI-NCLA incorporates

both the RC (Resource Competition) module and the LI (Lateral

Inhibition) module, while RCPP-NCLA includes the RC (Resource

Competition) module and the PP (Path Pruning) module.

The directed graph models based on these three learning

algorithms are trained using iterative and incremental methods.

The recall test results provide insights into the enhancement of

memory performance achieved by the PP module.

ii. Experimental methods

The three nodal adaptive learning algorithms underwent

iterative training using a single memory sample and incremental

training using multiple memory samples on directed graphs with

identical topology and dataset. For the iterative training of a single

memory sample, the dataset consisted of 100 memory samples

with scales ranging from 1 to 5. The evaluation indices used were

APSR (Activation Path Stability Rate), ANI (Average Number of

Iterations), and ANDE (Average Number of Directed Edges). In

the case of incremental training with multiple memory samples,

the dataset included ten memory samples with scales between 1

and 5, and the evaluation index used was APRR (Activation Path

Recall Rate).

iii. Experimental results

The experimental results of the ablation experiments are
presented in Figure 12. Figure 12A illustrates the outcomes of the
iterative training with a single memory sample, while Figure 12B

showcases the results of the incremental training with multiple
memory samples. In Figure 12A, it can be observed that the PP

module significantly reduces the resource consumption of directed

graph memory samples. The ANDE for memory samples with

scales 1–5 was 3.4, 11.4, 10.6, 19.3, and 17.6% of the Baseline,

respectively. Additionally, the PP module effectively reduces the

time cost, as reflected by the lowest ANI among the three nodal

adaptive learning algorithms. The LI module, another optimization

strategy proposed in this study to reduce resource occupation, also

decreases the resource and time overhead of memory samples.

However, its optimization effect is inferior to that of the PPmodule.

Figure 12B demonstrates the significant improvement in APRR

achieved by the PP module. Although the LI module can reduce

the resource and time overhead of memory samples, the APRR for

most memory samples is even lower than that of the Baseline.

In conclusion, the PP module reduces the resource

and time overhead of directed graph memory samples,

enhances the memory stability of the directed graph

model, and significantly improves the recall accuracy of

memory samples.

5.5. Comparative experiments

5.5.1. Memory performance comparison
i. Experimental objectives:Memory performance of RCPP-NCLA

directed graph model compared with Hopfield network.

To better elucidate the memory performance of the active

directed graph model proposed in this paper, a comparison is

made between the RCPP-NCLA directed graph model and the

Hopfield network.

ii. Experimental methods

Two datasets were created for this experiment, both with

a memory sample dimension of 15. The dataset scales were

set at 10 and 30. The RCPP-NCLA directed graph model

employed an incremental training approach using multiple

memory samples to learn the datasets. On the other hand, the

Hopfield network determined its network weights based on the

Hebb rule and employed an asynchronous approach to neuron

updates. Subsequently, both the RCPP-NCLA directed graphmodel

and the Hopfield network were evaluated for memory performance

using the same datasets. The evaluation metrics used were RC
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FIGURE 11

Memory capacity test statistical chart. (A) Capacity testing of di�erent memory sample scales. (B) Capacity testing of di�erent memory sample

dimensions.

FIGURE 12

Results of ablation experiments. (A) Stability of activation paths in di�erent directed graph models. (B) Recall rate of activation path in di�erent

directed graphs models.

(Recall Accuracy) and SC (Storage Capacity). Each sample is a

binary vector of 10 or 30 neurons, and RA is the recall accuracy

of the neuron state. For the RCPP-NCLA directed graph model,

the formula for RA is the same as IRA. In this study, the FT

(Fault Tolerance) was set to 0.85.When RA 0.85, the corresponding

memory samples are regarded as valid memories, and SC reflects

the number of samples that the model can effectively memorize,

i.e., the number of memory samples with RA 0.85.

iii. Experimental results

The results of the comparative experiments between the

RCPP-NCLA directed graph model and the Hopfield network

are presented in Figure 13A. As shown in Figure 13A, the RCPP-

NCLA directed graph model exhibited higher RA on both datasets

compared to the Hopfield network, and its SC (Storage Capacity)

was significantly superior.

Memory performance is not only reflected in the number of

memory samples stored, but the diversity of memory samples

is equally essential. Figure 13B displays the ratio of the RCPP-

NCLA directed graph model to the Hopfield network in terms of

memory capacity and diversity. The Hopfield network is set as

the baseline with a value of 1, while the RCPP-NCLA directed

graph model’s value represents the ratio to the Hopfield network.
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Figure 13B illustrates that the RCPP-NCLA directed graph model

not only achieves higher RA and SC than the Hopfield network

but also exhibits a greater capacity for retaining diverse and varied

memory samples.

In addition to surpassing the Hopfield network in memory

performance, the RCPP-NCLAmodel offers additional advantages:

(1) Incremental storage capability: Unlike the Hopfield network,

which requires presetting weights and lacks incremental storage,

the RCPP-NCLA directed graph model enables continuous

learning and incremental storage. (2) Adaptability to memory

samples of various dimensions: The RCPP-NCLA directed graph

model can learn memory samples of different dimensions

FIGURE 13

Memory performance comparison. (A) Results of memory

performance comparison experiments. (B) Comparison chart of

memory capacity and memory diversity.

without modifying the directed graph’s topology, while the

Hopfield network is limited to learning memory samples of the

same dimension.

5.5.2. Comprehensive comparison of associative
memory models

In this section, the RCPP-NCLA directed graph model is

comprehensively compared with various types of associative

memory models, and the results of the comparison are shown

in Table 2.

This section compared three aspects: network structure,

learning algorithm, and memory function.In terms of network

structure, biological cerebral cortex neural networks are

characterized by local connections; spatially similar neurons

are more likely to form connections, and neurons do not

have a global perspective. They can only acquire information

through upstream and downstream nodes. Constructing a

network structure in line with neurobiology helps understand

the information processing mechanism of the brain, so sparse

connections and a local perspective are chosen as evaluation

metrics in terms of network structure.In terms of learning

algorithm, Hebb’s law is a classical synaptic learning model. If the

presynaptic neuron and the post-synaptic neuron are in the same

state at the same moment, the synaptic connection is strengthened;

if both of them are in the opposite state at the same moment, the

synaptic connection is weakened. Biological neurons themselves

are complex computational units with autonomous dynamics,

capable of adaptive learning based on local information. Therefore,

in this section, Hebb’s law and adaptive learning are used as

evaluation metrics in terms of learning algorithms.In terms of

memory function, this section selects associative memory and

incremental memory as evaluation metrics, respectively. This study

focuses on associative memory, where the associative memory

model is able to recall the corresponding memory content based

on the input cues, and incremental memory reflects the ability of

the associative memory model to learn continuously.

In Table 2, QHAM (Quantum Hopfield Associative Memory)

and MBAM (Memristor Bidirectional Associative Memory)

are improved models of the Hopfield network (HNN) and

Bidirectional Associative Memory (BAM) network, respectively.

TABLE 2 Comparison of associative memory models.

Models
Network structure Learning algorithm Memory functions

Sparse
connection

Local
perspective

Hebb’s
rule

Adaptive
learning

Associative
memory

Incremental
memory

HNN (Hopfield, 1982) × × X × X ×

QHAM (Miller and
Mukhopadhyay, 2021)

× × X × X ×

BAM (Kosko, 1988) × × X × X ×

MBAM (Li et al., 2021) × × X × X ×

SWHNN (Sun et al., 2022) X × X × X ×

KVMN (Tyulmankov et al., 2021) × × × × X X

Ours X X X X X X
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In terms of network structure, both the fully connected features

of the Hopfield network and the fully connected features of the

interlayer in the BAM network make these types of memory

computation models inconsistent with neurobiological constraints,

such as sparse connections and local horizons. Additionally, the

Hopfield network and BAM network require presetting network

weights according to the learning algorithm, preventing them from

realizing incremental memory. SWHNN (Small-World Hopfield

Neural Network) utilizes the small-world network as the topology

of the Hopfield network, which is still essentially an improved

model of the Hopfield network. Although the model conforms

to the characteristics of sparse connectivity, the neurons in the

network have a global perspective and cannot realize incremental

memory. KVMN (Key-Value Memory Network) is a key-value-

based associative memory model capable of achieving the memory

performance of the Hopfield network and incremental memory.

However, its network structure does not align with the connectivity

characteristics of the biological cortical neural network and lacks a

neurobiological basis.

6. Conclusion

Based on neurobiology, this paper simulates the connection

characteristics of biological cerebral cortex neural networks to

construct directed graphs. It designs a node adaptive learning

algorithm under the premise of limited resource competition,

combining graph theory, multi-agent systems, PDP (Parallel

Distributed Processing), ubiquitous learning, and other theories.

The objective is to study the storage capacity of active directed

graphs from the perspective of graph theory.

First, this paper constructs directed graphs based on biological

neural networks and proposes a memory mechanism rooted

in graph theory. It considers connected subgraphs as the

physical realization of memory content in directed graphs.

The topological structure of the directed graphs is designed

based on the connection characteristics of biological cerebral

cortex neural networks. The key feature is that the nodes

of the directed graphs form limited and random connections

within local neighborhoods, and the connection probability varies

with the distance between nodes. In the RCPP-NCLA directed

graph model, nodes are categorized into information nodes and

communication nodes. Information nodes represent content and

are responsible for the input and output of memory content.

The memory content is expressed as the active combination

of information nodes in the directed graphs. To maintain the

activation combination of information nodes, it is necessary to

establish activation paths through communication nodes. The

connected subgraphs formed by these activation paths serve as

the physical realization of memory content in the directed graphs.

In contrast to the Hopfield network, BAM network, and their

improved models, the RCPP-NCLA directed graph model offers

greater biointerpretability in terms of connection mode. These

network models possess a global perspective and fail to conform

to neurobiological constraints.

Secondly, drawing from the neural characteristics of neurons

such as local vision, autonomous initiative, and limited resource

competition, this paper introduces an adaptive connected

learning algorithm for nodes in directed graphs. The algorithm

incorporates resource competition and path pruning. It is worth

noting that many artificial neural networks (ANNs) overlook

the morphological and electrophysiological differences among

neurons, simplifying their complex structure into a single point.

In contrast, the node adaptive connected learning algorithm

implemented in directed graphs enables each node to operate

independently, learn autonomously, adjust based on local

information, and manifest global memory behavior through

local interactions.

Finally, this paper employs experimental methods that leverage

cognitive behavior to evaluate the memory performance of the

RCPP-NCLA directed graph model. The experiments conducted

on the RCPP-NCLA directed graph model are summarized

as follows:(1) The test of basic properties of directed graphs

evaluates the directed graph model from three aspects: reachability,

clustering coefficient and average path length, and proves that

the directed graph model designed in this paper conforms to

the connection characteristics of biological cerebral cortex neural

network; (2) Activation path experiments show the physical

realization of memory content in directed graph, and prove that

directed graph model can realize incremental storage; (3) Training

sample preference experiments show that RCPP-NCLA directed

graphmodel has preference formemory content, which is similar to

brain network, and different people have different memory ability

for different things; (4) The directed graph topology preference

experiments reflect that the macroscopic memory performance

of RCPP-NCLA directed graph model is not affected by the

topological structure of directed graph, which is also similar

to brain network. Everyone’s brain network has differences, but

its basic memory performance is basically the same; (5) In

the directed graph storage capacity experiments, different data

sets are designed to test the influence of sample size on the

memory performance of RCPP-NCLA directed graph model.

Experiments show that RCPP-NCLA directed graph model can

maintain high memory accuracy under different data sets; (6)

The ablation experiments prove that the path pruning module

can optimize the occupation of directed graph resources by

memory content, and significantly improve the stability rate and

recall rate of active path; (7) In the comparative experiments,

the RCPP-NCLA directed graph model is superior to Hopfield

network in memory accuracy, memory capacity and memory

sample diversity.
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