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The increasing interest in identifying disease biomarkers to understand psychiatric
and neurological conditions has led to large patient registries and cohorts. Traditionally,
clinically defined labels (e.g., disease vs. control group) were associated statistically with
potential biomarkers to draw useful information about brain function related to a disease
(supervised analysis) (Deo, 2015). However, the observed biomarker variability and the
presence of clinical disease subtypes have sparked interest in quantitatively exploring
heterogeneity (Feczko et al., 2019; Ferreira et al., 2020). The unsupervised1 exploration of
a disease population (without any clinical labels) through a selected sample is a demanding
task that differs from supervised analysis by definition (Habes et al., 2020). However, in
research the differences between the two are often overlooked. Therefore, we want to
highlight the applications and challenges of clustering, where supervised analysis principles
are sometimes misapplied. We also demonstrate how such practices can negatively impact
clustering results.

Some common challenges in clustering methods include selecting relevant features to
describe data heterogeneity, preprocessing to remove biases, choosing appropriate similarity
measures to summarize critical information, selecting a suitable method for meaningful
clustering, tuning clustering model parameters (such as cluster size) without ground truth,
and validating clustering results (Halkidi et al., 2001; Hennig et al., 2015).

The most common clustering applications in medicine (Halkidi et al., 2001):

• Data reduction (Hennig et al., 2015). When dealing with large datasets, like genomics,
proteomics, or medical imaging data, clustering can condense the information into
representative vectors or filter out uninformative features.

• Generate new hypotheses. Discovering specific disease subtypes can lead to the
development of new hypotheses, altering existing theories.

• Hypothesis testing (Thrun and Ultsch, 2021). Clustering can be used for hypothesis
testing. For example, it can assess whether clinical observations align with biological
data in diseases with known subtypes without forcing the association between biological
data and clinical labels (supervised approach).

• Prediction in new patients (Wu et al., 2019). Clustering can identify disease subtypes
and scientific theories that investigators can use to create supervised classification
models for grouping new patients. This new classification is valuable for personalized
medicine and future patient treatment, among other applications.

1 For the needs of this text, unsupervised analysis refers to clustering only, association analysis is not

covered.
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When working with unsupervised methods, it’s crucial to
understand their limitations and nuances. Clustering encompasses
a wide range of techniques which handle population structures
and characteristics differently. Understanding the idiosyncrasies
of a dataset is essential for applying clustering successfully.
Questions about how clustering results generalize to the disease
population, which are the optimal model parameters, and why
results change with slight dataset modifications often emerge
during study design, model optimization, interpretation, and peer
review. One intriguing approach that combines automatic machine
learning with expert knowledge from the field is the ’human-in-
the-loop’ method (Holzinger, 2016). This approach is particularly
effective in neurological applications and can help address the
abovementioned questions.

Regarding cluster size and type, we may know in advance
whether there is excess variation in a disease population, some
heterogeneous disease features, and even subtype proportions. This
knowledge is vital in the model selection process so that we can sort
out methods that are wrong methodological fits for the population
of interest. For example, k-means, one of the most popular
clustering methods, tends to produce convex-shaped clusters (it
tends to equalize the spatial variance) that are spherical and often
become similar in size (Celebi et al., 2013). Therefore, if in a specific
disease population, we are aware of rare disease subtypes that may
also exist in our sample, we may want to avoid k-means. Instead,
we should focus on clustering methods to identify outliers/outlier
clusters (Campello et al., 2015). Further, the more variables we use
in a clustering method, the more the dimensionality of the dataset
increases. A good practice is to use methods that either pretreat
data to reduce the dimensionality and then apply regular clustering
to them or select a method that can cope with high dimensional
datasets (Babu et al., 2011; Thrun, 2021). While the gold standard
in machine learning, some studies fail to utilize suitable models for
high-dimensional data (Noh et al., 2014; Hwang et al., 2016; Jeon
et al., 2019; Levin et al., 2021), limiting our ability to assess the
success of clustering.

Further, all clustering methods cannot cope with all types
of data (ordinal/nominal categorical, numerical) (Halkidi et al.,
2001).When we binarize continuous variables to utilize a clustering
algorithm for binary data only, the reduction of information due to
data transformation must be at least considered when interpreting
the results (Zhang et al., 2016). Some algorithms use mixed data
types and should be preferred when mixed data distributions
are present (Szepannek, 2019). If not accounted for, data biases
may render a clustering result misleading. For example, we may
be interested in understanding the heterogeneity of a particular
biological process during aging. Understanding and adjusting the
data to consider the participants’ age variability results in clusters
of participants that are not driven by age differences but by
differences in the biological process under investigation if those
exist (given that other biases are not present). However, due to
complex data/aging relationships, these effects may persist even
after statistical accounting for aging. Other sampling features that
can drive clustering results are sex, disease stage, comorbidities,
medication exposure, and geographical position. For example, it
is known that the disease stage may contribute to the observed
heterogeneity in Alzheimer’s disease (AD) (Ferreira et al., 2020), we

have only recently started accounting for this or trying to assess its
contribution (Young et al., 2017; Vogel et al., 2021; Yang et al., 2021;
Poulakis et al., 2022) while in previous studies (Noh et al., 2014;
Dong et al., 2016; Hwang et al., 2016; Zhang et al., 2016; Park et al.,
2017; Poulakis et al., 2018; ten Kate et al., 2018) we did not assess or
account for this effect.

Clustering results must generalize well to the population, which
makes validation a central topic. Traditionally, cross-validation
(CV), bootstrapping, external data testing (training, validating, and
testing), and careful sample selection have been some of the most
popular approaches in supervised analysis. However, validation
in clustering is not straightforward since no ground truth exists.
The adaptation of training and testing a clustering model using
independent datasets can sometimes mislead us. For example, three
subtypes are present in a hypothetical disease population N (s1, s2,
and s3). One is the most prevalent (s1) (typical presentation), the
second subtype (s2) has half of the prevalence of the first one (ns2
=

1
2ns1), and the third subtype has a low prevalence (one-tenth of

the first subtype, ns3 = 1
10ns1) (s3). The disease population N equals

n1 + n2 + n3. A perfectly representative random sample of 100
patients from the disease population will include approximately 63
patients from s1, 31 from s2, and six from s3. A clustering model
can then be trained on 70% (70 patients) and tested using 30% (30
patients). Suppose the data in the training set perfectly represent the
population, a rare phenomenon, and clustering accurately identifies
the subtypes. In that case, 44 patients will end up in Cluster 1,
22 in Cluster 2, and 4 in Cluster 3. The test set should have 19
patients in s1, 9 in s2, and 2 in s3. Clustering can then be applied
to identify subtypes s1, s2, and s3. Since the actual data labels are
unknown, which is what clustering should discover, the test set
results will be compared to the training set. The problem arises with
rare subtypes, such as the hypothetical s3 subtype (six patients in
the sample, four in the training set, and two in the test set). Patients
of such subtypes may end up in larger clusters when the overall
dataset is split into small segments for the needs of the analysis.
Unfortunately, the most interesting heterogeneous characteristics
will enrich another cluster’s greater information pool, especially in
high-dimensional datasets. In the best-case scenario, those patients
will be single outliers (if the algorithm can recognize outlier
clusters) (Campello et al., 2015). Understanding their features is
pivotal for the assessment of heterogeneity in the disease.

To the best of our knowledge, cross-validation has been
successfully combined with clustering in two studies to assess
the consistency of observations within the same cluster and to
determine the optimal model solution (Varol et al., 2017; Yang
et al., 2021). On the other hand, leave 10% of patients out-CV (a
semi-supervised application where a control group is contrasted
to a disease group) to decide the optimal clustering (Dong et al.,
2016, 2017), may reveal the dominant patterns in the dataset. An
interesting question is whether clusters of low/very low prevalence
can survive this process. In AD, genetic mutations account for
<1% of all AD (2020) cases, while early-onset AD accounts
for 4%−6% (Mendez, 2017). Another evaluation approach is
to compare clustering agreement after application of the same
algorithm in different cohorts. We do not suggest that these results
are wrong, but they may be misleading if different clustering
findings in different cohorts are interpreted as a methodological
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failure, while convergence of findings between cohorts is the aim
(ten Kate et al., 2018; Vogel et al., 2021). Sometimes, it is a
requirement that clustering should be repeated cohort-wise to
prove model robustness (Poulakis et al., 2018, 2022). Instead of
reducing data variability in clustering by splitting the available
data into segments, we should acknowledge that cluster-cohort
agreement-based evaluation criteria can potentially interrupt the
discovery of rare data patterns. Another issue with the cohort-
wise analysis is the potential sample imbalance between cohorts
that may render one cohort solution less reliable than another.
Of note, cohort-wise analysis is reasonable when cohorts have
different feature sets or systematic differences (Marinescu et al.,
2019; Tijms et al., 2020). Prior knowledge (subtype prevalence or
number of subtypes) is essential when formulating a clustering
experimental design (Halkidi et al., 2001, 2002). Another example,
hypothetically, two separate clusters of patients may be formed
because a clustering validation criterion gives marginally better
scores instead of grouping the patients in one cluster. Field
experts and not only clustering internal evaluation criteria should
conclude whether differences between clusters are essential enough
to suggest heterogeneity (Halkidi et al., 2002; Dolnicar and
Leisch, 2010). It is also often observed that clustering algorithms
optimally select two-cluster solutions. This finding may not
provide any insight of the disease process when it only reveals
biomarker severity differences of no clinical interest (Poulakis
et al., 2021; Yang et al., 2021). Based on the above, we believe
that as large datasets as possible should be used when training a
clustering model. In contrast, datasets should not be divided for
validation purposes if the focus is on revealing heterogeneity in
a population.

Clustering is a valuable approach to understand heterogeneity
in brain disorders and healthy aging. The machine learning
community has invested a great deal of research in addressing the
methodological issues discussed above. As with every statistical
tool, these methods should be carefully applied, and understanding
their properties and limitations is essential.
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