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Short-term postsynaptic plasticity
facilitates predictive tracking in
continuous attractors

Huilin Zhao, Sungchil Yang* and Chi Chung Alan Fung*

Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong SAR, China

Introduction: The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in

synaptic transmission and is associated with various neurological and psychiatric

disorders. Recently, a novel form of postsynaptic plasticity known as NMDAR-

based short-term postsynaptic plasticity (STPP) has been identified. It has been

suggested that long-lasting glutamate binding to NMDAR allows for the retention

of input information in brain slices up to 500 ms, leading to response facilitation.

However, the impact of STPP on the dynamics of neuronal populations remains

unexplored.

Methods: In this study, we incorporated STPP into a continuous attractor

neural network (CANN) model to investigate its e�ects on neural information

encoding in populations of neurons. Unlike short-term facilitation, a form of

presynaptic plasticity, the temporally enhanced synaptic e�cacy resulting from

STPP destabilizes the network state of the CANN by increasing its mobility.

Results: Our findings demonstrate that the inclusion of STPP in the CANN model

enables the network state to predictively respond to a moving stimulus. This

nontrivial dynamical e�ect facilitates the tracking of the anticipated stimulus, as

the enhanced synaptic e�cacy induced by STPP enhances the system’s mobility.

Discussion: The discovered STPP-based mechanism for sensory prediction

provides valuable insights into the potential development of brain-inspired

computational algorithms for prediction. By elucidating the role of STPP in neural

population dynamics, this study expands our understanding of the functional

implications of NMDAR-related plasticity in information processing within the

brain.

Conclusion: The incorporation of STPP into a CANNmodel highlights its influence

on the mobility and predictive capabilities of neural networks. These findings

contribute to our knowledge of STPP-based mechanisms and their potential

applications in developing computational algorithms for sensory prediction.

KEYWORDS

computational models, synaptic plasticity, attractor models, predictive coding, NMDA

receptors

1. Introduction

The N-methyl-D-aspartate receptor (NMDAR) is a Ca2+-permeable, ligand-gated ion

channel found mainly in the postsynaptic membrane of neurons, facilitating synaptic

transmission (Hunt and Castillo, 2012; Paoletti et al., 2013; Yao et al., 2022). It consists

of two GluN1s and two GluN2s (GluN2A-D) and becomes active when two glutamates

simultaneously bind to two GluN2s (Monyer et al., 1992; Paoletti et al., 2013; Vyklicky

et al., 2014). When activated, it produces a regenerative Ca2+ spike, which contributes

to signal integration occurring in postsynaptic dendrites (Schiller et al., 2000; Branco and

Häusser, 2011; Yang et al., 2015; Noh et al., 2019). The heterogeneity in NMDAR subunits

generates the diversity of its properties and functions (Paoletti et al., 2013). NMDARs are

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1231924
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1231924&domain=pdf&date_stamp=2023-11-02
mailto:sungchil.yang@cityu.edu.hk
mailto:alan.fung@cityu.edu.hk
https://doi.org/10.3389/fncom.2023.1231924
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1231924/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fncom.2023.1231924

crucial for neurotransmission and neuronal communication in the

nervous system (Paoletti and Neyton, 2007; Hansen et al., 2018).

Their dysfunction resulting from hyperactivity, hypofunction,

abnormal subunit expression, altered receptor trafficking or

localization may contribute to a variety of neurological diseases

and psychiatric conditions (Zhou and Sheng, 2013), such as

Huntington’s disease (Burtscher et al., 2021), Alzheimer’s disease

(Liu et al., 2019), depression (Marsden, 2011; Adell, 2020),

schizophrenia (Lisman et al., 2008; Adell, 2020; Nakazawa and

Sapkota, 2020), and ischemic stroke (Chen et al., 2008). NMDARs

also play an essential role in synaptic plasticity, which refers

to the strengthening or weakening of electrical postsynaptic

responses over time in response to past synaptic activities (Citri

and Malenka, 2007). Furthermore, NDMARs profoundly influence

synaptic functions that underlie high-level cognitive functions

(Paoletti et al., 2013; Bertocchi et al., 2021). For example,

selective modulation of subunits of NMDARs impaired long-term

potentiation, a typical type of long-term synaptic plasticity, in

striatal synapses and thus caused a visuospatial learning deficit

(Durante et al., 2019). Another example is the repetitive-training

enhanced NMDAR-mediated synaptic transmission in the medial

prefrontal cortex that was involved in social memory retrieval

(Zhang et al., 2022).

Although it is widely accepted that NMDAR-mediated

Ca2+ signaling contributes to long-term synaptic plasticity in

postsynaptic neurons (Hunt and Castillo, 2012; Granger and

Nicoll, 2014; Volianskis et al., 2015), its effects on short-term

synaptic plasticity are gradually being uncovered and studied

(Santos et al., 2012; Yang et al., 2014, 2016). Typically, short-

term synaptic plasticity is attributed to the difference in the

time constants between neuronal signaling and recovery of

neurotransmitter availability (Zucker and Regehr, 2002; Mongillo

et al., 2008). Neurotransmitter release from presynaptic neurons

is primarily responsible for this neurobiological mechanism.

Although neuronal plasticity is observed by presynaptic factors for

neurotransmitter release, receptors directly modulating the efficacy

of postsynaptic currents are situated on the postsynaptic side,

which is the postsynaptic NMDARs. According to our previous

studies (Yang et al., 2014, 2016, 2018), NMDAR-dependent short-

term postsynaptic plasticity (STPP) is proposed to serve as a

neurobiological mechanism for signal amplification, particularly in

linearly connected circuits such as the hippocampus and cortices.

Such signal amplification can be timely achieved through STPP,

which enables the faithful transmission of extrinsic information-

bearing sensory inputs and the integration of extrinsic sensory

inputs (i.e., a priming input) with intrinsic activity (e.g., a brain

rhythm or gating input). Unlike the presynaptic mechanism

underlying a feedback circuit for signal amplification, this STPP

executes a feedforward process to carry out an efficient and

timely signal amplification and cascade. One of the observed

pieces of evidence showing STPP in a hippocampus dendrite

(Yang et al., 2016) is shown in Figure 1A. The postsynaptic

response was higher when a second (gating input) glutamate

uncaging followed the prior (priming input) uncaging (cyan

trace) than when a gating input alone (green trace) was

applied. This enhancing effect was eliminated by Ifenprodil,

a blocker of GluN2B (Yang et al., 2016). An underlying

mechanism (Figure 1B) for short-term signal amplification has

been proposed in our earlier publication (Yang et al., 2018). The

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

(AMPAR) is another kind of glutamate receptor on the postsynaptic

membrane (Diering and Huganir, 2018). NMDARs and AMPARs

are closed because the membrane is in the resting state. The

AMPARs are then activated by a priming input, i.e., the first

glutamate release from the presynaptic neurons, whereas the

NMDARs do not open because they are blocked by magnesium

ions. However, the input information can be stored via glutamate

binding, and the NMDARs enter the bound-but-blocked state for

up to 500 ms (or longer) (Yang et al., 2014, 2018). Subsequently,

the gating input, i.e., the second glutamate release, is strong

enough to further depolarize the postsynaptic membrane, and thus

magnesium is removed. Simultaneous membrane depolarization

and glutamate binding shift the NMDARs from the bound-but-

blocked state to the open state. That is, NMDARs are more likely

to open with the previously stored priming input plus gating input

than with the gating input alone. The NMDAR-mediated Ca2+

current, which is much stronger than the AMPAR current, is

thought to contribute to the response enhancement. Additionally,

when the priming input was so large to induce NMDAR-mediated

Ca2+ current, there was no significant enhancement of the second

response under the same level of gating input (Figure 1B in Yang

et al., 2016). Therefore, STPP depends on the state of postsynaptic

NMDARs and the evocation history of postsynaptic currents,

but not necessarily the firing history of a particular presynaptic

neuron. In this regard, STPP has been suggested to enable signal

amplification and integration in synaptic transmission, but the

role of STPP in the dynamics of neuronal populations remains

unknown.

We aim to investigate the possible effects of STPP in neuronal

populations on neural information processing. To this end, we

introduce the continuous attractor neural network (CANN) as

our model for neural information representation (Wu and Amari,

2005; Wu et al., 2016). The CANN is capable of extracting the

information encoded by a population of neurons, which allows

neural information processing to be analyzed and simulated

computationally (Deneve et al., 1999; Wu and Amari, 2005).

This model has been successfully used to depict the encoding of

continuous stimuli in neural systems, such as movement direction

(Georgopoulos et al., 1993), head direction (Ben-Yishai et al., 1995;

Zhang, 1996; Stringer S. et al., 2002), the spatial location of objects

(Samsonovich and McNaughton, 1997; Stringer S. M. et al., 2002)

and spatial integrated information including location, direction and

distance (Burak and Fiete, 2009). A CANN is shown in Figure 1C.

In the network, a bump-shaped tuning curve (blue curve)

represents the neural activities of the population of neurons in

response to the external stimuli (red curve) at a given time. Because

different neurons can be characterized by their preferred stimuli,

e.g., different head directions represent different head-direction

(HD) cells, the response curve is a function of the preferred

stimuli of the neurons in a population. Among neurons, there

are excitatory connections that are translationally invariant in the

space of stimulus values. These translation-invariant connections

enable a CANN to hold a continuous family of stationary states

(attractors). The stationary states of the neural system form a

continuous parameter space in which the system is neutrally stable.

This property allows the neutral system to track time-varying

stimuli smoothly (Wu et al., 2008; Fung et al., 2010). However, the

tracking always lags behind the stimulus due to the time needed
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FIGURE 1

(A) Evidence of higher postsynaptic response when priming plus gating (cyan trace) glutamate uncaging is applied than when gating alone (green

trace) is applied was observed in a hippocampus dendrite (Yang et al., 2016). (B) Schematics of the mechanism of STPP, which is used to interpret the

observed increase in postsynaptic response through the actions of receptors on the postsynaptic membrane (Yang et al., 2018). Top: NMDARs and

AMPARs are closed in the resting state. Middle: AMPARs are then activated by the priming input, whereas the NMDARs do not open because they are

blocked by magnesium ions. However, NMDARs enter the bound-but-blocked state in which the priming input information can be stored for up to

500 ms or longer. Bottom: When a gating input arrives, the postsynaptic membrane is further depolarized and magnesium is removed, shifting the

NMDARs from the bound-but-blocked state to the open state. (C) Illustration of a CANN that models neural activities involved in continuous stimuli,

e.g., head direction. Neurons are arranged in the network in accordance with their preferred stimuli. The excitatory connections among neurons are

translationally invariant in the space of stimulus values. The CANN is able to track moving stimuli, i.e., the red bump-shaped curve, but the neuronal

activities i.e., the blue bump-shaped curve, always lag behind the stimuli due to the neural response delay (Wu and Amari, 2005).

for neuronal responses and neuronal interactions (Wu and Amari,

2005; Wu et al., 2016). Because CANNs can track moving objects

smoothly, they have been used to shed light on the potential

neural correlates of effective tracking of moving objects (Zhang,

1996; Fung et al., 2012a; Zhang and Wu, 2012; Mi et al., 2014;

Fard et al., 2015). For instance, inhibitory feedback modulations

such as short-term depression (STD) of neuronal synapses (Fung

et al., 2012a), spike frequency adaptation (SFA) in neural firing

(Mi et al., 2014), and negative feedback from a connected network

(Zhang and Wu, 2012) have enabled predictive tracking of sensory

input with CANNs. A path integration mechanism combined with

CANNs has predicted future movement locations (Fard et al.,

2015). These neural predictions, i.e., anticipations, of continuously

moving objects are powerful strategies for time delay compensation

(Nijhawan, 1994; Bassett et al., 2005; Sommer and Wurtz, 2006)

and thus maintain effective and efficient perceptual functions and

visual/motor control.

In this study, we applied the STPP mechanism to CANNs and

examined the tracking dynamics when they trackedmoving stimuli.

The stimuli could be head directions, object locations or navigation

information such as speeds and directions of movements. To

simplify our study, we built a one-dimensional CANN model and

used head directions as our representative stimuli. Through the

simulation experiments and analysis, we found that STPP-induced

enhancing effect on neurons around the hillside of synaptic input

profile enables CANNs to anticipate the movements of moving

stimuli. Unlike the mechanisms for anticipatory tracking based on

inhibitory feedback modulations (Fung et al., 2012a; Zhang and

Wu, 2012; Mi et al., 2014), STPP is a feedforward modulation

driven by the inherent features of NMDARs. Our findings suggest

a novel mechanism for anticipatory tracking. The reliable signal

transmission enabled by STPP provides a new framework that

has the potential to help conceptualize a network mechanism

for sensory prediction and develop brain-inspired computational

algorithms for prediction.

2. Model and simulation

2.1. The model

In our study, we used CANNs (Wu andAmari, 2005; Fung et al.,

2010) to investigate the influence of STPP (Yang et al., 2016) on the

dynamics of neuronal populations. In this model, the dynamics of

synaptic input u (x, t) of neurons with preferred stimuli x at time t

is defined as

τs
∂u (x, t)

∂t
= −u (x, t)+

[

1+ S(x, t)
]

Itot (x, t) , (1)

where τs ≈ 10 ms is the neuronal time constant (Koch et al., 1996).
[

1+ S(x, t)
]

models the efficacy of activity history of postsynaptic

neurons in the evocation of postsynaptic input. Itot (x, t), the total

input to the neurons from the external input and lateral interactions

within the neuronal system, is given by

Itot (x, t) =
∫

dx′J
(

x, x′
)

r
(

x′, t
)

+ Iext (x, t) . (2)

Iext (x, t) is the external input, which is defined in the later

subsection. J
(

x, x′
)

, the excitatory connection between neurons at

x and x′, is given by

J
(

x, x′
)

=
1

√
2πa

exp

[

−
dist

(

x, x′
)2

2a2

]

, (3)

where dist(x, x′) describes the distance between x and x′ depending

on the characteristics of the stimulus, which is defined in the

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1231924
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fncom.2023.1231924

following subsection. a = 0.5 represents the range of the

connection in the preferred stimuli space (Fung et al., 2010) and

also controls the tuning width of the attractor states. r (x, t) is the

neuronal response of neurons with preferred stimuli x at time t. It

also encodes the firing rate and is defined as a function of u (x, t):

r (x, t) = 2 [u (x, t)]
u (x, t)2

1+ 1
8
√
2πa

k
∫

dx′u (x′, t)2
, (4)

where k controls the divisive inhibition modeled in the

denominator of r (x, t) (Deneve et al., 1999; Wu and Amari,

2005). 2 is the step function. One should note that Itot (x, t)

is a total input integrating the contributions of excitatory and

inhibitory signals from a population of neurons regardless of the

type of receptors. Also, since the inhibition is divisive, [1+ S (x, t)]

in Equation (1) modulates the excitatory input, which is consistent

with the experimental results by Yang et al. (2016).

In Equation (1), S (x, t) is the enhancing modulation that

abstractly models the effect on the synaptic input due to the

opening of NMDARs from the bound-but-blocked state. It

represents the temporal enhancement due to STPP. Therefore,

[1+ S (x, t)] Itot (x, t) models the synaptic input evocation with an

enhancement due to STPP (Yang et al., 2016). This term will be

further discussed in the Discussion section. The corresponding

latent modulation Q (x, t) of S (x, t) abstractly models the

proportion of NMDARs that enter the bound-but-blocked state.

The dynamics of S (x, t) and Q (x, t) are defined by

∂S (x, t)

∂t
= −

S (x, t)

τ1
+ αQ (x, t) fS [r (x, t)] , (5)

∂Q (x, t)

∂t
= −

Q (x, t)

τ2
− αQ (x, t) fS [r (x, t)]

+ β [1− Q (x, t)] fQ
[

Itot (x, t)
]

, (6)

where τ1 = 50 ms is the time constant of NMDAR (Hestrin

et al., 1990), which controls the effective duration of the enhancing

effect on postsynaptic input. τ2 = 500 ms is the time constant of

the latent modulation of STPP (Yang et al., 2018), which controls

its effective duration. The parameters α and β , which control the

rates of S (x, t) and Q (x, t), respectively, are critical for adjusting

the effects of STPP. From a physiological point of view, α can

be considered the average opening rate of NMDARs and β is the

average transition rate of NMDARs from the glutamate-unbound

state to the bound-but-blocked state, which is determined by the

speed and efficiency of glutamates to bind to NMDARs. fS and

fQ are activation functions of S (x, t) and Q (x, t), respectively. fS
defines the raise of the enhancing modulation S (x, t). We designed

its form based on two considerations: (1) in accordance with

the STPP mechanism, the removal of magnesium, which depends

on the membrane potential, enhances the excitatory postsynaptic

potential by opening NMDARs (Jahr and Stevens, 1990; Vargas-

Caballero and Robinson, 2004). Hence, fS should be sigmoid-

shaped based on membrane potential, modeling the magnesium

removal efficacy of the postsynaptic membrane. (2) However, in

the CANN, the membrane potential is implicit. Based on the study

conducted by Latimer’s group (Latimer et al., 2019), the average

membrane potential can be approximated by the firing rate because

they share a rectified-linear relation. In CANNs, r (x, t) represents

the neuronal activity, which corresponds to the firing rate of spiking

neurons. In contrast, the synaptic input u (x, t) integrates neuronal

activities from lateral neurons and external input, which has a

non-linear relation with the firing rate in the presence of divisive

inhibition. Therefore, we chose r (x, t) as a proxy to represent the

average membrane potential for a population of neurons sharing

the same preferred stimulus x. As a consequence, fS is defined to be

a cumulative distribution function of r (x, t):

fS [r (x, t)] =
1

√
2π

∫

r(x,t)−r0
σS

−∞
dt′ exp

(

−
t′2

2

)

, (7)

where r0 and σS are the mode and scale of its probability density

distribution, respectively. fQ is a function that drives the latent

modulationQ (x, t) depending on the total synaptic input Itot (x, t).

Given that insufficient input prevents NMDARs from entering the

bound-but-blocked state,Q (x, t) should raise as Itot (x, t) increases.

However, too much input results in strong depolarization and

subsequent opening of NMDARs, and moderate input can drive

as many NMDARs as possible to enter the bound-but-blocked

state (Yang et al., 2016). Q (x, t) should decrease after Itot (x, t)

reaches a moderate value. Nevertheless, strong input would have a

chance to leave a portion of NMDARs in the bound-but-blocked

state. Therefore, we considered a log-normal distribution with a

right skew to strong input to describe the relationship between

the probability of entering the bound-but-blocked state and total

synaptic input Itot (x, t):

fQ
[

Itot (x, t)
]

=
1

Itot (x, t) σQ
√
2π

exp

[

−
∣

∣ln
[

Itot (x, t)
]

− µQ

∣

∣

2

2σ 2
Q

]

,

(8)

where µQ and σQ are the mode and scale of the natural logarithm

of Itot (x, t), respectively.

2.2. Simulation experiments

Our aim is to explore the effects of STPP on the tracking

dynamics of neuronal populations by using CANNs. To study

the dynamics of a CANN with STPP, we built a model using

the equations described in the previous subsection and conducted

simulation experiments.

2.2.1. Building the model
For fQ in Equation (8) and fS in Equation (7), we assigned the

following empirical values: σQ = 0.5, µQ = 0.25, r0 = 6 and

σS = 2. As shown in Figure 2A, fQ is log-normally distributed, with

the latent modulation Q increasing most strongly when the total

input Itot (x, t) is relatively weak. fS is sigmoid-shaped, enabling

S (x, t) to be increased at strong membrane potential. Here, the

membrane potential is represented by r (x, t) (Latimer et al., 2019).

The profile of the synaptic input u (x, t) is shown in Figure 2B,

which is Gaussian shaped where the center of the external input

Iext (x, t) (not plotted) is at 0. The correspondingQ (x, t) and S (x, t)

are initially symmetric with respect to the center of u (x, t) when

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1231924
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhao et al. 10.3389/fncom.2023.1231924

FIGURE 2

(A) Profiles of fQ, fS, where σQ = 0.5, µQ = 0.25 for fQ, and r0 = 6, σS = 2 for fS. (B) As shown, the synaptic input u (x, t) of neurons is almost Gaussian,

where the position of the external input is at 0. (C) The corresponding latent and enhancing modulations Q (x, t) and S (x, t) of u (x, t) in (B). As shown,

Q (x, t) and S (x, t) are initially symmetric with respect to the center of u (x, t) when there is no external moving drive to u (x, t). Parameters of (B, C):

a = 0.5, k = 0.5, A = 3.0, α = 0.02, β = 0.1.

there is no translational separation between Iext (x, t) and u (x, t)

(Figure 2C).

In our simulation experiments, we took the head directions as

the example stimuli. Hence, x is restricted in the space of −π <

x ≤ π , and the distance between x and x′ is in a periodic condition

that is calculated by

dist
(

x, x′
)

=















x− x′ + 2π , if
(

x− x′
)

≤ −π ,
x− x′, if− π <

(

x− x′
)

≤ π ,

x− x′ − 2π , if
(

x− x′
)

> π .

(9)

One should also note that the model we used is a re-scaled model

(Fung et al., 2012b). Therefore, the number of neurons is not a

factor determining the behavior of the system.

2.2.2. Tracking the external stimulus
To see how the network reacts to a stimulus, we set the external

input to be

Iext (x) = A exp

(

−
|x− z0|2

4a2

)

, (10)

where A is the magnitude of the input. z0 is the stimulus position.

When considering a continuously moving stimulus, Iext (x, t) is

defined as

Iext (x, t) = A exp

[

−
|x− z0 (t)|2

4a2

]

. (11)

Without loss of generality, we considered the stimulus position at

time t = 0 to be z0 = 0, and the stimulus to move at a constant

angular velocity vext thereafter, i.e., z0 (t) = vextt.

With regard to the tracking behavior simulations, we altered

the strength of STPP by adjusting α and β and altered the external

factors by adjusting vext and A to see how these factors influence

the network’s tracking performance. To measure the network’s

tracking performance when it is exposed to a continuously moving

stimulus, we used the displacement between the network state and

the stimulus position as an index. Note that the network state trails

behind the stimulus when s and vext have opposite signs, whereas it

predicts the position of the stimulus when they have the same sign.

The displacement is given by s = z (t) − z0 (t), where z (t) is the

center of mass of u (x, t), which is calculated by

z (t) = x̃+
∫

dxdist (x, x̃) u (x, t)
∫

dxu (x, t)
, (12)

x̃ = argmax
x

u (x, t) . (13)

2.2.3. Measuring the intrinsic speed and the
anticipatory time

A study (Fung et al., 2015) on dynamical behaviors in

neural fields suggested that the models with inhibitory feedback

modulations could support spontaneously moving profiles without

any persistent external input. Therefore, we asked the following

question: in the absence of external input, does a CANN with STPP

have intrinsic motion? If the answer is yes, the follow-up question

arises: is intrinsic motion caused by STPP? Note that without

external input, when the network state becomes translationally

unstable, it moves with a constant speed, i.e., intrinsic speed (Fung

et al., 2015). To investigate the intrinsic dynamics of a CANN with

STPP, we measured the intrinsic speeds, denoted as vint, of the

models when the STPP strength was varied. In the simulations, we

first let the system reach its stationary state. After that, we removed

the external input andmanually shifted u in the direction of positive

x by 2π/200 for every τs. After 100 τs, we terminated all manual

intervention and let the system evolve. When the motion of the

system state became steady, we recorded the speed of the intrinsic
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FIGURE 3

(A) Snapshot of u (x, t) of a CANN with STPP when the stimulus abruptly changes from z0 = 0 to z0 = 1. The direction of the motion of u (x, t) follows

the black arrow, and the blue color gradually darkens, representing the new phases over time. The corresponding z (t) of u (x, t) is shown in (B).

Tracking of an abruptly changing stimulus shows prediction in the CANN with STPP compared to that without STPP. Parameters: a = 0.5, k = 0.5,

A = 3.0, model with STPP: α = 0.02, β = 0.1, model without STPP: α = 0, β = 0.

motion as vint. For the STPP regimes, both α and β were selected

from 0 to 0.2 with a step of 0.004.

By analyzing the dynamical properties of the system, the study

(Fung et al., 2015) also found that intrinsic motion is the internal

drive of anticipation. Hence, after obtaining the intrinsic speeds

of the CANNs under various STPP regimes, we considered the

following question: if intrinsic motion is present, is it also the

internal drive of anticipatory behavior in our model? Therefore, to

investigate the causality of anticipation, we measured the maximal

anticipatory time Tant of the CANNs under the same STPP regimes

as those used in the simulations for intrinsic speeds. Here, the

anticipatory time τant is defined as s/vext, which is a constant when

the moving bump is steady. Tant is the maximum of τant over a

range of vext under a given STPP regime. In the simulations, α and β

were also selected from 0 to 0.2 with a step of 0.004. vext was altered

from 0 to 0.008 rad/ms with a step of 0.0002. The magnitude A of

the stimulus is 3.0.

3. Results

3.1. Tracking behaviors

To observe the tracking behaviors of the CANNs with STPP, we

visualized the outlines of the network’smotions, first in the presence

of an abruptly changing stimulus and then in the presence of a

continuously moving stimulus.

3.1.1. In the presence of an abruptly changing
stimulus

We first compared the tracking pattern of a CANN with STPP

(α = 0.02, β = 0.1) to that without STPP (α = 0, β = 0) when

the stimulus abruptly changed its position z0. The stimulus position

was initially at z0 = 0 and then shifted to z0 = 1. As expected,

the synaptic input u (x, t) moved to align the center of mass z with

the stimulus position z0 (Figure 3A). Further, the snapshot shows

an overshoot of the destination, which is a sign of translational

instability of the CANN with STPP. A clearer comparison of z

was made between a network with STPP and that without STPP

(Figure 3B). This instability indicates the potential of STPP for

anticipatory tracking.

3.1.2. In the presence of a continuously moving
stimulus

Next, we explored the tracking behaviors of the networks in

the presence of a continuously moving stimulus by allowing the

stimulus to shift with a constant angular velocity vext. The CANNs

were able to track the moving stimuli by using an approximate

speed, which was consistent with how the HD cell system tracks

rotating visual cues (Ajabi et al., 2023). The simulations show that

the networks without STPP always trailed behind the stimulus

regardless of the speed. However, after STPP was applied, three

cases of tracking patterns were mainly observed, depending on

vext: (1) delayed tracking (Figure 4A), (2) perfect tracking with zero

lag (Figure 4B), and (3) anticipatory tracking with a constant lead

(Figure 4C). Notably, even when there was a delay, the CANN with

STPP performed better in tracking the stimulus than pure CANN.

In our cases, delayed, perfect and anticipatory trackings occurred

in order from fast to slow vext. However, delay and alignment may

occur in both slow and fast zones, which is discussed in the next

subsection. These results suggest that the predictions of the CANNs

with STPP depend on the speeds of the stimulus.

3.2. Anticipatory tracking

Next, we examined the dependencies of anticipatory

performance on internal (i.e., STPP parameters) and external

(i.e., the strength of the stimulus) factors. The displacement

s is a measure of the tracking performance (see the section

titled “Simulation Experiments” for the equation), as shown in

Figure 5A. First, we investigated how the STPP parameters affect

the model’s tracking performance. We compared s among different

STPP regimes, the results of which indicate that anticipatory

tracking is achieved in a certain range of STPP strength. As
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FIGURE 4

Three comparisons of trackings of a continuously moving stimulus in CANNs with and without STPP. Networks without STPP always exhibit a delay

to the moving stimulus, whereas networks with STPP lead with respect to the stimulus. For the same network with STPP, there are mainly three cases

of the tracking depending on the angular velocity of stimulus vext: (A) delayed tracking when vext = 0.006 rad/ms; (B) perfect tracking with zero lag

when vext = 0.00425 rad/ms; and (C) anticipatory tracking with constant time when vext = 0.003 rad/ms. Parameters: a = 0.5, k = 0.5, A = 2.0,

models with STPP: α = 0.02, β = 0.1, models without STPP: α = 0, β = 0.

FIGURE 5

(A) The displacement s between the network state and stimulus position is defined by s = z (t)− z0 (t), which indicates anticipation when s and vext
have the same signs and delay when s and vext have opposite signs. (B) Comparisons of s of the CANNs at varying speeds vext of moving stimulus with

di�erent STPP parameters (α, β). As shown, the network without STPP (α = 0.00, β = 0.00) linearly lags behind the stimulus (gray dashed line at s = 0)

as vext increases. The network with weak STPP (α = 0.02, β = 0.01) also lags behind the stimulus. However, the networks with certain strengths of

STPP, e.g., α = 0.06, β = 0.06 and α = 0.02, β = 0.10, predict the motion of the stimulus within a limited range of vext. With respect to the same

network (α = 0.02, β = 0.10), the dependency of the anticipatory performance on the intensity of the stimulus (A) is shown in (C). These networks

have similar patterns, but the weaker the intensity, the greater the anticipation and the larger the velocity range. Moreover, it is notable that these

curves converge on a point at a specific velocity where the displacement is independent of the intensity of the stimulus. The velocity of the

confluence point is the same as the intrinsic speed vint of the network. Parameters: a = 0.5, k = 0.5.

shown in Figure 5B, the network without STPP (α = 0, β = 0)

linearly lagged behind the stimulus (the gray dashed line at s = 0).

Moreover, when the STPP was relatively weak due to the small

scale of parameters, e.g., the dark green line (α = 0.02, β = 0.01),

the network failed to make predictions although it showed less

lag. In contrast, the networks with strong STPP elicited prediction

successfully over a considerable range of angular velocities. For

instance, the network with α = 0.02 and β = 0.1 could anticipate

stimuli with velocities ranging from 69◦/s to 240◦/s. A stronger

STPP regime (α = 0.06, β = 0.06) facilitated anticipation

of a broader range of velocities ranging from 92◦/s to 338◦/s.

Interestingly, we found that at slower velocities, the networks

performed with a tiny delay, and the threshold of the velocity for

anticipation was related to both the STPP regime and the stimulus

(Figures 5B, C). These results reveal the possible implications of

STPP for prediction. On the one hand, effective anticipation of

stimuli over an extensive range of velocities gives the neural system

great flexibility to adapt to a varying stimulus. On the other hand,

the correspondence between the range of anticipation-achievable

velocities and the diverse intensities of STPP may imply that

distinct brain regions or neurons equipped with distinct synaptic

plasticity enable diverse anticipatory tracking performance levels.

Second, to understand how the strength of a stimulus affects

anticipatory performance, we applied different magnitudes A
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FIGURE 6

(A) Contour map of intrinsic speeds vint of CANNs with di�erent STPP regimes. vint increases as α or β (or both) increases (increase). (B) However, vint
increases notably along α when β is fixed (top), whereas it becomes almost constant after β reaches a certain level when α is fixed (bottom).

Therefore, vint is not clearly distinguishable with respect to β whereas it exhibits a clearly hierarchical response to α. It seems that vint is more sensitive

to α than to β. (C) Contour map of the maximal anticipatory time Tant of CANNs with the same STPP regimes as those of (A). All of the stimuli possess

the same magnitude A = 3.0, and vext ∈ [0, 0.008] rad/ms. Tant < 0 means delays for all vext. The anticipation appears after vint > 0 and Tant exhibits a

similar trend as vint, which suggests that intrinsic motion is an internal drive of anticipation and is a necessary condition for it probably. Parameters:

a = 0.5, k = 0.5.

of a stimulus to the same network and compared the results.

According to the results shown in Figure 5C, the anticipatory lead

was greater and the anticipatory velocity range was larger under

the weaker stimulus. Moreover, these traces were confluent at a

specific velocity, where the displacement was independent of the

intensity of the stimulus. Interestingly, this velocity was the same

as the intrinsic speed vint of the network, which is described

and discussed in the next subsection. In line with the results of

natural tracking obtained in an earlier study (Fung et al., 2015),

our results also showed confluent behavior, which reveals a certain

relationship between intrinsic dynamics and tracking dynamics.

That is when the stimulus speed is the same as the intrinsic speed,

the displacement is related only to the network itself.

3.3. Intrinsic dynamics and anticipatory
time

To work out the relationship between the intrinsic dynamics

and the tracking dynamics of the network, we next explored the

intrinsic dynamics in the absence of a persistent stimulus (we had

already tested the tracking dynamics in its presence). The contour

map of the intrinsic speeds vint under various combinations of

α and β is showed in Figure 6A. vint increased as α or β (or

both) increased. Here, vint ≤0.00001 can be considered static

because 0.00001 rad/ms is approximately equal to 0.57◦/s, which is

much lower than the majority of the velocities we recorded. In the

region where vint ≤0.00001, the network became practically static

after manual intervention was terminated. In the moving region,

the network became translationally unstable and moved with an

intrinsic speed. The intrinsic motion was induced by the strong

STPP, whereas the static region was located in parameter regions

that lacked STPP or were under weak STPP regimes. Figure 6B

shows the separate effects of α and β . vint increased notably along

α when β was fixed, whereas when α was fixed, it became almost

invariant after β reached a relatively high value. Combining the top

and bottom sub-figures of Figure 6B reveals that vint was not clearly

distinguishable with respect to β but exhibited a clearly hierarchical

response to α. This behavior implies that vint is more sensitive to α

than to β .

A certain relationship between the intrinsic dynamics and the

tracking dynamics was shown in the previous subsection. In view

of this, the question arises: is intrinsic motion the internal drive

of anticipatory behavior? To answer this question, we measured the

maximal anticipatory timeTant of the CANNs under the same STPP

regimes as those in Figure 6A to understand the causality of the

anticipation. As shown in Figure 6C, the anticipation (Tant > 0)

appeared after vint > 0.00001. Also, the contour map of Tant and

that of the intrinsic speeds shared a similar trend. These results

indicate that stimulus prediction occurs only when there is intrinsic

motion and the network is not in an internally static state. Hence,

we assume that STPP-induced intrinsic motion is an internal drive

of anticipation and a necessary condition for it. The pattern of

the maximal anticipatory time map does not perfectly match the

intrinsic speed map owing to the nontrivial influence of external

input.

3.4. Analysis of translational stability of the
system

In a dynamical system, spontaneous movement without an

external input occurs when the static solution becomes unstable to

positional displacement in some parameter regions. To understand
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the intrinsic dynamics of a CANN with STPP, we studied

the translational stability of static solutions of our model. We

considered network states with a positional displacement to be

u (x, t) = u0 (x)+ u1 (t)
du0 (x)

dx
, (14)

S (x, t) = S0 (x)+ S1 (t) (x− z) S0 (x) , (15)

Q (x, t) = Q0 (x)+ Q1 (t) (x− z)Q0 (x) , (16)

where u0 (x), S0 (x), and Q0 (x) and u1 (t), S1 (t), and Q1 (t) are

the stationary states and the displacements of u (x, t), S (x, t), and

Q (x, t), respectively. z is the center of mass of u0 (x). As derived in

Supplementary material,

d

dt
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For the dynamical system described by Equation (17), the

eigenvalue λ of the matrix composed of Mψϕ (ψ ,ϕ ∈ {u, S,Q})
and 0 determines its stability. We calculated the eigenvalues of

networks with varying STPP regimes, letting the maximum of the

eigenvalues for each regime be denoted as λ̃. In the static phase,

λ̃ ≤ 0, the network states are stable and static. In the moving phase,

λ̃ > 0, the system would diverge due to positional displacement,

i.e., perturbation, leading to spontaneously moving bumps. As

illustrated in Figure 7, the network states were static when λ̃ ≤ 0

in some STPP regimes, specifically weak STPP regimes. Otherwise,

the network state bump moved spontaneously when there was

interference. That is, STPP increases the translational instability,

i.e., the mobility, of the CANNs. Remarkably, the parameter region

of intrinsic motion is in the moving phase of the system. The

heatmap of λ̃ has a similar pattern to that of the contour map

of the intrinsic speeds shown in Figure 6A. Overall, the results

indicate that the intrinsic motion of the network is caused by the

translational instability of this system, which is induced by STPP.

4. Discussion

In this study, we implemented the feedforward signal

amplification mechanism of STPP in CANNs. In the model,

the STPP effect is modeled by adding two dynamic functions

[Q (x, t) and S (x, t)] to the original CANN (Wu and Amari, 2005).

Q (x, t) abstractly models the proportion of NDMARs that are in

the bound-but-blocked state, while S (x, t) abstractly models the

temporal enhancement dependent on the opening of NMDARs

from the bound-but-blocked state. To trigger the bound-but-

blocked state, a sufficient but limited synaptic input should be

applied (Figure 1B in Yang et al., 2016). To model this effect,

we chose the function evoking Q (x, t), i.e., fQ, to be a bump-

shaped log-normal distribution function. On the other hand, when

the input to the postsynaptic neuron is uncommonly large, the

postsynaptic membrane potential can be sufficient to remove

magnesium ions (Jahr and Stevens, 1990; Vargas-Caballero and

Robinson, 2004). As a result, the evoked postsynaptic current

becomes stronger than that with NMDARs blocked (Yang et al.,

2016). To model this magnesium removal efficacy, we chose

the cumulative distribution function fS to trigger the transition

from the bound-but-blocked state to the open state. As the

average membrane potential can be represented by a firing rate

when reasonably assuming that the below-threshold membrane

potentials of the postsynaptic neurons are normally distributed

around the average value (Latimer et al., 2019), the cumulative

distribution function of the firing rate [r (x, t)] is an appropriate

choice to model magnesium removal efficacy on a population

of neurons sharing the same preferred stimulus. In summary,

functions fQ and fS motivated by our previous evidence help

visualize the STPP effect.

The additional term [1+ S (x, t)] in Equation (1) models the

efficacy of activity history of postsynaptic neurons in the evocation

of postsynaptic input. If the neurons were primed, an increase

of synaptic input [S (x, t) Itot (x, t)] was induced in the following

glutamate release due to NMDAR-dependent STPP. If there is

no STPP, the gain of synaptic input u (x, t) will become linearly

proportional to the total input Itot (x, t) based on CANN (Wu and

Amari, 2005). The STPP modulation takes into effect only when

NMDARs are primed and sufficient but limited depolarization of

membrane is given. Biologically, the total input can be mediated

by components on the postsynaptic membrane mainly including

AMPARs and inhibitory receptors. When considering the STPP

effect, there is an enhancing efficacy on synaptic input with respect

to non-plastic total input. Therefore, the modulation is on the

evocation of postsynaptic input, instead of the synaptic currents

of particular receptors. Despite the inhibition in this model is

divisive, nonetheless, the modulation still acts on the cortical and

hippocampal networks in the preserved excitatory and inhibitory

circuits, as in our previous study (Yang et al., 2016). Although we

model the modulating effect on the excitatory synaptic currents,

this modeling setting is sufficient to mimic the effect of STPP on

CANNs.

Our simulation experiments showed that the implementation

of STPP in CANNs successfully enabled anticipatory tracking of

a moving stimulus and we also explored the relationship of the

model dynamics and anticipation. First, we tested the tracking

behaviors of CANNs with STPP when they were exposed to an

abruptly changing stimulus and a continuously moving stimulus,

and found that this model could predict the future locations of

the stimulus. Second, we investigated the intrinsic dynamics of the

networks with varying STPP regimes; the results showed that a

certain level of STPP supported the intrinsic motion in this model

and the intrinsic speed was more sensitive to α. Interestingly, when

the angular velocity of the moving stimulus reached the intrinsic

speed of the given model, the tracking delay was independent of

the strength of the stimulus. Third, by comparing the pattern of

the maximal anticipatory time with that of the intrinsic speeds, we

found that intrinsic motion is the internal drive of anticipation.

Lastly, we analyzed the translational stability of the stationary

states of our networks with different STPP parameters. The results

implied that strong STPP enhanced the mobility of the system

and thus induced intrinsic motion. Taking all the results into

account, we noticed that strong α (opening rate of NMDARs) and

β (transition rate of NMDARs from the glutamate-unbound state

to the bound-but-blocked state) enable anticipation with broader

coverage of stimulus velocities and larger maximal anticipatory

time. Physiologically, the transition rate of NMDARs to the
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FIGURE 7

(A) Heatmap of the translational stability analysis results, which shares a similar pattern to that of the intrinsic speeds. The unit of α and β is 0.001. (B)

Enlargement of the bottom left corner of (A). The unit of α and β is 0.0001. The blue region is the static phase of the network where the maximal

eigenvalue λ̃ ≤ 0. Elsewhere, it is unstable and spontaneously moves when there is a tiny perturbation. In particular, the parameter region of the

intrinsic motion is located in the moving phase of the system. This analysis suggests that the intrinsic dynamics of the network are caused by the

translational instability of this system.

FIGURE 8

Extracted eight states of Iext (x, t), u (x, t), S (x, t), and Q (x, t) of the network. At the beginning of the external input movement, u (x, t), S (x, t) and

Q (x, t) undergo distortions. The biased distortion of Q (x, t) induces a unimodal distribution of the enhancing modulation [S (x, t)] with a peak on

neighboring neurons that prefer future stimulus positions, thus skewing u (x, t) toward future positions. This asymmetry results in stronger activation

of neurons that favor future positions, which enables this neural system to sense future events. Parameters: a = 0.5, k = 0.5, A = 2.0, α = 0.02,

β = 0.1, vext = 0.003 rad/ms.

bound-but-blocked state reflects how fast and efficiently glutamates

bind to NMDARs, which is basically dependent on glutamate-

NMDAR binding rate and affinity (Paoletti and Neyton, 2007;

Singh et al., 2011). Generally, these factors are synaptic specific.

Intuitively, the fast opening of NMDARs can help neurons react

expeditiously for stimulus chasing, and fast binding can prime

NMDARs promptly for further opening. Given that the opening

rate (or rise time), the binding rate and affinity are associated

with the subunits of NMDAR (Paoletti and Neyton, 2007; Singh

et al., 2011; Tu and Kuo, 2014), natural differences in NMDAR

subtypes (Buller et al., 1994; Paoletti et al., 2013) would possibly

lead to diverse tracking performance for stimuli in various brain

regions. In contrast, an abnormal subunit expression of NMDARs

may impair perception by the failure of time delay compensation.

Collectively, our findings indicate that NMDAR-dependent STPP

may underlie sensory prediction, effectively compensating for

neural delay and efficiently supporting sensorimotor control.

The underlying mechanism of how STPP can facilitate

anticipation can be intuitively understandable. In Figure 8, eight

frames of network states were extracted for visualization. From

the time-varying states and Equations (1), (4), (5), and (6), we

can understand how anticipation occurs. When the stimulus starts

moving, the biased distortion of Q (x, t) induces a unimodal

distribution of the enhancing modulation S (x, t) with the peak
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on neighboring neurons that prefer future stimulus positions.

This consequently skews u (x, t) toward future positions. This

asymmetry leads to stronger activation of the neighboring neurons

that exceed the peak of the stimulus, thereby facilitating prediction.

In this case, after around 1,200 ms, the states became translationally

stable with the same speed as the stimulus; only the locations (not

shapes) of the states changed, and thus a constant anticipation

time was maintained. Overall, the essence of the anticipatory

phenomenon is rooted in the effect of NMDAR-dependent STPP.

The information on stimulus positions can be latent in neighboring

neurons that are less activated than the stimulus peak-aligned

neurons, due to the small input. As the input shifts, the stronger

input induces enhanced activation of the neighboring neurons that

have stored information. This feedforward effect eventually skews

the activation of neurons toward future positions and enables the

neural system to sense future events.

Interestingly, despite being a response facilitation mechanism,

STPP has the opposite function to that of short-term facilitation

(STF). STF refers to a type of short-term synaptic plasticity that

boosts the neuronal postsynaptic response as a result of the

increased likelihood of neurotransmitter release due to the influx

of calcium into the axon terminal after spike generation (Zucker

and Regehr, 2002). In a computational study (Fung et al., 2012b)

of STF in CANNs, it was discovered that STF improved the

behavioral stability of CANNs and served as a noise filter. STF

can maintain strong activation of neurons in the active region in

accordance with the stimulus position and strengthen interactions

among neurons that are tuned to the stimulus. Unlike STPP, this

stimulus-specific facilitation stabilizes the network, which makes

it incapable of spontaneously moving to anticipate an external

input. Inhibitory feedback modulations were considered the basic

mechanisms of anticipatory tracking. The modulations include

STD, which depresses the activation of postsynaptic neurons by

depleting the available resources of neurotransmitters released from

presynaptic neurons (Fung et al., 2012a), and SFA, which refers to

the reduction of neuronal excitability after prolonged stimulation

(Mi et al., 2014). In both STD and SFA, the most active neurons

receive the strongest negative feedback to counterbalance their

responses, thereby increasing the probability that the locally active

network state shifts to the continuously moving stimulus in a

sequence. In contrast to inhibitory feedback modulations, which

emphasize self-suppression by a feedback system, STPP spotlights

the response facilitation on adjacent neurons in a feedforward

manner to increase the mobility of the network and achieve

anticipatory tracking. Moreover, STPP operates by utilizing the

natural properties of NMDARs, which play a significant role in

synaptic transmission, rather than relying on recurrent feedback

systems, which may involve more auxiliary pathways and systems

and may depend on repetitive or prolonged firing (Zucker and

Regehr, 2002; Gutkin and Zeldenrust, 2014). It appears that the

STPP-dominant feedforward model is simpler and more energy-

efficient for anticipatory tracking.

Animal experimental results have suggested that the HD cell

system can anchor to local cues, stably tracking rotating cues

and maintaining traces when the cues are removed (Taube et al.,

1990; Goodridge et al., 1998; Zugaro et al., 2003; Ajabi et al.,

2023). However, the mechanism underlying the anchoring and

trace maintenance remains unresolved. In 2023, Ajabi’s team (Ajabi

et al., 2023) found a second dimension in addition to a single

angular dimension, namely network gain, to help represent the HD

cell system. This discovery indicates that additional information is

necessary to fully comprehend how the system adapts to changeable

sensory input although the origins of network gain are yet to be

identified. They also reported that the system followed the cue’s

rotation speed to track it and that the system exhibited anticipation.

Additionally, the system sustained the drift for some time after the

cue was turned off. These findings support the idea that the HD

cell system possesses an effective predictive tracking capacity and

exhibits spontaneous drift based on experience. To some degree,

our model achieved results that were similar to those obtained

by these experiments. Our CANN-based model also tracked a

moving stimulus with the same velocity (Fung et al., 2010, 2015).

Moreover, the incorporation of STPP enabled our model to move

spontaneously without persistent external input, i.e., it exhibited

intrinsic motion, and showed the anticipatory tracking of a moving

stimulus. A very early study (Blair et al., 1997) reported a skew of

the peak of the tuning curve toward future positions in the HD

cell system rather than just a translational shift to future positions

with an invariant bump shape, a finding that was interpreted as

suggesting anticipation. This asymmetry can be induced by STPP in

our model. As for the anticipatory time, different studies obtained

varying average values such as 17 ms (Blair et al., 1997), 23 ms

(Taube and Muller, 1998), and 25 ms (Goodridge and Touretzky,

2000) in the anterior thalamus. The anticipatory time of HD cells

can vary in different brain regions and even in different cells in the

same region (Blair et al., 1997; Taube and Muller, 1998; Goodridge

and Touretzky, 2000). In a large STPP parameter region, our model

produced anticipations with maximal anticipatory time ranging

from 0 to 30 ms, which were of the same order as that observed

in animal experiments. Although STD (Fung et al., 2012a) and SFA

(Mi et al., 2014) can achieve tracking performance comparable to

that obtained by us, the effect of NMDAR-based STPP should not

be neglected.

In addition, to prove the robustness of our model to different

values of the STPP time constant τ2, which represents the lifespan

of latent information, we obtained contour maps of vint when

τ2 = 300 ms, τ2 = 400 ms, τ2 = 600 ms, and τ2 =
700 ms through simulations. The results, which are illustrated in

Supplementary Figure S1, show that the patterns and achievable

ranges of intrinsic speeds in other conditions resemble those

obtained with τ2 = 500 ms (Figure 6A), demonstrating the

robustness of the intrinsic property of our model to anticipation.

Although STPP shows promise as an underlying mechanism

for sensory prediction, certain results of our model cannot yet

be corroborated by current animal experiments. In our model,

the anticipatory time varied with the angular velocities of the

stimuli, which usually rose first and then fell. However, the average

anticipatory time measured in a population of HD cells in the

anterior thalamus tended to be approximately constant over a

broad range of head turn velocities (Goodridge and Touretzky,

2000). Differently, some studies reported other thought-provoking

issues. The anticipatory time varied among different HD cells in

the anterior thalamus (Blair et al., 1997), and the complex results

obscured the dependency of the anticipation time on the angular
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velocity (Bassett et al., 2005). Briefly, due to the considerable

variability in real data obtained from the HD cell system, it is

challenging to determine the stability of the anticipatory time.

More notably, if our proposed mechanism is correct, the differing

STPP strength of cells would explain the great complexity of the

dependence of the anticipatory time.

In conclusion, our work offers a novel feedforward framework

that potentially encodes neural information processing based on

STPP in the HD cell system. A consideration of heterogeneous

interactions in the neural system shows that NMDAR-dependent

STPP may coordinate with other mechanisms, an understanding

of which would provide a more comprehensive account of neural

information processing. An improved understanding of brain

processing and networking may also inspire more computational

algorithms for prediction. In the future, assessing the effects of

our proposed feedforward framework with other sensory inputs,

such as sounds with increasing frequencies and predictable spatial

locations, will be a crucial step in validating its applicability.
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