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Introduction: The detection of smoking behavior is an emerging field faced

with challenges in identifying small, frequently occluded objects like cigarette

butts using existing deep learning technologies. Such challenges have led to

unsatisfactory detection accuracy and poor model robustness.

Methods: To overcome these issues, this paper introduces a novel smoking

detection algorithm, YOLOv8-MNC, which builds on the YOLOv8 network

and includes a specialized layer for small target detection. The YOLOv8-MNC

algorithm employs three key strategies: (1) It utilizes NWD Loss to mitigate

the effects of minor deviations in object positions on IoU, thereby enhancing

training accuracy; (2) It incorporates the Multi-head Self-Attention Mechanism

(MHSA) to bolster the network’s global feature learning capacity; and (3) It

implements the lightweight general up-sampling operator CARAFE, in place of

conventional nearest-neighbor interpolation up-sampling modules, minimizing

feature information loss during the up-sampling process.

Results: Experimental results from a customized smoking behavior dataset

demonstrate significant improvement in detection accuracy. The YOLOv8-MNC

model achieved a detection accuracy of 85.887%, signifying a remarkable

increase of 5.7% in the mean Average Precision (mAP@0.5) when compared to

the previous algorithm.

Discussion: The YOLOv8-MNC algorithm represents a valuable step forward

in resolving existing problems in smoking behavior detection. Its enhanced

performance in both detection accuracy and robustness indicates potential

applicability in related fields, thus illustrating a meaningful advancement in the

sphere of smoking behavior detection. Future efforts will focus on refining this

technique and exploring its application in broader contexts.

KEYWORDS
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1. Introduction

Smoking behavior detection has gradually attracted more and more attention in recent
years. With the increase in public health awareness and a deeper understanding of the harms
of smoking, more and more individuals and organizations are beginning to focus on how to
effectively identify and prevent smoking behaviors (Ashare et al., 2021). Smoking behavior
detection involves using computer vision technology to automatically recognize and locate
human smoking behaviors in images or videos, thereby monitoring and controlling smoking
scenarios. This technology can be applied in practical applications such as public places,
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factories, schools, etc. (Liu X. et al., 2023), helping to enforce
smoking bans, strengthen the management of smoking areas,
protect the environment, and reduce pollution (Shi et al., 2023).
Smoking behavior detection generally relies on deep learning
models for training and inference, effectively reducing the manual
cost of smoking detection and improving detection accuracy
and efficiency (Tian et al., 2023). Generally speaking, these
algorithms can be divided into two branches. One is sensor-
based detection methods, such as inhalation sensor-based detection
(Yu et al., 2022), lip sensor-based detection (Imtiaz et al., 2019),
and hand sensor-based detection (Skinner et al., 2017). These
methods face several challenges. They involve high computational
load and complex manual feature extraction. Additionally, they
exhibit weak feature representation capability and poor model
generalization. As a result, solving smoking detection problems
across various scenarios becomes quite challenging. The other is
using convolutional neural network algorithms to extract features
from images, thereby recognizing smoking targets. Common target
detection frameworks include YOLO (Jiang P. et al., 2022), Faster
R-CNN (Li et al., 2015), SSD (Leibe et al., 2016), and Heterogeneous
Networks of Graph Neural Networks (GNNs) (Wang Y. et al.,
2022). These algorithms learn and train from a large amount
of smoking image data to achieve efficient and accurate target
detection.

Despite the significant improvements in smoking detection due
to deep convolutional networks, there are still some challenges.
First, smoking detection needs to consider the influence of the
surrounding environment on smoking images, such as intense
illumination, complex backgrounds, and occlusion. These factors
may cause biases or misjudgments in the model. Secondly, smoking
behavior exhibits certain diversified characteristics. For instance,
when recognizing cigarettes, information regarding shape and
size needs to be noted. These characteristics also increase the
difficulty in algorithm training and practical application. Finally,
smoking detection requires the use of high-precision sensors
and cameras, which can increase the system development and
maintenance costs. Also, in large-scale applications, one may
need to consider hardware resource limitations, as well as other
constraints. Consequently, in practical applications, due to the
impact of the above factors, there may be problems such as false
detection, missed detection, and a low detection rate, as shown in
Figure 1. These issues may affect the accuracy and reliability of the
detection results. Therefore, it is necessary to take corresponding
measures to address these problems and improve the accuracy and
reliability of the detection.

To address these issues, this paper proposes the YOLOv8-
MNC algorithm, which is an improvement on the faster and more
accurate YOLOv8, and applies it to smoking behavior detection.
The main contributions are as follows:

1. Incorporating NWD Loss to mitigate the sensitivity of IoU
to minor object position deviations, thereby enhancing the
training accuracy.

2. Incorporating the Multi-head Self-attention Mechanism
(MHSA) to boost the global feature learning ability of the
target object in the convolution network.

3. Utilizing the lightweight general up-sampling operator
CARAFE to replace the original nearest-neighbor

interpolation up-sampling module, thereby reducing the
loss of feature information during the up-sampling process.

4. Proposing the smoking behavior detection algorithm
YOLOv8-MNC, based on YOLOv8. On our custom dataset,
the detection accuracy during training reached 85.887%,
with a mean Average Precision (mAP) that was 5.7% higher
compared to the YOLOv8 algorithm.

The rest of this paper is structured as follows: section “2.
Related works” provides a review of relevant works in the field of
smoking behavior detection. Section “3. Materials and methods”
delves into the enhanced YOLOv8-MNC algorithm framework
and explicates the specifics of its implementation. In section “4.
Experimental results,” we assess the performance of our proposed
method through a series of experimental tests. Finally, the paper
concludes with a summary and outlines potential future directions.

2. Related works

Presently, methods for detecting smoking behavior primarily
comprise traditional and computer vision-based approaches.
Traditional methods employ smoke sensors to detect cigarette
smoke, thereby identifying smoking behavior. Wu and Chen (2011)
proposed a system for smoking behavior detection through facial
analysis, which accurately and rapidly discerns whether individuals
in images are smoking. Iwamoto et al. (2010) introduced a
smoke detection method based on image sequences, utilizing
convolutional neural networks (CNNs) to process continuous video
frames and detect the presence of smoke. Ali et al. (2012) presented
an automated system named mPuff for detecting inhalations of
cigarette smoke from respiratory measurements. With the rapid
development of computer vision and deep learning, an increasing
number of smoking detection algorithms based on object detection
have been proposed. Adebowale and Lwin (2019) put forward a
deep learning algorithm architecture based on convolutional neural
networks (CNNs) and long short-term memory (LSTM) networks,
for detecting smoking behavior from respiratory signals. Rentao
et al. (2019) proposed an indoor smoking behavior detection
approach that adds a small-scale detection layer to the traditional
YOLOv3-tiny network. Poonam et al. (2019) used the Faster RCNN
algorithm for cigarette target detection, demonstrating robustness
to lighting and deformations. Zhang et al. (2018) proposed a new
smoking detection algorithm based on CNNs, which differentiates
between non-smokers and smokers by recognizing the position and
posture of smokers in photos or videos through feature extraction
and classifiers. Liao and Zou (2020) proposed using the DarkNet53
as the backbone feature extraction network and decoding the
YOLOv3 model through Bounding Box after outputting the feature
map to detect smoking behavior within the monitored area.
Jiang X. et al. (2022) introduced a smoking behavior detection
method based on the YOLOv5 network, which captures images
using a camera and recognizes and locates smokers in the images
using the YOLOv5 algorithm. Wang Z. et al. (2022) proposed
an improved YOLOv5-based architecture with the addition of
new data enhancement techniques such as RandomErasing and
GaussianBlur to enhance the robustness of the model for real-
time smoke detection. Hu et al. (2022) introduced a fast detection
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FIGURE 1

Example diagram of smoking error detection.

algorithm for forest fire smoke using MVMNet, which is designed
to extract and classify image features for smoke detection. Liu et al.
(2022) proposed an IoT security solution named Adaptive multi-
channel Bayesian graph attention network (AMGBA), aiming to
address security issues in the Internet of Things. Xu et al. (2023)
introduced a bimodal emotion recognition algorithm using mixed
features of audio and speech context. Liu et al. (2020) presented a
method for ESD soft fault detection based on Linux kernel function
call analysis. Liu et al. (2018) proposed a method for heat exchange
analysis in deep-sea spectral detection systems based on ROV,
including detailed modeling. Liu Z. et al. (2023) discussed a graph
structure learning method of EGNN, focusing on its application in
graph neural networks.

In the field of object detection, the challenge of accurately
identifying small targets, such as cigarettes in smoking detection,
has been a persistent issue. These small objects often occupy only
a minor portion of the entire image, leading to difficulties in
extracting precise position and feature information. Existing
methods have approached this problem through various
techniques, but limitations remain. Deep learning algorithms
for small target detection commonly adopt methods that focus on
multi-scale features, contextual information, and loss functions.
In terms of multi-scale features, Lin et al. (2017a) utilized FPN
to fuse high-resolution and high semantic information for the
Faster RCNN, achieving a 17.8% average precision for small
target detection. Liu et al. (2019) improved scale invariance by
suppressing inconsistencies in spatial-temporal feature fusion,
achieving a 43.9% AP on the YOLOv3 and MS COCO dataset.
Gong et al. (2021) introduced a "fusion factor" to control
information flow between deep and shallow network layers,
enhancing small target learning efficiency. Regarding contextual
information, Leng et al. (2021) proposed an internal-external
network-based detector (ENe) that leverages target appearance

and context, enhancing feature extraction, localization, and
classification. Guan et al. (2018) proposed the Semantic Context
Aware Network (SCAN), utilizing pyramid pooling to fuse
multi-level context, thereby improving small target detection.
In the realm of loss functions, Wang J. et al. (2021) used the
Wasserstein distance to measure bounding box similarity,
replacing standard IoU, and demonstrated that using NWD in
R-CNN increases network convergence time. Xu et al. (2022)
proposed a Gaussian Receptive Field based Label Assignment
(RFLA) strategy, enhancing tiny target detection and achieving
a 24.8% average precision on the AI-TOD dataset. Akyon et al.
(2022) presented SAHI (Slicing Aided Hyper Inference), an open-
source framework for small target detection in high-resolution
images. Zhang et al. (2020) introduced the MultiResolution
Attention Extractor (MRAE) to learn attention weights across
different layers, fusing features with weighted sums, and improving
small target detection precision without the need for GAN or data
preprocessing.

YOLO is currently the most popular real-time object detector,
encompassing versions such as YOLOv5 (Zhu et al., 2021),
YOLOv7 (Wang C. Y. et al., 2022), and YOLOv8. For example,
YOLOv5 focuses on optimizing speed and efficiency, YOLOv7
introduces new features for better handling of small objects,
and YOLOv8 further refines the architecture for improved
accuracy and robustness. Compared to the previous version
YOLOv4 (Bochkovskiy et al., 2020), both YOLOv5 and YOLOv7
have made improvements in speed and accuracy. However,
YOLOv5 exhibits some drawbacks, such as deficiencies in
small target detection and the need for improvements in dense
target detection. YOLOv7 is also limited by training data,
model structure, and hyperparameters, leading to performance
degradation in certain situations. YOLOv8, an anchor-less
object detection algorithm, incorporates new network structures
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like PAN-FPN and Decoupled-Head, but it still struggles with
small object recognition in complex scenes. For instance,
during feature extraction by the neural network, small targets
can be misled by large ones, and the features extracted from
deep layers may lack sufficient small target information. This
deficiency causes the algorithm to ignore small targets during
the learning process, leading to poor detection performance.
Compared to normal-sized objects, small-sized ones are
more likely to be overlapped by other objects and partially
obscured by objects of other sizes, making them difficult to
distinguish and locate in an image. Existing methods have
approached this problem through techniques such as multi-scale
training, specialized loss functions, feature fusion, and attention
mechanisms.

To address these issues, we propose a new detection algorithm,
YOLOv8-MNC, based on the YOLOv8 algorithm. It significantly
enhances the detection performance for small-sized objects while
maintaining the detection effectiveness for normal-sized ones.

3. Materials and methods

3.1. Overview of the YOLOv8-MNC

YOLOv8 is the latest iteration of the YOLO series of detection
models, renowned for their joint detection and segmentation
capabilities. We have enhanced it and introduced it into the
field of smoking detection. The architecture of our YOLOv8-
MNC detector is shown in Figure 2. It consists of three parts:
the backbone, the head, and the neck. YOLOv8-MNC is based
on the CSP concept and improves YOLOv5 by replacing the C3
module with the C2f module. Compared with the C3 module,
the C2f module can better capture feature information and
improve detection accuracy. At the same time, the CSP concept
can effectively reduce the amount of calculation and improve
the running speed of the model. The C2f module borrows the
ELAN idea from YOLOv7, combining C3 and ELAN to form the
C2f module, allowing it to maintain a lightweight design while
obtaining richer gradient flow information. In the penultimate layer
of the backbone, we still use the most popular SPPF module, passing
three 5 × 5 Maxpools of different sizes in succession, and then
concatenating each layer. This not only ensures the accuracy of
objects at different scales but also ensures the lightweight nature of
the objects. We added this module to the SPPF module to help the
convolutional network learn the global characteristics of the target
object. The MHSA attention mechanism can adaptively adjust the
weights between different features, so as to better capture the global
information of the target object and improve the performance of
the model. In the neck part, the feature fusion method we use is
PAN-FPN, which enhances the fusion and utilization of feature
layer information at different scales. We used three lightweight
upsampling operators called CARAFE and multiple C2f modules,
along with a decoupled head structure, to form the neck module.
The idea of decoupling the head in YOLOX is used in the last part of
the neck. It combines confidence and regression boxes to improve
training accuracy. The upsampling operator CARAFE replaces the
original nearest neighbor interpolation, reducing the loss of feature
information during the upsampling process.

3.2. Improvement measures

3.2.1. MHSA module network structure
With the wide application of Transformer in the field of

Computer Vision (CV), models such as ViT (Wang Y. et al.,
2021) for image classification tasks, DETR (Carion et al., 2020)
and Deformable DETR (Zhu et al., 2020) for object detection
tasks are all designed based on the Transformer concept. In
the attention mechanism, Srinivas et al. (2021) proposed the
Bottleneck Transformer module, which designed the Multi-Head
Self-Attention Layer (MHSA) based on the Non-local idea. This
structure reduces the number of parameters while optimizing the
backbone feature extraction network. The structure of the multi-
head self-attention layer is shown in Figure 3. For the current input,
feature ZH × W × dthree different weight matrices WK, WQ, WV
are first initialized. These initialized matrices representing query,
key, and value are used to compute the representation of the input
features, respectively. These representations are used in the self-
attention mechanism to compute attention weights, and the input
features are weighted and averaged to generate attention-enhanced
feature representations. After calculations, q, w, and v, three
vectors of dim, are obtained. Unlike the multi-head self-attention
mechanism, MHSA uses a similar spatial attention mechanism to
handle position encoding. Rh and Rw are two learnable vectors,
which can be used as attention vector representations in the
horizontal and vertical spatial directions. The sum of these two
vectors gives a two-dimensional spatial encoding r. After the vector
dot product calculation between r and q, spatial similarity is
obtained. The content similarity is obtained after the vector dot
product calculation between q and k. After adding the two, it is
converted into attention weights through Softmax, and then the dot
product calculation with v yields the attention-enhanced feature
representation.

Spatial similarity is derived from the dot product between the
relative position encoding vector r and the query vector q, capturing
the geometric structure within the data. Content similarity, on
the other hand, is obtained from the dot product between the
query vector q and the key vector k, focusing on semantic
relationships. Together, these similarities provide a comprehensive
understanding of both the geometric and semantic aspects of
the input, enhancing the model’s ability to recognize complex
patterns in tasks such as object detection and image classification.
The multi-head self-attention layer directly replaces the 3 × 3
convolution in the last residual block of ResNet, and the output
feature can be used in various downstream tasks. It is a good
way to enhance the model’s ability to model input features and
the ability to perceive the relationship between different positions.
The introduction of relative position encoding in the MHSA layer
not only considers content information, but also considers the
relative distance between features at different positions, which
can effectively correlate the information and position perception
between objects.

3.2.2. NWD
In YOLOv8, the Anchor-Free method is used for object

detection. The core idea is to divide the input image into S× S grid
units, each referred to as a "Cell." Within each Cell, B bounding
boxes (abbreviated as BOBox) are predicted. Each bounding box
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FIGURE 2

YOLOV8-MNC structure.

FIGURE 3

MHSA module network structure.
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contains a center point coordinate (CP) and a width and height.
These bounding boxes can cover the entire input image, thereby
detecting all possible targets. Compared to traditional detection
methods, the Anchor-Free method does not require predefined
anchor boxes but predicts the target’s position and category directly
on the feature map.

In the entire Anchor mechanism, Intersection over Union
(IoU) is an essential metric for determining positive and negative
labels based on thresholds or for excluding bounding boxes with
high redundancy. In the training process, a large number of anchor
boxes are generated. To obtain the anchor box’s target category and
the real box’s offset to the anchor box, the calculation of IoU is
utilized to acquire the anchor box’s label. Similarly, in the prediction
phase, a single target will generate multiple similar prediction
boxes, thereby significantly increasing the computational load
significantly. Hence, IoU is used as a threshold, adopting non-
maximum suppression to get the optimal prediction box.

Small targets in an image often contain only a few pixels, lacking
substantial appearance information and details. The Intersection
over Union (IoU) and its extensions are highly sensitive to the
positional deviation of small targets; even minor shifts can cause
a significant drop in IoU, leading to errors in label allocation.
When applied to algorithms based on the Anchor mechanism, this
sensitivity can adversely affect detection performance. As illustrated
in Figure 4, minor positional deviations can lead to considerable
changes in IoU. Given the critical role of IoU in label allocation,
even a slight numerical difference might cause what should be
allocated to positive samples to be assigned to negative ones.
Moreover, if the scale of some targets is too small, the overlap
between the anchor box and the real box may never meet the
threshold, resulting in an average number of positive samples
allocated by the actual box of less than one.

IoU only works when bounding boxes overlap. Hence, GIoU
(Lin et al., 2017b) was proposed to solve this problem by adding a
penalty term. But when two bounding boxes contain each other,
GIoU degrades to IoU. Subsequently, DIoU (Zheng et al., 2019)
and CIoU (Zheng et al., 2020) were proposed to overcome these
issues. However, GIoU, DIoU, and CIoU are all extensions of IoU,
commonly used in loss functions. They still exhibit sensitivity to
positional deviations of small target objects in label allocation.
To overcome these shortcomings, this paper adds NWD (Wang
J. et al., 2021) to the CIoU loss function, with both components
accounting for half of the total loss function. The primary step of
NWD is to model the bounding box as a two-dimensional Gaussian
distribution, then use NWD to measure the similarity of the derived
Gaussian distributions. NWD can measure distribution similarity
even in non-overlapping cases, and it is insensitive to the scale of
the target. It is particularly suitable for measuring the similarity of
small target objects.

For small target objects, since most real objects are unlikely
to be standard rectangles, the bounding boxes often carry some
background information. The information of the target object and
the background information are concentrated at the center point
and the boundary of the bounding box, respectively. Therefore,
when creating a two-dimensional Gaussian distribution for the
bounding box, the center pixel of the bounding box can be set as
the highest weight, which then gradually decreases from the center
point to the boundary. For a horizontal bounding box R, µ and

∑
represent the mean vector and covariance matrix of the Gaussian

distribution, which can be fitted into a two-dimensional Gaussian
distribution N(µ,

∑
), where:

R = (cx, cy, w, h) , µ =

[
cx

cy

]
,
∑
=

(
W2

4 0
0 h2

4

)
(1)

In this way, the similarity between bounding boxes is
transformed into the distance between Gaussian distributions,
where (cx, , cy) are the center coordinates of the bounding box, and
w and h are the width and height. The Wasserstein distance is used
to calculate the distribution distance. The second order Wasserstein
distance between different bounding boxes µ1and µ2 is as follows:

W2
2 (µ1 , µ2) = ||m1 −m2||

2
2 (2)

+ Tr(
∑

1

+

∑
2

−2(

1/2∑
2

∑
1

1/2∑
2

)1/2)

where
µ1 = N(m1,

∑
1

), µ2 = N(m2,
∑

2

) (3)

Using Gaussian distributions N1 and N2, where N1 represents
bounding box N2 represents bounding box B, the formula can
finally be simplified as:

W2
2 (N1, N2) (4)

= ||(

[
c1x, c1y,

w1

2
,

h1

2

]T
,

[
c2x, c2y,

w2

2
,

h2

2

]T
) ||22

Where

A = (c1x, c1y, w1, h1) , B = (c2x, c2y, w2, h2) (5)

As W2
2 (N1, N2) functions as a unit of distance rather than a

similarity measure, and IoU operates as a ratio bounded between
0 and 1, the necessity to normalize this distance arises. This leads to
the computation of the Normalized Wasserstein Distance (NWD),
which yields a standardized measure suitable for comparison.
The final normalized result is NWD (Normalized Wasserstein
Distance):

WL (N1, N2) = exp(−

√
W2

2 (µ1, µ2)

C
) (6)

where C is a constant set empirically, set as 12.8 in this paper.

3.2.3. Lightweight upsampling operator CARAFE
(content-aware ReAssembly of features)

The original YOLOv8 feature fusion network employs nearest
neighbor interpolation, using the grayscale value of the closest
pixel among neighboring pixels around the sampling point.
This approach neglects the influence of other neighboring pixel
points, and the grayscale value becomes discontinuous after
resampling, leading to a loss of image quality. In contrast,
the improved method, within the PAFP structure introduces
the lightweight upsampling operator CARAFE (Content-Aware
ReAssembly of Features) (Loy et al., 2019) to replace nearest
neighbor interpolation. The CARAFE structure is mainly divided
into two parts: the upsampling kernel prediction module and
the feature recombination module. First, the upsampling kernel
prediction module utilizes the input feature map to predict the
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FIGURE 4

(A) Objects on a tiny scale. (B) Normal proportion of objects.

FIGURE 5

Structure of the light weight upsampling operator CARAFE.

sampling kernel. Then, it uses the predicted upsampling kernel
to recombine the features and complete upsampling process.
These recombined features can rectify the feature deviation
that occurs during the fusion process. Characterized by low
redundancy, lightweight design, rapid computation, strong feature
fusion ability, and fast running speed, the CARAFE operator
is a significant enhancement. By replacing the feature fusion
network with the CARAFE operator, it can aggregate contextual
information within a larger receptive field. This method abandons
the nearest neighbor interpolation approach for samples, opting
instead for a single kernel sampling method, and generates an
adaptive content-aware sampling technique. The feature fusion
network with the introduced CARAFE operator is depicted in
Figure 5.

The CARAFE computation process can be divided into the
following four parts:

(1) Channel Compression: The input H × W × C dimensional
features are compressed to H × W × Cm dimensions to
reduce the amount of computation in subsequent operations.
Where Cm is the number of compressed channels, in this
paper Cm is set to 64.

(2) Content Encoding and Upsampling Kernel Prediction: For
the compressed feature map, an upsampling kernel of size
σH × σW × K2

up is predicted using a convolutional layer
with a convolution kernel of Kencoder × Kencoder . Where Kup
is the size of the predicted upsampling kernel, in this paper
Kup is 5, Kencoder is 3.

(3) Upsampling Kernel Normalization: The predicted
upsampling kernel is normalized by Softmax to make
the sum of the convolution kernel weights 1.

(4) Content-Aware Feature Recombination: The predicted
upsampling kernel is convolved with the input features to
obtain the recombined features.
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FIGURE 6

Image of the dataset.

4. Experimental results

4.1. Dataset and experimental setup

For the specific task of smoking detection, this study relies on
a self-constructed dataset, as public datasets are lacking in this
domain. The dataset was assembled from smoking-related images
sourced from the Internet through keyword searches and manual
screening, as well as key frames extracted from recorded smoking
video clips. The combined collection was then meticulously cleaned
and screened to remove noise and outliers, with the aid of advanced
image and video processing technologies, including deep learning-
based image processing. The final dataset comprises a total of
11,629 images, all annotated using Labelimg in the PASCAL VOC
format. Prior to training, the annotations were converted into the
txt format required by YOLOv8, and the dataset was partitioned
into training and validation sets at a 7:3 ratio. The detection task
focuses solely on categorizing smoking behavior, labeled as "smoke"
within the dataset. The dataset, as depicted in Figure 6, represents
a comprehensive and carefully curated resource for the study’s
experimental needs.

This study was conducted using the PyTorch deep learning
framework, with code execution and model training carried out
on the Inspur Artificial Intelligence platform server, equipped with
an ASPEED Graphics Family (rev 41) graphics card. The system
operates on Red Hat 4.8.5–44, utilizing Python 3.8, CUDA 11.3,
and PyTorch 1.12.1 tools. Specifically, the model was trained over
500 epochs to ensure comprehensive learning, with a learning rate
of 0.01 to balance convergence speed and accuracy. The Stochastic
Gradient Descent (SGD) optimizer was employed to efficiently

update the model parameters, making it suitable for handling the
large-scale dataset.

4.2. Model evaluation

This paper uses precision, recall, Average Precision (AP), and
Mean Average Precision (mAP) as model accuracy evaluation
indicators. AP represents the area under the Precision-Recall (PR)
curve, and mAP represents the average of the AP for each class.
TP represents the number of correctly predicted positive samples,
which reflects the performance of the model in accurately detecting
positive samples. FN represents the number of positive samples
that were incorrectly predicted as negative samples, revealing
positive samples that the model may have missed. FP represents
the number of negative samples that are incorrectly predicted as
positive samples, indicating that the model may incorrectly label
negative samples as positive samples. The specific formulas are as
follows:

P =
TP

TP + FP
(7)

R =
TP

TP + FN
(8)

AP =
∑

P
Num(objects)

(9)

mAP =
∑

AP
Num(class)

(10)
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TABLE 1 Comparison of different loss functions.

Loss function Map0.5/%

EioU 80.965

Focal-EIoU 81.484

CioU 81.805

SioU 81.86

CiOU+ NWD 82.777

4.3. Experimental results

4.3.1. Experimental comparison of different loss
functions

To validate the effects of different loss functions, we used the
YOLOv8 model as a baseline and selected CIoU (Zheng et al.,
2020), SIoU (Gevorgyan, 2022), EIoU, Wise-IoU (Tong et al.,
2023), Focal-EIoU (Zhang et al., 2021), and NWD (Wang J. et al.,
2021) for experimental comparison. As shown in Table 1, the
mAP@0.5 values for EIoU, Focal_EIoU, CIoU, Wise-IoU, SIoU, and
CioU+NWD are 80.965, 81.484, 81.805, 81.883, 81.86, and 82.777,
respectively. mAP@0.5 is an important indicator for evaluating the
performance of the target detection model, and a higher mAP@0.5
value represents the accurate detection ability of the model for
the target object. We can observe that the CioU+NWD loss
function performs significantly better than other loss functions in
the experiment, obtaining the highest mAP@0.5 value of 82.777. It
is particularly worth noting that compared with the original CIoU,
the mAP@0.5 value of CioU+NWD is increased by 1.293%. This
demonstrates that the introduction of NWD effectively reduces
the sensitivity to small object position deviations, and solves the
localization problem of small objects while improving training
accuracy. Therefore, this further validates the effectiveness of
incorporating NWD into the CiOU loss function.

4.3.2. Experimental comparison of different
attention mechanisms

We have made improvements to the activation function in
YOLOv8 by using CELU and added a small object detection
layer and attention mechanism based on NWD for comparison.
We selected 11 different attention mechanisms for comparison,

including TripletAttention (Misra et al., 2020), CoTAttention
(Li et al., 2021), ShuffleAttention (Yang, 2021), Polarized Self-
Attention (Liu H. et al., 2021), GAM_Attention (Liu Y. et al.,
2021), CAM_concat (Xiao et al., 2021), SKAttention (Li et al.,
2019), GlobalContext (Cao et al., 2019), EffectiveSE (Lee and Park,
2019), ParNetAttention (Goyal et al., 2021), SimAM (Yang et al.,
2021), SEAttention (Hu et al., 2018), and MHSA (Srinivas et al.,
2021). As seen in Table 2, the Multi-head Self-attention Mechanism
(MHSA) is introduced, which can consider multiple attention
subspaces simultaneously, modeling the association relationship
between different features more comprehensively and globally. This
allows for better capture of the association and context information
between features. In addition to having a similar mAP@0.5/% to
the SimAM attention mechanism and ParNet Attention attention
mechanism, MHSA, compared with other attention mechanisms,
can focus on target features more accurately and improve the
accuracy of target detection.

To verify the effectiveness of the proposed method in this
paper, we conducted comparative experiments on the smoking
dataset with several mainstream object detection methods, further
validating the feasibility and superiority of the improved model.
The detection results are shown in Table 3. The mainstream
object detection algorithms include YOLOv3-tiny (Gong et al.,
2019), YOLOv4-tiny (Jiang et al., 2020), YOLOv5 (Jocher et al.,
2022), YOLOv6 (Li et al., 2022), YOLOv7 (Wang C. Y. et al.,
2022), YOLOX-tiny (Ge et al., 2021), SSD (Leibe et al., 2016),
RetinaNet (Lin et al., 2017b) and YOLOv8, compared with our
model. It can be seen that our YOLOv8-MNC training result
mAP@0.5/% is higher than that of YOLOv3-tiny, YOLOv4-tiny,
YOLOv5, YOLOv6, YOLOv7, YOLOX-tiny, SSD, and RetinaNet
by 8.674, 15.007, 3.935, 5.987, 15.867, 6.317, 22.067, and 19.317,
respectively. In this experiment, the improved YOLOv8 model,
YOLOv8-MNC, achieved 85.887, which is 5.797 higher than
the original YOLOv8 model. This result proves that YOLOv8-
MNC is superior to other models, validating the efficiency of
this model. At the same time, it also illustrates the effectiveness
of our combination of NWD Loss, the multi-head self-attention
mechanism (MHSA), and the use of a lightweight general-purpose
upsampling operator CARAFE to replace the original nearest
neighbor interpolation upsampling module. In addition, the fine-
tuning of model parameters can yield more accurate and stable
forecast results.

TABLE 2 Comparison of different attention mechanisms.

Baseline model Attention Parameter FLOPs/G mAP@0.5%

YOLOv8n+ NDW+ Small target detection layer TripletAttention (Misra et al., 2020) 2983504 12.7 83.02

CoTAttention (Li et al., 2021) 3560228 13.1 83.30

ShuffleAttention (Yang, 2021) 2983300 12.6 83.52

Polarized self-attention (Liu Y. et al., 2021) 3115685 12.8 83.762

GAM_Attention (Liu Y. et al., 2021) 4622884 14.0 83.769

GlobalContext (Cao et al., 2019) 3427649 17.7 83.823

EffectiveSEModule (Lee and Park, 2019) 3048996 12.7 83.946

ParNetAttention (Goyal et al., 2021) 3705892 13.2 84.104

SimAM (Yang et al., 2021) 2983204 12.6 84.248

SEAttention (Hu et al., 2018) 2991396 12.7 83.73

MHSA (Srinivas et al., 2021) 3180580 12.7 84.303
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TABLE 3 Comparison with mainstream algorithms.

Detector Backbone mAP@0.5/%

YOLOv3-tiny (Gong et al., 2019) DarkNet-53 77.213

YOLOv4-tiny (Bochkovskiy et al.,
2020)

CSPDarknet53 70.88

Yolov5 (Jocher et al., 2022) CSPDarknet53 81.952

Yolov6 (Li et al., 2022) EfficientNet 79.90

YOLOv7 (Wang Z. et al., 2022) CBS+E-ELAN+MP 70.02

YOLOX-tiny (Ge et al., 2021) CSPDarknet-S 79.57

SSD (Leibe et al., 2016) VGG16 63.82

RetinaNet (Lin et al., 2017b) resnet50 66.57

YOLOv8 CSPDarknet53 80.09

YOLOv8-MNC CSPDarknet53 85.887

4.3.3. Ablation experiments
We proposed four improvements on the base of the YOLOv8

model: (1) introducing NDW, (2) adding MHSA attention
mechanism, (3) improving the step size of the first convolution
in the backbone part of the yaml file in YOLOv8, from 2 to 1,
and (4) using the lightweight upsampling operator CARAFE. The
improved model is evaluated using three indicators: parameters,
GFLOPs, and Map0.5/%.

In Table 4, using the YOLOv8 model as a baseline, we
introduced four key improvements to enhance its performance.
The CELU activation function was adopted for its strong non-
linear expression ability. A small target detection layer was
added, increasing the mAP@0.5/% by 2.696. The introduction
of Normalized Wasserstein Distance (NWD) further improved
the mAP@0.5/% by 0.898, enhancing small target detection. The
Multi-Head Attention Mechanism (MHSA) and the lightweight
universal upsampling operator CARAFE contributed additional
improvements. Adjusting the stride of the first convolution
parameter from 2 to 1 also increased the mAP@0.5/%. The model
improvement graph is shown in Figure 7. Figure 8 is the confusion
matrix diagram of YOLOv8 and YOLOv8-MNC. Collectively, these
enhancements led to a significant increase in mAP@0.5/%, with a
notable rise in the True Positive box from 0.79 to 0.83, validating
the effectiveness of the improvements and illustrating the model’s
increased precision and robustness.

In summary, the YOLOv8-MNC algorithm outperforms other
algorithms due to the following key enhancements:

(1) NWD Loss Integration: The NWD loss function reduces
sensitivity to small object position deviations, enhancing
training accuracy. This is achieved by normalizing IoU
weights according to the target object’s size and introducing
position-sensitive weights. These adjustments allow the model
to predict the location and size of bounding boxes more
accurately, paying more attention to details and reducing the
impact of edge object position deviation.

(2) Inclusion of MHSA Attention Mechanism: The addition of
the MHSA attention mechanism enables the model to better
capture relationships between different locations, scales, and
semantics. By computing similarities between query and key
vectors, the model can focus on important regions in the
image, enhancing its perception of local details and global
contextual information.

(3) Stride Improvement in the Backbone Part: By changing
the stride from 2 to 1 in the YOLOv8 yaml file, the
model captures more detailed features and provides more
location information. This adjustment allows the convolution
layer to move only one pixel at a time, capturing more
nuanced information.

(4) Adoption of CARAFE for Upsampling: Replacing traditional
upsampling methods with CARAFE improves the spatial
perception of low-resolution input images. CARAFE’s self-
attention mechanism calculates from which surrounding local
areas to gather information for reorganization, allowing for a
more refined feature reorganization process. This ensures that
the output quality matches the input, overcoming problems
such as blurring and distortion in low-resolution images.

These improvements collectively contribute to the superior
performance of YOLOv8-MNC, making it more sensitive and
accurate in locating small targets, and enhancing its ability to
process low-resolution information.

4.3.4. Algorithm analysis
To further intuitively demonstrate and evaluate the test effects

and compare the feature extraction capabilities of YOLOv8 and the
improved YOLOv8-MNC in small target detection, we need to pay
attention to what key information the main network has extracted
from the pictures. In this paper, we use the more generalized Grad-
CAM method to study the areas of interest of the grid output
values. Grad-CAM (Gradient-weighted Class Activation Mapping),
an improved version of CAM (Class Activation Mapping), uses
specified class gradients to help analyze the network’s areas of
interest for a particular class. By examining the network’s areas

TABLE 4 Ablation experiments.

YOLOv8 Tiny object
layer

NDW MHSA Backbone
variant

CARAFE Parameters GFLOPs Map0.5/%

√
3011043 8.2 80.078

√ √
2983204 12.6G 82.774

√ √ √
2983204 12.6 83.672

√ √ √ √
3180580 12.8 84.303

√ √ √ √ √
3180580 51.2 85.346

√ √ √ √ √ √
3383036 55.5 85.887
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FIGURE 7

Ablation experiment line graph.

FIGURE 8

Confusion matrix diagram.
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FIGURE 9

Graph of YOLOv8 and YOLOv8-MNC model test results.

of interest, we can analyze whether the network has learned the
correct features or information, making this method significantly
meaningful for the visualization of image classification.

Figure 9 shows the Grad-CAM images after two different
networks processed the test set images. The brighter areas in
the figure represent the areas the network pays more attention
to. Observing the test results, it can be seen that the improved
YOLOv8-MNC model covers more smoking target parts in the heat
map area and is brighter and more concentrated than YOLOv8.
Therefore, with the help of NWD Loss, the MHSA attention
mechanism, and the lightweight upsampling operator CARAFE,
the model can pay more accurate attention to the targets, reflecting
the model’s efficiency and accuracy.

The performance of the smoking detection model can be
challenged in real-world applications due to factors like poor
visual conditions, pose and scale variations, occlusions, and real-
time requirements. However, these challenges can be mitigated
through strategies such as data augmentation to simulate diverse
visual conditions, multi-scale training to handle scale variations,
the integration of contextual or location information to manage
occlusions, and model optimization to meet real-time demands.
Implementing these strategies can enhance the model’s robustness
and adaptability, improving its performance in various real-
world scenarios.

5. Conclusion

This paper presents a novel smoking behavior detection model,
focusing on real-time performance and accuracy, particularly in
detecting small targets like cigarettes. Built upon the YOLOv8

architecture, the model introduces several enhancements. The
NWD Loss is implemented to reduce sensitivity to small object
position deviations, improving training accuracy. The Multi-
head Self-Attention Mechanism (MHSA) is added to bolster
the convolutional network’s global feature learning, and the
lightweight CARAFE operator replaces the original nearest-
neighbor interpolation, minimizing feature information loss during
upsampling. These innovations collectively enhance both speed and
accuracy. While the model demonstrates promising results on a
self-made smoking dataset, its performance in real-world scenarios
may be constrained by the limited diversity of the dataset. Future
work should focus on collecting more varied and complex smoking
datasets, reflecting a broader range of environmental factors, to
further refine the model’s generalization ability in complex and
dynamic environments.
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