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Introduction: This study investigated the e�ects of cocaine administration and

parvalbumin-type interneuron stimulation on local field potentials (LFPs) recorded

in vivo from the medial prefrontal cortex (mPFC) of six mice using optogenetic

tools.

Methods: The local network was subject to a brief 10ms laser pulse, and the

response was recorded for 2 s over 100 trials for each of the six subjects who

showed stable coupling between the mPFC and the optrode. Due to the strong

non-stationary and nonlinearity of the LFP, we used the adaptive, data-driven,

Empirical Mode Decomposition (EMD) method to decompose the signal into

orthogonal Intrinsic Mode Functions (IMFs).

Results: Through trial and error, we found that seven is the optimum number of

orthogonal IMFs that overlaps with known frequency bands of brain activity. We

found that the Index of Orthogonality (IO) of IMF amplitudeswas close to zero. The

Index of Energy Conservation (IEC) for each decomposition was close to unity,

as expected for orthogonal decompositions. We found that the power density

distribution vs. frequency follows a power law with an average scaling exponent

of ∼1.4 over the entire range of IMF frequencies 2–2,000 Hz.

Discussion: The scaling exponent is slightly smaller for cocaine than the control,

suggesting that neural activity avalanches under cocaine have longer life spans

and sizes.

KEYWORDS

fast-spiking neurons, medial prefrontal cortex, orthogonal decomposition, cocaine,

neural avalanches

1. Introduction

Using psycho-stimulants, such as cocaine, is a serious health problem and opens the door

to neurobiological changes in limbic and cortical circuits that engage cognitive and emotive

processing. Recently, we have just begun to understand the cellular adaptations that occur

in the cortex following a single exposure to cocaine and their contribution to the continuous

and further use of drugs of abuse (Spealman et al., 1999; Farrell et al., 2018; Goode and

Maren, 2019; Reiner et al., 2019; Park et al., 2022).

The behavioral consequences of first-time cocaine use vary and appear somewhat

contradictory. First-time cocaine users often report feeling a sharpening of the senses

(Volkow and Swann, 1990), and anecdotal information suggests that acute cocaine increases

attention. Indeed, individuals with attention-deficit/hyperactivity disorder (ADHD) will
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sometimes self-medicate with cocaine (Weiss and Mirin, 1986).

Contrastingly, Jentsch et al. (2002) have shown that acute

cocaine administration impairs performance on a reversal-

learning task, and several studies have reported compromised

performance during repeated acquisition tasks in monkeys

(Thompson and Moerschbaecher, 1979; Evans and Wenger,

1992). Additionally, human imaging studies have shown that

acute cocaine administration induces prominent prefrontal cortex

activation, primarily in the dorsolateral regions (Howell et al.,

2010). Furthermore, acute cocaine administration has been linked

to poor impulse control (Fillmore et al., 2002; Jentsch et al., 2002;

Garavan et al., 2008). Therefore, first-time cocaine usemay enhance

users’ awareness while cognitive performance is diminished. One of

the primary targets of cocaine is the prefrontal cortex (PFC; Haney

et al., 2001; Fillmore et al., 2002; Garavan et al., 2008; Howell et al.,

2010; Dilgen et al., 2013; Farrell et al., 2018).

In the mPFC, most of the excitatory neural population is made

of pyramidal neurons (Feldman, 1984; Bannister, 2005). The main

modulators of the activity of the pyramidal neural network are

the calcium-binding protein parvalbumin (PV) interneurons, with

PV+ fast-spiking interneurons representing the majority of these

cells (Takahata and Kato, 2008; Casanova and Trippe, 2009; Kana

et al., 2011). The PV+ neurons coordinate the output of the local

minicolumns (Galarreta and Hestrin, 2001; Sultan et al., 2013),

maintain and modulate both beta 15–30Hz (Michael and Zoe,

2006; Hong et al., 2008; Cheng et al., 2016) and gamma 25–40Hz

(Cardin et al., 2009; Sohal et al., 2009, 2016) rhythms of the brain,

and facilitate information processing (Guidotti et al., 2005; Fuchs

et al., 2007; Schmidt and Mirnics, 2015). The oscillatory activity of

individual neurons contributes to the observed beta and gamma

rhythms of the brain (Buzsaki and Draguhn, 2004; Fujiwara-

Tsukamoto and Isomura, 2008; Liddle et al., 2016). They allow task

coordination (Kahana et al., 1999), support memory formation and

retrieval (Roux and Uhlhaas, 2014), and signal neuropathological

conditions (Orekhova et al., 2007; Peter and Wolf, 2010). The

normal ongoing oscillatory activity could be reset by sensory inputs,

such as visual (Kambe et al., 2015;Woelders et al., 2017) or auditory

(Mercier et al., 2013) stimuli, or extrinsic stimuli, such as deep

brain stimulation (Tass, 2003) or temperature (Rensing and Ruoff,

2002). Abnormal activity of PV+ interneurons has been linked to

autism (Schnitzler and Gross, 2005; Levy, 2007; Orekhova et al.,

2007; Peter and Wolf, 2010), schizophrenia (Lewis et al., 2005;

Lewis and Hashimoto, 2007; Schmidt and Mirnics, 2015; Liddle

et al., 2016), sensory hypersensitivity, and neural hyper-excitability

(Gibson et al., 2008; Rotschafer and Razak, 2014; Contractor et al.,

2017; Ethridge et al., 2017). Spectral analysis is a fast and suitable

method for describing the statistical response of large populations

of neurons.

An extensive study searching for changes in power spectral

density based on subdural electrocorticographic recordings in

the frequency bands 30–100Hz somewhat arbitrarily divided the

gamma band in 10Hz increments (Crone et al., 1998). The

Fourier spectral analysis did not detect any narrow-band peaks

but identified distinctive power law responses in lower (30–50Hz)

compared to higher (75–100Hz) gamma frequencies. The authors

hypothesized that the neurophysiological mechanisms involving

the two broad bands are significantly different (Crone et al., 1998).

It has been well-established through Fourier spectral analysis

that energy distribution across different frequency bands from,

e.g., subdural electrocorticographic recordings, follows a power law

(Miller et al., 2009):

P(f ) ∝ Af−ξ , (1)

where P(f ) is the power spectral density, A is an amplitude factor,

and ξ is the power law exponent (Miller et al., 2009), sometimes

called the self-similarity parameter (Lux and Marchesi, 1999). A

flat power spectral density with an exponent ξ = 0 corresponds

to white noise. Pink noise is a signal whose power spectral density

decreases proportionally to the inverse of the frequency, where

ξ = 1. An exponent ξ = 2 is the signature of Brownian noise or

a one-dimensional random walk (Milstein et al., 2009). Increasing

(negative) values of the scaling exponent ξ indicate “the persistence

in the time series over many different time scales” (Tolkunov et al.,

2010). All power law relationships are also scale-invariant, i.e.,

P(λx) = λξP(x) for any value of the scale factor λ. Graphically, the

curve describing the relationship between x and y = P(x) maintains

its shape under any possible dilatation Roman and Bertolotti

(2022). The power law scaling from Equation (1) is sometimes

called power spectrum scale invariance because it suggests no

preferred temporal or spatial scale in the signal (Shelhamer, 2007;

Radulescu et al., 2012). Scale-invariant or scale-free phenomena

possess the same statistical properties at any scale. Practically, the

same principles or processes work across multiple temporal and

spatial scales (Milne, 1998).

There is yet to be a definitive answer as to why there

should be scaling laws in neural activity. One particularly

appealing hypothesis links the critically self-organized systems (Bak

et al., 1987) and spontaneous neural oscillations (Buzsaki, 2006).

Complex systems near criticality develop correlations that decay

more slowly and extend over larger temporal and spatial scales than

the local scale of the underlying process (Bak, 1997). In the theory

of self-organized criticality systems, pink noise for which the scaling

exponent is ξ = 1 seems to be the optimal transition between order

and randomness (Bedard et al., 2006). Broadband pink noise has

been predicted mathematically based on a random-mood swing

model and confirmed in an extensive psychiatric epidemiological

survey (van der Werf et al., 2006). For example, one of the

first computational models of a fully connected neural network

based on non-leaky integrate-and-fire neurons showed avalanche-

like activity (Eurich et al., 2002). They proved analytically and

checked numerically that the avalanche sizes scale with a critical

exponent of -3/2. Subsequent LFP recordings from acute slices of

rat cortex showed that a power law describes the propagation of

spontaneous activity in cortical networks with an exponent of -3/2

for event sizes (Beggs and Plenz, 2003). LFP recordings in cortex

cultures, urethane-anesthetized rats, and awake macaque monkeys

showed that, both in vitro and in a network model, Shannon’s

information capacity and information transmission are maximized

at the criticality threshold (Shew et al., 2011). Therefore, the brain

could operate at the criticality threshold to maximize appropriate

functional criteria.

At the same time, different studies revealed a broad range

of power-law relationships, some over very narrow frequency
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ranges and others (including ours) over a much broader frequency

spectrum. An EEG study focused on the α band using wavelet

analysis found power-law exponents in the range of 0.36 (eyes

closed) and 0.51 (eyes open) setup, differences which were

not considered statistically significant (Linkenkaer-Hansen et al.,

2001). Power spectral density for neural time series obtained via

functional MRI has been used to detect anxiety traits, although

estimating the power-law exponents was secondary to their goal

(Tolkunov et al., 2010). Large-scale realistic models mimicking the

electrophysiological LFP recordings based on particular network

architectures over various model neurons show Brownean noise

with an exponent of ξ = 2 (Milstein et al., 2009). A recent study

traced the power spectral density exponents in subcortical nuclei

from the human thalamus and basal ganglia while simultaneously

recording cortical activity (Bush et al., 2023). The results show an

exponent of ξ = 1.3 ± 0.2 in subcortical regions compared to

ξ = 3.2 ± 0.3 in the cortex (Bush et al., 2023). Although most of

the EEG studies cover relatively low-frequency bands, one study,

in particular, covered a wide range of frequencies 80–580Hz and

found a scaling exponent of ξ = 4.0 ± 0.1 for cortical recordings

using electrocorticographic electrodes (Miller et al., 2009). The

same study also found that the power spectral density scales with

ξ = 2.46 ± 0.32 at frequencies lower than 80Hz (Miller et al.,

2009). One possible route to explaining the emergence of power

law in neural activity could be the observation that autocorrelation

of neural activity increases hierarchically across the cerebral cortex,

from sensory to frontal areas (Murray et al., 2014). The broad range

of power law exponents observed in experiments and modes is

due to widely different targeted areas and underlying mechanisms

(Beggs and Plenz, 2003). Among the most prevalent mechanism

envisioned for scale invariance in neural activity is homeostatic

plasticity, with different implementation details that also can drive

variations in observed exponents (Friedman et al., 2012; Capek

et al., 2023).

While spectral (Fourier-based) analysis provides useful

quantitative analysis of power distribution across different

frequency bands, it also has limitations. For example, the dynamic

systemmust be linear, and the data should be periodic or stationary

(Looney et al., 2015). For the wavelet analysis, a filter function

should be selected beforehand, and one may only obtain a

physically meaningful interpretation of linear phenomena (Huang

et al., 1998). As the biological time series is nonlinear and non-

stationary, Fourier spectral analysis and wavelet approach may give

misleading results (Huang et al., 1998).

This study used a data-driven approach to modeling

optogenetic data and identified the relationship between the

inputs and outputs of a complex system without making any

hypotheses regarding the internal processes that led to the

observed output (Wang et al., 2006). Such models require a

small dataset for calibration and usually have a better prediction

performance over the range of tested input-output pairs (Jain

and Kumar, 2007; Shrestha and Nestmann, 2009). The EMD

has been proven to be an effective decomposition method for

nonlinear and non-stationary data (Huang et al., 1998, 2003).

Compared to wavelet and Fourier spectral analyses, the EMD

better describes the local time scale instantaneous frequencies and

does not need any predetermined basis functions (Huang et al.,

1998; Li, 2006). With the EMD, a time series can be decomposed

into a small number of orthogonal Intrinsic Mode Functions

(IMFs), which are derived based on the local characteristic time

scale of the data itself and describe the dynamic behavior from

high-frequency to low-frequency (Huang et al., 1998, 2003; Wu

and Huang, 2004; Wu, 2015). The EMD allows the analysis of

biological systems on an intrinsic multi-time scale (Looney et al.,

2015). The EMD was also used to investigate the neural response’s

time-frequency properties (Huang et al., 1998). For example,

the EMD-based analysis of the oscillatory properties of spike

trains in the presence of nonlinearities and non-stationarities

gave better results than the traditional spectral analysis and neural

network-based methods (Laurent, 1996; Averbeck et al., 2006;

Bathellier et al., 2008; Alegre-Cortes et al., 2016, 2018; Wykes et al.,

2016).

Optogenetics is a technique that combines optics and genetics

to control and manipulate the activity of specific cells in living

organisms, typically neurons in the brain. It involves genetically

encoded light-sensitive proteins called opsins, which can be

selectively expressed in target cells using genetic engineering

techniques. The core principle of optogenetics revolves around

the ability of these opsins to respond to specific wavelengths of

light by either activating or inhibiting the activity of the cells

in which they are expressed. For example, genetically targeted

potassium channels in a rodent model of focal neocortical epilepsy

showed promising therapeutic applications (Wykes et al., 2012).

By precisely controlling the timing, duration, and intensity of

light stimulation, neural activity can be controlled in real-time

and with high spatial and temporal resolution (Dilgen et al.,

2013; Sohal et al., 2016). Optogenetics has many applications,

from mapping neural circuits to modulating neural activity with

precise spatiotemporal control (Gholami Pourbadie and Sayyah,

2018). Optogenetics reveals the intricacies of the brain’s circuitry

involving neural plasticity (Eleftheriou et al., 2017) and memory

(Liu et al., 2012; Ramirez et al., 2014) and helps understand

the underlying mechanisms of various neurological disorders.

Optogenetics has been used for manipulating and guiding

cellular behavior, potentially revolutionizing tissue engineering,

and regenerative therapies (Spagnuolo et al., 2020). Optogenetics

techniques have been applied to treating anxiety (Allsop et al.,

2014), paving the way for innovative therapeutic interventions in

epilepsy (Kokaia et al., 2013; Paz et al., 2013; Peng et al., 2013;

Paz and Huguenard, 2015; Wykes et al., 2016; Borges et al., 2023)

and Parkinson’s (Kravitz et al., 2010; Ratnadurai-Giridharan et al.,

2017).

2. Materials and methods

2.1. Animal research and ethics

A detailed description of the procedures can be found in the

previous papers of this series (Oprisan et al., 2015, 2018, 2019), and

we only briefly summarize them here. All procedures were done

following the National Institute of Health guidelines as approved

by the Medical University of South Carolina Institutional Animal

Care and Use Committee.
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2.2. Experimental protocol

Male PV-Cre mice (B6; 129P2—Pvalbtm1(Cre)Arbr/J) Jackson

Laboratory (Bar Harbor, ME, USA) were infected with the viral

vector [AAV2/5. EF1a. DIO. hChR2(H134R)—EYFP.WPRE. hGH,

Penn Vector Core, University of Pennsylvania] delivered to the

mPFC as described in detail in Dilgen et al. (2013). The extracellular

signals were amplified using a Grass amplifier (Grass Technologies,

West Warwick, RI, USA), digitized at 10 kHz by a 1401plus data

acquisition system, visualized using Spike2 software (Cambridge

Electronic Design, LTD., Cambridge, UK), and stored on a PC

for offline analysis. A HumBug 50/60Hz Noise Eliminator (Quest

Scientific Inc., Canada) filter canceled out the line noise. The

signal was band-pass filtered by the acquisition software online

between 0.1–130 kHz to obtain the LFPs. After tissue stabilization,

100 different 2s duration single-unit recordings were used to

estimate the minimal laser power needed to elicit a response. For all

subsequent recordings, the laser power was 25% above the above-

determined minimal value (Dilgen et al., 2013). Before recording

the responses to laser stimuli, LFPs were monitored for a minimum

of 10min while occasionally stimulating at 40Hz to ensure the

stability of the electrode placement and the ability to induce the

oscillation (Dilgen et al., 2013). Four animals were excluded from

the analysis due to fluctuating levels of LFP activity (Dilgen et al.,

2013).

A 473nm laser (DPSS Laser System, OEM Laser Systems

Inc, East Lansing, MI, USA) delivered the light stimulation via

a 1401plus digitizer and Spike2 software (Cambridge Electronic

Design LTD., Cambridge, UK). The optogenetic signal is a

weak biological signal easily contaminated by high-frequency

noise, such as electromyographic interference, and low-frequency

noise, such as baseline wander. Additional details on the

experimental protocol can be found in Dilgen et al. (2013) and

Oprisan et al. (2015, 2018).

2.3. Empirical mode decomposition analysis
of nonlinear and non-stationary data

The EMD decomposes nonlinear and non-stationary signals

into oscillatory components using Hilbert-Huang transform

(Huang et al., 1998; Zhu et al., 2013). Unlike Fourier-based time

series analysis, EMD makes no a priori assumption for underlying

time series structures. Therefore, the EMD is suitable for analyzing

time series consisting of multiple periodic components, e.g.,

climatic data or biomedical signals. The EMD is self-adaptive and

based on the local characteristic time scale of the data. The EMD

has been highly efficient in processing non-linear, non-stationary,

and time-varying data in neuroscience (Lang et al., 2010). IMFs

are a series of data sequences with different eigenscales. Each IMF

function has the same number of extrema and zero crossings, with

its envelopes being symmetric about zero (Huang et al., 1999). The

iterative process of extracting IMFs is known as sifting and consists

of the following steps:

1. identification of the local extrema of the signal x(t);

2. interpolation of the maximal and minimal points set to obtain

an upper envelope, xu(t), and a lower envelop, xl(t), respectively

(see the dashed lines in Figure 1A1 labeled “upper envelope” and

“lower envelope,” respectively);

3. compute the average of the two envelopes m(t) = [xu(t) +
xl(t)]/2 (see the dashed lines in Figure 1B1 labeled “mean

envelope”);

4. subtraction of the average m(t) from the original signal to get

d(t) = x(t) − m(t), and repeat steps (1-4) until d(t) satisfies

the two conditions for being an IMF (see the dashed lines in

Figure 1C1 labeled “IMF1”; Rilling et al., 2003).

The two conditions for correct IMF definition are (1) the

number of extrema and the number of zero-crossing must be either

equal or differ by one at most, and (2) at any point, the mean value

defined by the envelope of the local maxima and the envelope of

the local minima is zero (Huang et al., 1998). Once the first IMF1

is generated, the residual signal r(t) = x(t) − IMF1(t) is regarded

as the original signal, and steps (1–4) above are repeated to yield

the second IMF (see the dashed lines in Figure 1A2 labeled “upper

envelope” and “lower envelope,” respectively; see the dashed lines

in Figure 1B2 marked “mean envelope,” and the dashed lines in

Figure 1C2 labeled “IMF2”), and so on.

The iterations stop when the amplitude of the residue falls

below a pre-determined small value so that further sifting would

not yield any valuable components (Huang et al., 1998). The

stopping criterion impacts the orthogonality of the decomposition

and energy leakage between IMFs (Huang et al., 1998; Echeverria

et al., 2001; Flandrin et al., 2004; Attoh-Okine et al., 2008; Fele-Zorz

et al., 2008). The stopping criterion guarantees the computation of a

finite number of IMFs. The original signal x(t) can be expressed as:

x(t) =
∑

j

cj(t)+ r(t),

with

cj(t) = Re
(

aj(t)e
iφ(t)

)

= Re{aj(t)}exp



i

t
∫

−∞

ωj(t
′)dt′



 ,

where cj(t) represents the IMFs and r(t) the remaining non-

oscillating trend or residual. The plots of the amplitude, aj(t), and

phase, φ(t), vs. time for each IMF represents a Hilbert-Huang

spectrogram (not shown; Attoh-Okine et al., 2008). Although IMFs

are empirically determined, they remain orthogonal to each other

and may therefore contain independent physical meaning (Wu

et al., 2007; Lo et al., 2009; Yang et al., 2011). The EMD decomposes

different time series into IMFs, each oscillating at specific time

scales. The EMD also de-trends the time series to produce a zero-

mean distribution, i.e., removes the residual component r(t) from

raw data. Therefore, the EMD reduces spurious regression and

multi-collinearity in subsequent multiple linear regression analyses

(Yang et al., 2011; Masselot et al., 2018).

2.3.1. IMF orthogonality
Although the IMFs are orthogonal, the Hilbert-Huang

transform may produce other than truly orthogonal
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FIGURE 1

The original signal [continuous line in (A1)] has a smooth upper envelope [dashed line in (A1)] and a lower envelope [dashed-dotted line in (A1)]. The

two envelopes from (A1) determine the mean envelope in (B1) (dashed line). By subtracting the mean envelope of B1 from the signal, one obtains

the first IMF in (C1) (dashed line). The di�erence between the signal [continuous line in (C1)] and the first IMF [dashed line in (C1)] gives the first

residue in (A2) (continuous line). The process depicted in (A1–C1) is repeated with the signal shown in (A2) until one obtains the second IMF in (C2).

This one-dimensional signal was generated from an analytic function to demonstrate the use of the EMD technique.

decompositions in practice. For example, if some high-frequency

components of IMF1 leak into the second IMF2, the EMD suffers

from a mode mixing problem determined by the widely disparate

scales of a single IMF (Huang et al., 1998). Furthermore, if the

waveforms between two IMFs are similar, the decomposition

suffers from another mode mixing problem in that a signal resides

in different IMF components (Huang et al., 1998). To quantify the

degree of orthogonality and estimate the extent of mode mixing,

we compute the Index of Orthogonality (IO) and the Index of

Energy Conservation (IEC; Chen et al., 2006; Ho and Hung, 2022).

If any two IMFs, such as ci(t) and cj(t), are orthogonal, then IO

is zero, whereas if there is a total overlap between them, the IO is

close to unity. The IO is a normalized crosscorrelation between

IMFs and is defined as follows:

IO =

∑

t

N+1
∑

j=1,i6=j

ci(t)cj(t)

∑

t
x2(t)

, (2)

where the residual r(t) is treated as the (N + 1)-th IMF. Other

studies do not exclude autocorrelation from IO computation, i.e.,

they do not require i 6= j in Equation (2) (Shen et al., 2021). In

that case, the diagonal elements of the IO matrix are not zero, like

in our case, but proportional to the fraction of the signal’s energy

in that particular IMF mode. Here the energy of an IMF mode

ci(t) is defined as the temporal summation (or integration) of the

amplitudes squared, i.e.,
∑

t
c2j (t).

The IEC is the normalized sum of energy (integral of the square

of the amplitudes; Chen et al., 2006; Ho and Hung, 2022):

IEC =

∑

t

N
∑

i=1
c2i (t)

∑

t
(x(t)− r(t))2

. (3)

The IEC is the sum of energy in all IMFs normalized by the

original signal x(t) minus the trend given by the residual r(t). If the

IEC is close to unity, then the decomposition is close to lossless.

If IEC is not comparable to unity, the issue may be the stopping

criteria (Chen et al., 2006).

2.3.2. IMF energy vs. frequency
Most neuroscience-related studies have concentrated on

narrow-band power-law scaling of power density distribution vs.

frequency (Crone et al., 1998; Feige et al., 2005; Milstein et al.,

2009; Tolkunov et al., 2010; Bush et al., 2023). Wu and Huang

(2004) conducted an extensive theoretical study of the effect of

noise on broadband energy vs. frequency spectrum using EMD.

We investigated the possible power law relationship between IMF

energies and the instantaneous frequency by plotting them on a

log-log scale. If Equation (1) holds, then

log(P(f )) ∝ −ξ log(f )+ logA,

where the slope of the log-log plot determines the scaling exponent

ξ . An often neglected requirement of power-law scaling is that such

relationships are defined only in the limit of an infinite system

(Henkel et al., 2008). In our EMD of LFPs, the frequency range

covered three orders of magnitude, which is higher or at least at
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FIGURE 2

The IMFs of the control (A1) and cocaine-injected mice (A2). The amplitude of the IMFs increases with their order. The first two IMFs contain mostly

high-frequency noise. Their time scale is faster than 10ms laser pulse duration, and they do not produce a visible impulse response. The e�ect of the

brief laser pulse on the network’s activity is visible at the beginning of all IMF3 through IMF7.

par with the most detailed multielectrode-based recordings (Beggs

and Plenz, 2003).

3. Results

The spectra of instantaneous bandwidths and IMF frequencies

are adaptive to the nature of data. It is convenient to map the

instantaneous frequency bands of the EMD decomposition into

EEG frequency bands, such as δ band: 0.5–3.5Hz; θ band: 3.5–8Hz,

α band: 8–13Hz; β band: 13–30Hz; and γ band: 32–80Hz (Tatum,

2014).

3.1. EMD of mPFC optogenetic response to
a brief laser pulse

Through trial and error, we found that decomposing the

LFP into seven IMFs produces one IMF in the γ band: 32–

80Hz (see Figures 3A1, B1), which is relevant for the cognitive

functions of the mPFC. The 2s recordings were decomposed

into seven orthogonal IMFs (see Figure 2), and one residual (not

shown), capturing different frequency bands of the original LFP

signal, some overlapping with the EEG frequency bands. The

IMFs plotted in Figure 2 are the average IMFs over the 100 trials

for the same representative animal before (Figure 2A1) and after

(Figure 2A2) cocaine injection, respectively. All figures, except

(Figure 8) summary, are for the same animal out of the six used

in this experiment.

The amplitudes increase with IMF’s order (see Figure 2).

Moreover, the IMF amplitudes for control (Figure 2A1) and

cocaine-injected mice (Figure 2A2) of the same order are generally

in the same range. Figures 2A1, A2 show that the first two orders,

IMF1 and IMF2, are composed mainly of high-frequency noise.

This noise should be removed from the original signal. Because the

main component of the second-order IMF2 is still high-frequency

noise, the noise and signal have not been separated well, and the

first type of modemixing problem has occurred. The optic coupling

with the neural network is strong, as revealed by the significant dips

at the beginning of IMF3 through IMF7.

3.2. Orthogonality of EMD decomposition
and mode mixing

While theoretically, the EMD generates orthogonal IMFs, in

practice, orthogonality may not be achieved due to noise or

numerical errors. We computed the distribution of the IO (Chen

et al., 2006; Ho and Hung, 2022) according to Equation (2) over

100 trials for the same animal before (Figure 3A1) and after cocaine

(Figure 3A2). In every case, the null hypothesis that the lognormal

distribution is the best fit for IO was verified at a 99% confidence

level. We used a Kolmogorov-Smirnov test to verify that the

selected distribution is a good fit (Massey, 1951; Chakravarti et al.,

1967; Marsaglia et al., 2003; Hill and Lewicki, 2005; Steinskog et al.,

2007).
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FIGURE 3

A typical example of IO distributions before (A1) and after cocaine (A2). The continuous red line is the smooth lognormal fit with the logarithmic

averages (avg) and standard deviations (std) shown on each panel. The IEC distributions before (B1) and after cocaine (B2) are best fitted with a

Gaussian with a continuous red line. The null hypothesis regarding the distribution was checked with a 99% confidence level in all cases. Table 1

shows the logarithmic mean values avglog for lognormal fit. The figure panels show the linear mean obtained as avglin = exp(avglog).

Here, the probability density function for lognormal

distribution was

f (x) = y0 +
1

√
2πxσ

exp
−(ln(x)− µ)2

2σ 2
,

where y0 is the offset, µ is the mean of the logarithmic values,

and σ is the standard deviation of the logarithmic values. From

the lognormal distribution of the IO, we found that average

values before and after cocaine are similar, avglog ≈ −2.09,

corresponding to avglin = exp(avglog) ≈ 0.12 on a linear scale.

The overall IO computed above (see Figure 3 and Table 1) offers an

average estimate of orthogonality of all IMFs for each trial before

Figure 3A1 and after cocaine Figure 3A2. While the IO is not zero

as we would expect for an ideal EMD decomposition, the mean

average over all conditions and mice is 0.13, which aligns with the

findings of other studies for low values of sifting iterations (Molla

et al., 2006; Ponomaryov et al., 2021).

We also verified with a 99% confidence level the null hypothesis

that the normal distribution best fits IEC. Representative examples

are shown in Figure 3B1 for trials before cocaine (bc) and in

Figure 3B2 after cocaine (ac) injection. We used a t-test to compare

the means of the IO bc group vs. IO ac, and similarly for IECmeans

(Krause, 2011; Beath and Jones, 2018). For the data in Table 1, the

t-test for IO bc vs. IO ac showed the data come from statistically

identical groups at a 99% confidence level with a p-value of 0.3304.

The IEC data are also statistically identical at a 99% confidence level

with a p-value of 0.1633.

While the IEC is not exactly equal to unity, as in the case of

ideal decompositions, its average of 0.94 ± 0.14 also aligns with

similar studies that find such values acceptable for noisy data (Ho

and Hung, 2022).

Furthermore, we estimated the pairwise IO for every two IMFs

averaged across all trials to detect possible mode mixing where

the IO deviates significantly from zero. The average values of IO

crosscorrelation for pairs of IMFs shown in Figure 4 have similar

patterns for control (before cocaine in Figure 4A) and after cocaine

(Figure 4B). We considered all seven IMFs and the residual in

calculating the pairwise IO. Ideally, we expect zero crosscorrelation

between IMFs. Some degree of crosscorrelation exists between any

successive IMFs, as seen from the first line parallel to the diagonal

in Figure 3. The only significant jump in IO crosscorrelations, to

0.078 for control and 0.066 for cocaine, occurs between IMF6 and

IMF7. However, even in this case, the mode mixing is negligible

as the IO values are below the 95% significance level for a mode

mixing (Chen et al., 2006; Molla et al., 2006; Ho and Hung, 2022).

3.3. Energy-frequency analysis of IMFs

The instantaneous frequencies in Figure 5A1 (before cocaine)

and Figure 5A2 (after cocaine) were obtained by computing the

first derivative of the instantaneous phase of the Hilbert-Huang

transform. While the average instantaneous phase monotonically
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TABLE 1 Summary of mean and standard deviations of lognormal distributions for the Index of Orthogonality (IO) and the normal distribution for the

Index of Energy Conservation (IEC).

bc Mean ± Std IO Mean ± Std IEC ac Mean ± Std IO Mean ± Std IEC

# 1 −2.09± 0.58 0.92± 0.15 # 1 −2.09± 0.61 0.93± 0.12

# 2 −1.99± 0.53 0.93± 0.19 # 2 −2.37± 0.64 0.95± 0.17

# 3 −1.94± 0.55 0.90± 0.13 # 3 −1.95± 0.54 0.98± 0.16

# 4 −1.84± 0.53 0.90± 0.13 # 4 −1.95± 0.42 0.91± 0.15

# 5 −2.00± 0.66 0.95± 0.11 # 5 −2.08± 0.56 0.95± 0.16

# 6 −2.25± 0.53 0.95± 0.11 # 6 −2.39± 0.62 0.95± 0.10

FIGURE 4

Pairwise index of orthogonality averaged over all trials for a typical subject before (A) and after cocaine (B). The crosscorrelation of the IO decreases

with the distance from the diagonal, which suggests that only successive IMFs experience some degree of mode mixing. The most significant IO is

between IMF 6, with a mean frequency of 5Hz (θ band of EEG is 3.5–8Hz), and IMF 7, with a mean frequency of 2Hz (δ band of EEG is 0.5–3.5Hz).

increases over time, it has an occasional negative slope due to

noise, which leads to unphysical negative values for its derivative,

i.e., the instantaneous Hilbert-Huang frequency. Among many

solutions for overcoming the negative instantaneous frequencies

due to noise (Huang et al., 2009), we adopted phase smoothing

over ten samples, i.e., over 1ms. We tested a wide range of

smoothing durations, and ten samples is a reasonable compromise

between removing the negative frequencies and still being small

enough to give ten smoothed data points over the 10ms

stimulus duration.

The energies shown in Figure 5B1 (before cocaine) and

Figure 5B2 (after cocaine) were computed as the square of absolute

values of the smoothed IMF amplitudes shown in Figure 2. While

the frequency bands are relatively well-separated by the individual

IMFs (Figures 5A1, A2), the IMF4 and IMF5 have some degree of

overlapping (see Figures 5B1, B2).

To determine the mean and standard deviation of the

instantaneous frequency spectrum for each IMF, we first tested the

normality of frequency distributions (see Figure 6A1 before and

Figure 6A2 after cocaine). The distribution of frequencies around

the mean values of the corresponding IMFs is well-fitted with

Gaussian curves with a 99% confidence level, and a summary

is presented in Table 2. We also found that energy distributions

are Gaussian with slight skewness (see Figures 6B1, B2). While

frequency distributions around the mean values of each IMF (see

Figures 6A1, A2) do not overlap, some overlap occurs in the energy

distributions of IMF4 and IMF5 (see Figures 6B1, B2). The IEC also

captured the overlap.

Based on Table 2, we found that both the control (before

cocaine) and after cocaine injection frequency scales of IMFs follow

exponential decay, i.e., frequency ∝ e−n/τ , where n = 1 . . . 7 is

the IMF’s index. The e-fold exponents are τ = 0.78 ± 0.02 for

the control and τ = 0.82 ± 0.02 for the cocaine case. Given that

the e-fold exponents τ are statistically identical within the standard

deviation, the “natural” frequency scales embedded in the signals

are identical. As a result, a direct comparison of IMFs for control

vs. cocaine results is possible without additional corrections.

The energy vs. frequency plots in Figure 7A (before cocaine)

and Figure 7B (after cocaine) show seven clusters corresponding to

the identified IMFs. Figure 7 is for the same animal out of six as

in the previous figures. We also tested the EMD decomposition of

the data with fewer IMFs and found that they led to a significant

overlap of clusters in energy vs. frequency plots (not shown). Power

laws emerge from the energy vs. frequency plot, where the power

law exponents equal the straight line slopes shown in Figure 7

log-log plots.

The slopes and intercepts for the log-log plots of all six animals

are shown in Table 3, together with the adjusted R2 values.

The plot of the slopes in Figure 8A and intercepts in Figure 8B

of the log-log linear fit of energy vs. frequency summarized in

Table 3 suggests some systematic patterns. Our null hypothesis,

represented by the continuous line in Figure 8, is that there is
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FIGURE 5

Temporal evolution of instantaneous frequency and energy content of the seven IMFs for control (A1, B1) and cocaine-injected mice (A2, B2). The

first two IMFs have instantaneous frequencies of over 2,000 and 500Hz, respectively. Such high-frequency IMFs in the LFPs decomposition are noise.

IMF3 mean is in the range of 170Hz, IMF4 in the range of 40Hz (γ band of EEG is 32–80Hz), IMF5 in the range of 20Hz (β band of EEG is 13–30Hz),

IMF6 in the range of 5Hz (θ band of EEG is 3.5–8Hz), IMF7 in the range of 2Hz (δ band of EEG is 0.5–3.5Hz). The energy of IMFs (the square of the

IMF amplitude) increases with the IMF order (B1, B2). The last data point in all panes su�ers from the EMD edge e�ect.

no difference between the values before and after cocaine. We

performed a K-means clustering analysis and found two data

clusters in the power law exponents shown in Figure 8A. Subjects

# 1 and # 6 fall below the separation line in Figure 8A and form

the first data cluster, while the other four subjects are above it,

i.e., the power law exponent after cocaine is slightly smaller (in

absolute value) after cocaine. We know from a previous study

using the same animals that the data for animal # 1 represents

an outlier, as seen in Figure 7 of Oprisan et al. (2018). In the

study mentioned above, we found that the estimated time of

zero crossing of the autocorrelation function after cocaine was

significantly longer compared to before cocaine. However, data

from all five other animals in the same study showed that the

correlation time in cocaine cases was significantly shorter than the

corresponding control values. This study also confirms that data

from animal # 1 continues to represent an outlier when comparing

the slopes and intercepts of the log-log plot of energy vs. frequency

fit (see Figure 8). This study’s EMD data also suggests that animal

# 6 could be another outlier, at least in light of Figure 8 (see the

shaded ellipses).

4. Discussion

The brain is a complex system with interconnected

subnetworks. Neural activity avalanches initiated, for example, by

sensory inputs, can die out if the network has sparse connectivity

and the neurons do not have enough dendritic processes to

reach a minimal sensitivity threshold that propagates the initial

avalanche (Moretti and Munoz, 2013). On the other hand, a

too-tightly connected network could instantly propagate any

neural activity avalanche across the entire brain, such as those

propagated during epileptic seizures. It has long been speculated

that the brain maintains a fine balance between chaotic neural

activity and total silence by constantly evolving, adapting synaptic

strengths, pruning connectivities, and tuning their sensitivity

curve (Shew et al., 2011). Criticality means a system operates at

the boundary between microscopic and macroscopic dynamics

where neural activity avalanches driven by local interactions and

microscopic details can lead to large-scale macroscopic events

that trigger activity synchronization across entire networks.

In critically self-organized systems, such large-scale events

triggered by microscopic local activity have size distributions

that obey power-laws (Levy and Solomon, 1996). At criticality,

long-range correlations occur among distant elements of the

system, which make small local fluctuations or minute sensory

inputs to neural systems reach global effects over a wide range of

temporal and spatial scales. Such behavior, described by power

laws, is called scale independence (or invariance; Goldenfeld,

1992). Power laws in critically self-organized systems extend

past the size distribution of neural activity avalanches found

from in vitro (Beggs and Plenz, 2003; Mazzoni et al., 2007;

Pasquale et al., 2008) and in vivo (Petermann et al., 2009;

Hahn et al., 2010; Capek et al., 2023; Salners et al., 2023)
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FIGURE 6

Frequency and energy histograms before (A1, B1) and after cocaine (A2, B2). The frequencies are well-separated and normally distributed around the

mean [(A1) before cocaine and (A2) after cocaine]. The energy distributions for IMF4-IMF5 and IMF6-IMF7 pairs slightly overlap.

TABLE 2 Mean and standard deviations of frequencies for all IMFs before cocaine (bc) and after cocaine (ac) injection for the same animal used for

Figures 2–7.

Condition IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Bc 2, 080± 96 476± 50 161± 12 44± 5 17± 3 5± 1 1.9± 0.8

Ac 2, 010± 97 559± 47 176± 13 45± 5 18± 2 5± 1 1.7± 0.8

experiments. Such power laws include different macroscopically

measurable quantities, such as the duration distribution of

functional connections in EEG recordings (Lee et al., 2010), the

duration of neural avalanches (Ehsani and Jost, 2023), and the

power spectrum. While most studies found that a power-law

exponent of neural avalanche duration is around −1.5 (Beggs

and Plenz, 2003; Millman et al., 2010; Cowan et al., 2013;

Hesse and Gross, 2014), steeper exponents were induced by

dopamine modulation (Stewart and Plenz, 2006), and by D1

receptor antagonists (Gireesh and Plenz, 2008). For example,

D1 receptors set the sensitivity threshold for neural avalanches

(Stewart and Plenz, 2006) and strengthen the coupling between

pyramidal and fast-spiking PV+ neurons (Seamans and Yang,

2004). The pyramidal-PV+ cells network is known to set the

gamma rhythm (Bartos et al., 2007). In general, steeper exponents

reduce the occurrence of large avalanches and spatial correlations

(Stewart and Plenz, 2006).

As we notice from Figure 7, the energy and frequency of IMFs

scale as energy ∝ frequency−ξ where the power law exponent

ξ is determined by the slope of the log-log plot, which is about

−1.39 ± 0.14 before cocaine and −1.39 ± 0.09 after cocaine.

Based on the average values obtained from Table 3, there is no

statistical difference between the power law exponents before and

after cocaine. At the same time, the plot of the slope (Figure 8A)

and the intercept (Figure 8A) of log-log fits of energy vs. frequency

indicate two distinct clusters of data, one of which contains animal

#1 (a known outlier from a previous study; Oprisan et al., 2018,

2019) and animal # 6. While the data for animal # 6 could be a new

outlier that only the EMD reveals (as opposed to the zero crossing

of autocorrelation used in the previous study), a definitive answer
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FIGURE 7

The frequency vs. energy diagrams [(A) before and (B) after cocaine] identify the seven separate clusters extracted from the original LFPs. The log-log

plots show good liner fits, which indicates a power laws relationship between the energy and frequency, i.e., energy ∝ frequency−ξ .

TABLE 3 The slope and the intercept of the log-log plot of energy vs. frequency show relatively stable values across all six animals both before cocaine

(bc) and after cocaine (ac).

bc Slope ± Std Intercept ± Std R2 ac Slope ± Std Intercept ± Std R
2

# 1 −1.424± 0.001 −0.882± 0.001 0.978 # 1 −1.476± 0.001 −0.836± 0.001 0.986

# 2 −1.405± 0.001 −0.859± 0.001 0.97 # 2 −1.253± 0.001 −1.34± 0.01 0.995

# 3 −1.624± 0.001 −0.826± 0.001 0.951 # 3 −1.352± 0.001 −1.16± 0.03 0.855

# 4 −1.349± 0.001 −0.778± 0.002 0.95 # 4 −1.236± 0.001 −1.11± 0.02 0.904

# 5 −1.314± 0.001 −0.856± 0.001 0.901 # 5 −1.28± 0.01 −1.08± 0.02 0.898

# 6 −1.2± 0.1 −1.565± 0.002 0.934 # 6 −1.38± 0.01 −1.708± 0.001 0.901

The adjusted R2 coefficient indicates a good data fit. A representative linear fit from one animal is shown in Figure 7.

FIGURE 8

The slope of the log-log linear fit of energy vs. frequency before vs. after cocaine (A) and the intercept before vs. after cocaine (B) for all six animals

(marked with stars and numbered). The continuous line corresponds to equal values before and after cocaine, i.e., the two conditions are

indistinguishable along this line. Except for subjects #1 and #6, the power law exponents (the slope of the log-log plot) have a systematically smaller

negative exponent after cocaine. Similarly, the intercepts have the smallest negative values before cocaine.

would require further investigation. Our previous study (Oprisan

et al., 2019) did not detect that # 6 is also a potential outlier because

the autocorrelation method used for estimating the time lag for

delay embedding in that study only estimated linear correlations

among data. The EMD is a more powerful tool that can handle

non-stationary and nonlinear data, which could be why we can

now better discern data clustering. Suppose both data sets from #1

and # 6 are outliers. In that case, the EMD allows us to distinguish

between cocaine and control conditions based on the power law

exponent of energy dependence on frequency.

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1223879
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Oprisan et al. 10.3389/fncom.2023.1223879

Assuming both data from animals #1 and # 6 are outliers

(based on our K-means clustering), the power law exponents differ

slightly for the four data sets that cluster together. For example,

the power law exponent before cocaine would be −1.42 ± 0.14

and after cocaine −1.28 ± 0.05. Reimann et al. (2013) conducted

an extensive modeling study addressing the connection between

the power laws exponents observed in LFP experiments and the

underlying cellular mechanisms responsible for such results. They

simulated the LFP using a reconstructed, multi-compartmental

model of the rodent neocortical column that included dendritic and

somatic compartments with voltage- and ion-dependent currents,

realistic connectivity, and probabilistic AMPA, NMDA, and GABA

synapse (Reimann et al., 2013). They found that below 40Hz, the

active membranes gave a scaling exponent ξ = 1.0 ± 0.2, whereas

for passive membranes ξ = 0.9± 0.1. For the frequency range 40–

1,000 Hz, they found ξ = 2.0± 0.4 and ξ = 3.7± 0.1, respectively.

They concluded that “spiking and spike-related currents contribute

to low LFP bandwidths traditionally considered to reflect purely

synaptic activity” (Reimann et al., 2013).

Experiments using bipolar high-impedance microelectrodes

(Destexhe et al., 1999) within a cat’s parietal association cortex

gave LFPs with good spatial localization of the signal. They allowed

an accurate comparison of local vs. global power-law exponents

of neuronal activities (Bedard et al., 2006). The reconstructed

synaptic currents (modeled by simple exponential relaxation

processes) based on experimentally recorded spikes showed a

scaling exponent ξ = 2. The synaptic currents model could not

explain the experimentally estimated scaling exponents of ξ =
1 for frequencies below 20Hz and ξ = 3 for the frequency

range 20–65Hz. They concluded that the complex structure of the

extracellular media that combines current flows in the conductive

fluids and capacitive effects due to the high density of membranes

produces the ξ = 1 scaling (Bedard et al., 2006).

The wide range of power law exponents found in different

brain areas and frequency ranges could also be determined by the

multifractal nature of brain organization. It is desirable to start from

first principles and build neural ensembles that fit the observed

dynamics and then characterize their evolution using statistical

tools, such as power law dependence of energy distribution across

frequency bands. This is an old argument raised almost a century

ago by Einstein, who considered that probabilities must follow

dynamics, not vice versa. In other words, the power spectral density

vs. frequency should be derived from the equations describing

the individual neurons and their connectivities. The ubiquity and

simplicity of power law relationships revealed across brain regions

might be deceptive compared to the complexity of neurons and

their synaptic connections (Beggs and Plenz, 2003; Friedman et al.,

2012; Capek et al., 2023). This is why theoretical foundations and

underlying mechanisms must be worked out first to make testable

predictions. Otherwise, “there is the danger for this field to become

adrift in a sea of empiricism devoid of theory and with little

explanatory power and generality” (Marquet et al., 2005). Besides

multifractality, another reason we observe multiple scaling laws

with different exponents in different brain areas could be due to the

finite-size scaling limit, i.e., we are not measuring the true scaling

exponents because they are only defined for a truly infinite system.

5. Conclusion

Oscillatory activity is ubiquitous in the neural circuitry of the

brain. Assigning frequency components in LFPs to different EEG

bands can provide information regarding pathological spectral

power distribution. The EMD can identify different IMFs of

neural activity while providing an effective noise reduction and

trend elimination method. Noise is usually associated with the

highest frequencies in the EMD decomposition and trends with the

lowest frequencies or residuals. De-trending time series is necessary

for correct frequency band separation. The unknown trends

are generally described by analytic equations with parameters

estimated by the least square fitting or maximum likelihood

methods. However, LFP data usually show nonlinear characteristics

that are difficult to estimate, which leads to inaccurate de-trending

results. The EMD can identify and separate the trends for any time

series without prior assumptions because the EMD is adaptive,

regardless of the nonlinear and non-stationary nature of the

data. As a result, EMD makes frequency scale identification more

accurate and reliable.

We found that the LFPs recorded from the mPFC during

the optogenetic experiment have orthogonal decompositions

following statistically different patterns than the white noise. In

our experiments, the IMF energy scales with the instantaneous

frequency obtained fromHilbert-Huang transform as energy ∝ f−ξ

with an average power law exponent ξ ≈ 1.4. While our study

on mPFC of mice is the only one we could find that covers a

very broad frequency range 2–2,000 Hz, our results support the

criticality hypothesis and previously reported critical exponents for

avalanche size of ξ = 1.5 in awake rhesus monkeys (Petermann

et al., 2009), acute mPFC slices of adult rats (Stewart and Plenz,

2006), mature organotypic cultures and acute slices of rat cortex

(Beggs and Plenz, 2003), superficial cortex of awake mice (Capek

et al., 2023), in vivo and in vitro rat cortical layer 2/3 (Gireesh

and Plenz, 2008), adult cats under anesthesia (Hahn et al., 2010),

dissociated cortical neurons from rat embryos cultured ontomicro-

electrode arrays (Pasquale et al., 2008), and in conductance-based

computational models (Ehsani and Jost, 2023).

We also found a slightly smaller power law exponent of ξ =
1.28± 0.05 for cocaine than ξ = 1.42± 0.14 for control. Given that

a steeper exponent reduces the likelihood of observing larger neural

avalanches and spatial correlations (Stewart and Plenz, 2006), a

smaller power law exponent for cocaine suggests potentially larger

and longer-lasting neural avalanches. One likely reason for the

differences, as suggested by a detailed biophysical model, is the

active membrane currents that adjust in the presence of cocaine

rather than synaptic currents (Reimann et al., 2013).

A limitation of the current study is the mode mixing present

among IMFs, also reflected in the IO and IEC values. A common

approach towardmode de-mixing we will explore in the future is by

using the ensemble EMD technique (Schlotthauer et al., 2009; Wu

and Huang, 2009; Wu et al., 2009), which is counterintuitive since

it adds controlled noise to the data to enhance the signal-to-noise

ratio. More recently, EMD was enhanced using a weighted sliding

window over the dataset (Zeiler et al., 2012) and local integral mean

(Ponomaryov et al., 2021).
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While our findings suggest that the local neural network

changes the critical exponent of neural activity under cocaine,

more detailed studies are necessary. We are exploring multi-

electrode optrodes that would allow us to map network

connectivities through crosscorrelation among single electrode

critical exponents computed as described in this study. By

combining the electrophysiology we carried out in this study with

simultaneous calcium fluorescence imaging, future studies could

check the consistency of neural avalanche critical exponents across

different modalities.
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