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Biases are a fundamental aspect of everyday life decision-making. A variety 
of modelling approaches have been suggested to capture decision-making 
biases. Statistical models are a means to describe the data, but the results are 
usually interpreted according to a verbal theory. This can lead to an ambiguous 
interpretation of the data. Mathematical cognitive models of decision-making 
outline the structure of the decision process with formal assumptions, providing 
advantages in terms of prediction, simulation, and interpretability compared to 
statistical models. We compare studies that used both signal detection theory and 
evidence accumulation models as models of decision-making biases, concluding 
that the latter provides a more comprehensive account of the decision-making 
phenomena by including response time behavior. We  conclude by reviewing 
recent studies investigating attention and expectation biases with evidence 
accumulation models. Previous findings, reporting an exclusive influence of 
attention on the speed of evidence accumulation and prior probability on starting 
point, are challenged by novel results suggesting an additional effect of attention 
on non-decision time and prior probability on drift rate.
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1. Introduction

In a decision-making task, a response bias can occur when one choice is preferred over its 
alternative or actively avoided (Leite and Ratcliff, 2011). Conversely, an unbiased decision 
involves equal competition between all possible choices (Dricu et al., 2017). Unbiased decisions, 
no matter how theoretical, serve as a benchmark to detect response biases and control for 
undesired factors. For example, researchers often compare conditions of biased attention with 
neutral ones. Attention and expectation are two common experimental manipulations that can 
induce a response bias in decision-making tasks.

A controversy exists about the exact definition of attention and addressing this issue is 
beyond the scope of this article. Here, we define attention as “the flexible control of limited 
computational resources” (Lindsay, 2020). Several attentional mechanisms are experimentally 
manipulated in perceptual decision-making tasks. Spatial attention allows us to prioritize 
information processing at a given location, like covertly attending to one side of the screen 
(Carrasco, 2018). Temporal attention is the ability to focus in time (Ramirez et al., 2021), and, 
in a similar way, feature-based and object-based attention prioritize the processing of relevant 
features (White and Carrasco, 2011) or objects in the environment (Ciaramitaro et al., 2011). 
Response biases between conditions have been detected for spatial (Ghaderi-Kangavari et al., 
2023), temporal (Denison et  al., 2017), feature-based (Ho et  al., 2012), and object-based 
attention (Ciaramitaro et al., 2011).

Similarly to attention, tasks manipulating the subjects’ expectation, i.e., prior knowledge 
about the choices’ probability, can induce response biases in the behavioral data (Mulder et al., 
2012). We usually refer to this contextual information as prior probability. In decision-making 
tasks, instructions informing the participant about the stimulus’ prior probability are often used 
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to induce perceptual expectations (Cheadle et al., 2015). On a neural 
level, Kok et al. (2014, 2017) demonstrated in a series of functional 
magnetic resonance imaging (fMRI) and magnetoencephalography 
(MEG) experiments that perceptual predictions evoked similar BOLD 
activity patterns to those evoked by the stimuli in the primary visual 
cortex. One appealing idea is that the actual sensory input is compared 
to the prediction template to evaluate the quality of the prediction. If 
the input mismatches the prediction, a prediction error signal is 
generated (Smout et al., 2019).

Response biases may also be induced by reward manipulations 
(Mulder et al., 2012); we refer to this as a reward bias. Another bias 
is the choice history bias, the replication of the previous answer(s) 
to guide the current decision (Urai et  al., 2019). Moreover, 
consistency in the direction of evidence (e.g., the left stimulus is 
consistently brighter than the right stimulus) has also been shown 
to bias accuracy, confidence and response times (Glickman et al., 
2022). This is known as consistency bias. In sum, the term decision-
making bias encompasses response biases induced by 
various manipulations.

1.1. Aim

The aim of this paper is to provide researchers with a conceptual 
overview of both the theoretical principles and empirical applications 
related to decision-making biases. More specifically, we will focus on 
the modelling approaches researchers use to study attention and 
expectation. We start by describing statistical models and then move 
to cognitive models of decision-making (Townsend and Ashby, 1983). 
Here we  will describe their advantages over statistical models. 
We  review studies that used both Signal Detection Theory (SDT; 
Green and Swets, 1966) and the Diffusion Decision Model (DDM; 
Ratcliff, 1978), as they stand out as well-established cognitive models 
(a thorough description of SDT and DDM is present in Section 2.3). 
We also compare these two cognitive models and argue that the latter 
offers greater insight into the data due to the analysis of response times 
(RT) distributions.

With respect to the latter models, response biases are particularly 
suitable for cognitive modelling because they provide valuable 
information about the underlying cognitive processes that lead to the 
observed behavior. This is because response biases can help identify 
the specific cognitive mechanisms involved in decision-making. For 
example, a response bias favoring one choice option over another may 
indicate that the participant is relying more heavily on certain 
perceptual cues or using a specific strategy. This information can then 
be incorporated into cognitive models to better understand how these 
cognitive mechanisms operate. Moreover, it is possible to jointly 
model both behavioral and neural activity measures (Turner et al., 
2017). This simultaneous modelling offers the possibility of gaining a 
neural understanding of these cognitive processes. Response biases 
can also be used to test and compare different cognitive models. By 
comparing the fit of different models to the observed data, researchers 
can identify the model that best describes the putative underlying 
cognitive mechanisms. Lastly, response biases can be used to study 
individual differences in decision-making. By examining how 
response biases vary across different individuals or populations, 
researchers can identify factors that influence decision-making and 
tailor interventions accordingly.

Overall, response biases are a valuable tool for cognitive modelling 
as they provide rich information about the underlying cognitive 
processes that drive behavior, allow for the comparison of different 
cognitive models, and facilitate the study of individual differences in 
decision-making.

2. Modelling biases

2.1. Verbal and formal theories of 
decision-making

Researchers studying response biases are usually interested in 
testing a specific theory of decision-making. Nonetheless, theories of 
decision-making vary in their form. On the one hand, formal theories 
are characterized by mathematical tools and formal concepts (van 
Rooij and Blokpoel, 2020). On the other hand, verbal theories are 
verbally expressible intuitions (van Rooij and Blokpoel, 2020).

Verbal and formal theories are the two sides of the theoretical 
modelling “coin.” Intuitions about psychological phenomena need to 
be  formally transcribed to be  quantitatively tested. Similarly, the 
formalization process of a verbal theory can highlight practical 
limitations that were not previously conceptualized. The resolution of 
these practical limitations results in a theory that quantitatively 
predicts data. In this way, the process of creating a theory is 
characterized by the cyclical alternation between verbal and 
formal theories.

Nonetheless, researchers do not test formal theories solely. 
Contrarily, it is common to encounter studies that aim at testing a 
verbal theory. Testing verbal and formal theories has different 
implications that affect the whole empirical process, from hypotheses, 
to predictions, testing, and inferences (see Table 1).

2.2. Statistical models

Verbal theories can be, and usually are, tested and validated via 
statistical models. Statistical models do not make assumptions about 
the underlying cognitive processes that result in decision-making, but 
rather focus on describing the patterns observed in the data. The 
description and decomposition of variance in the data can in turn 
inform whether the data are in line with the theory and drive the 
further formalization of the verbal theory under investigation.

A substantial set of studies that probed decision-making biases 
applied statistical models to analyze their data (Hsu et al., 2018; 
Huang et  al., 2018; Jigo et  al., 2018; Garcia-Lazaro et  al., 2019; 
Kveraga et al., 2019; Smout et al., 2019, 2020; Aitken et al., 2020; 
Moerel et al., 2022). An example is the event-related potential (ERP) 
study proposed by Doherty et al. (2005) which jointly investigated 
the effect of temporal and spatial expectation on decision-making. 
The task consists of a red ball moving in steps from the left to the 
right side of the screen. The ball is then occluded by a grey vertical 
bar for two steps. When it reappears on the other side of the 
occluded area, participants are asked to respond in case a black dot 
was present inside the ball. A 2-by-2 design produced a total of four 
conditions, namely temporal and spatial expectation (ST), spatial 
expectation only (S), temporal expectation only (T) and neither of 
the two (N). The four conditions were set up using the movement of 
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the ball. The ball moved either with or without a constant spatial 
trajectory to manipulate spatial expectation and, with or without a 
constant step duration to manipulate temporal expectation. The 
authors analyzed the behavioral data using a repeated-measures 
two-way ANOVA (and post hoc paired-samples t tests), which 
examines the influence of two categorical independent factors 
(temporal and spatial expectations) on a continuous dependent 
variable (response time). Provided that the assumptions of the 
parametric estimation of p-values corresponding to the expectation 
manipulations have been met [which can be challenging, given the 
non-Gaussian nature of RT distributions and repeated measures 
paradigms (Girden, 1992)], these models can give valuable insights 
in the presence and size of biases caused by experimental 
manipulations. The authors reported faster response times in the S 
and T conditions compared to the N condition, but the interaction 
between the two factors was not significant. The reduction in mean 
response time in the ST condition was larger than the effects in the 
S and T conditions alone, indicating a so-called additive effect.

In sum, the authors provided evidence using a statistical model for 
an enhancing effect of both spatial and temporal expectation on response 
speed, plus an additive effect when both expectations were induced. 
Nonetheless, the verbal theory used for hypothesis generation cannot 
quantify the relative influences of these biases in the ST condition nor 
identify which cognitive processes (e.g., evidence accumulation, criterion 
or motor response time) have induced such changes. Thus, one may 
argue that the interpretation of these results remains an approximation 
while, next to statistical models, mathematical cognitive models may 
overcome this limitation. By specifying formal assumption about the 
decision process and subsequently testing which model best describes 
the data, mathematical cognitive models offer the possibility of 
decomposing behavioral data into a more structured set of cognitive 
processes. For the very same reason, mathematical cognitive models 
cannot account for any underlying cognitive factor that is not specified 
in the model a priori.

2.3. Cognitive models

Mathematical cognitive models permit the decomposition of the 
observed performance into isolated contributions of relevant cognitive 
processes (Heathcote et al., 2015; Forstmann et al., 2016). Nonetheless, 
the relationship between statistical and cognitive models is not 
competitive; instead, it can be  understood as a hierarchy where 
statistical models offer preliminary inference and cognitive models 
delve deeper into cognitive processes by mathematically formalizing 
their assumptions. The fit of the model gives insights in how well the 
cognitive process model can capture the empirical data. Thus, 
cognitive models yield falsifiable, transparent, and reproducible 
descriptions of the cognitive processes inferred by the behavioral data 
(Frischkorn and Schubert, 2018).

2.3.1. Signal detection theory
Signal detection theory is a widely used framework to study 

decision-making and perception. In a simple psychophysics experiment, 
the observer gathers noisy evidence (e) from the environment and has 
two categorical options, stimulus is present (h1), and stimulus is not 
present (h2; see Figure 1). This theory is a means to infer which of the 
hypotheses caused the evidence (Gold and Shadlen, 2007). If the 
observer correctly reports the presence or absence of the stimulus, the 
trial is labelled Hit (H) and Correct rejection (CR), respectively. 
Conversely, if the observer incorrectly reports the stimulus presence or 
absence, the trials are labelled as False alarm (FA) and Miss (M), 
respectively. In a two-choice task, the ratio of the two likelihoods (h1 and 
h2) defines the decision variable as follows:

 L e P e|h P e|h12 1 2( ) = ( ) ( )/

The likelihood ratio (β) is one measure of criterion, also called 
response bias, which acts as a threshold with respect to the 
decision variable:

 
L e12( ) ≥ β

Thus, the criterion determines whether the participant 
systematically responds more positively or negatively (Vickers, 1979; 
Macmillan and Creelman, 2005); SDT effectively defines and provides 
a formal description of a bias. As illustrated in Figure 1, a more liberal 
criterion implies higher Hit and False alarm rates, while a more 
conservative criterion implies higher Miss and Correct rejection rates, 
compared to an unbiased criterion.

Conversely, the sensitivity measures the ability of discrimination, 
which quantifies accurate performance (Vickers, 1979; Macmillan and 
Creelman, 2005). Conceptually, it represents the distance between the 
“noise only” and “noise + signal” distributions (see Figure 1). The 
most common measure of sensitivity (Green and Swets, 1966) is d’, 
which is formalized in terms of z as follows:

 
d'=z H z FA( ) ( )−

The same sensitivity value can be  obtained from different 
combinations of FA and H proportions. This equivalence in sensitivity 
is captured by the so-called receiver operating characteristic (ROC) 
curve, which describes the sensitivity of any classifier. The criterion, 
desirably independent of sensitivity, captures the remaining 
component of the parameter space. In reality, only one measure of 
criterion – the criterion location (c) – is statistically independent from 
sensitivity (Macmillan and Creelman, 2005). Such independence is 
also depicted by the ROC curve, as a shift in criterion does not alter 

TABLE 1 Comparison of verbal and formal theories of decision-making (DVs: dependent variables).

Theory Approach Analysis Prediction Testing Inference

Verbal Hypothesis-based Based on DVs Qualitative Statistical testing Effect of manipulation on DVs

Formal Model-based Based on model’s parameters Quantitative Model fitting Effect of manipulation on model parameters
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the curve itself but is represented as different points along the same 
ROC curve (meaning different combinations of FA and H proportion).

The seemingly simplicity of SDT may explain the wide use of this 
framework as a cognitive model. There are several studies that have 
used SDT to investigate prior probability bias, but the results depict 
an inconsistent picture. Prior probability manipulations have been 
found to mainly influence criterion (de Lange et al., 2013; Cheadle 
et al., 2015; Kaneko and Sakai, 2015) but also sensitivity (Stein and 
Peelen, 2015). Conversely, substantial work using the attentional cue 
paradigm converged on the idea that spatial attention has an 
enhancing effect on discriminability, which is captured by the 
sensitivity (d’) parameter (Bashinski and Bacharach, 1980; Downing, 
1988; Hawkins et al., 1990; Cheadle et al., 2015).

The study of Kaneko and Sakai (2015) is of relevance for this review 
because it highlights the benefits of applying cognitive modelling to 
behavioral data. In this study, the authors investigated the differences 
between prior probability and choice history bias with a perceptual 
decision-making task (see Figure 2), as it is unclear whether these biases 
arise via the same mechanism. The aim of the task was to report whether 
the target Gabor patch was moving [Target (+)] or not [Target (−)]. 
Prior probability was manipulated via a probabilistic cue preceding the 
Gabor patch. Two cues indicated whether the Gabor patch was likely 
(67%) or unlikely (33%) to move. The authors conducted a multilevel 
logistic regression analysis (a statistical model) on the behavioral data 
and reported that the previous decision, the cue, and the target were the 
factors that mostly contributed to target detection. Response times were 
enhanced by valid cues and impaired by invalid cues, whereas the 

previous decision did not affect RT. Moreover, the best-fitting model 
reported a significant interaction between previous decision and target 
on accuracy, which led the authors to suggest an effect of choice history 
bias only when the Gabor patch was moving. Conversely, cue and 
previous decision did not interact, suggesting distinct mechanisms 
biasing the decision process. The authors also modelled the dataset with 
SDT to determine the effects of prior probability and choice history on 
the model’s parameters. The authors report a main effect of choice 
history on sensitivity and a main effect of prior probability on criterion. 
This result further corroborates a view in which these manipulations 
affect decision-making via distinct mechanisms.

The main difference between the two analyses conducted by the 
authors is the extent to which they can link results to specific factors 
influencing the decision process. Even if the results of the statistical 
model converged with the SDT ones, only the latter ones can 
be associated with latent factors which are cognitively significant. The 
statistical model’s parameters have not been designed to map onto 
latent cognitive processes. Thus, while the statistical model’s 
parameters describe unspecified factors, the SDT’s parameters are 
directly linked with latent cognitive processes.

2.3.2. Evidence accumulation models
While SDT explains decision-making based on a single 

observation of evidence, the Sequential Probability Ratio Test (SPRT; 
Wald, 1945) introduces the idea of making decisions through a 
sequential evidence accumulation process. In SPRT, the log likelihood 
ratio between two competing hypotheses is updated after every 

FIGURE 1

Visual representation of SDT. Sensitivity is reported as d’, response bias as beta, hits as H, false alarms as FA, misses as M and correct rejections as CR. A 
more liberal criterion is characterized by more positive responses, resulting in higher hit and false alarm rates. Parallelly, a more conservative criterion is 
characterized by more negative responses, resulting in higher miss and correct rejection rates.
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observation. In turn, evidence accumulation models (EAMs) build 
upon this framework to better describe the whole decision-making 
process, including sensory encoding and motor execution time. Thus, 
SDT and EAMs present themselves as static and dynamic variants 
within the same family of hypothesis tests (Griffith et al., 2021). By 
estimating the accumulation of evidence over time, EAMs not only 
predict accuracy but also response time distributions – which have 
been shown to be crucial when linking behavioral and neural data 
(Gold and Shadlen, 2007). The assumptions shared between EAMs 
constitute a formal theory of decision-making (Evans and 
Wagenmakers, 2020) with three main assumptions: (1) evidence 
supporting each choice is accumulated over time, (2) the accumulation 
is characterized by random fluctuations, and (3) the decision is taken 
when enough evidence favoring one choice has been accumulated up 
to a threshold (Bogacz et al., 2006). While these assumptions generally 
hold for the whole class of EAMs, each model has different 
characteristics, parameters, and assumptions. For example, a major 
distinction between evidence accumulation models pertains to the 
number of accumulators. The DDM has a single accumulator with two 
boundaries, thus describing a two-alternative forced choice. Race 
models, such as the Racing Diffusion Model (RDM; Tillman et al., 
2020), the Linear Ballistic Accumulator (LBA; Brown and Heathcote, 
2008) and the Leaky Competing Accumulator (LCA; Usher and 
McClelland, 2001), can account for multiple responses and can thus 
be  applied to a wider range of tasks. For a detailed comparison 
between EAMs see Ratcliff et al. (2016).

In the past, both the RDM (Tillman et al., 2020) and the LBA 
(Forstmann et al., 2010; Nishiguchi et al., 2019) have been used to 
investigate decision-making biases. Nonetheless, the DDM remains 
the most used EAM in the response bias research (Mulder et al., 2012; 
Nunez et al., 2017; Garton et al., 2019; Klatt et al., 2020; Ghaderi-
Kangavari et al., 2022, 2023) and it has been shown to be the optimal 
decision-making mechanism for two-alternative forced choice tasks 
(Bogacz et al., 2006). Because of its extended applications and efficacy, 
here we will only report studies that used the DDM or a closely related 
version such as the attentional DDM (Krajbich et al., 2010).

The DDM describes how sensory evidence is accumulated over time 
(see Figure 3). The average velocity of evidence accumulation is defined 
by the drift rate. The starting point of evidence accumulation is drawn 
from a uniform distribution and, when unbiased, is assumed to 
be equally distant from each choice on average so that no option has an 
advantage over the other. The threshold is the evidence accumulation 
boundary. Once it is reached, the participant commits to a choice and 
executes the motor processes that allow for a response. Finally, 
non-decision time captures all the remaining cognitive processes that 
happen between the stimulus onset and the decision time, such as visual 
encoding time and motor response execution. The DDM also has three 
additional parameters addressing across-trial variabilities in drift rate, 
starting point, and non-decision time. These parameters allow the DDM 
to provide accurate predictions of the law-like patterns in the data 
(Forstmann et al., 2016), especially predicting different RT distributions 
for correct and incorrect responses (Laming, 1979).

Despite the advantages EAMs offer over simpler cognitive models or 
statistical tests, a series of criticisms have been raised towards this class 
of models. Firstly, some authors (Evans and Wagenmakers, 2020) argue 
that EAMs have reached a limit in the extent to which they can explain 
decision-making processes. The high similarity between EAMs renders 
difficult assessing which cognitive dynamics best explain the decision 
process. A crucial challenge involves assessing how well neural data can 
be  integrated into the EAM framework. Neural data offer greater 
possibility of discrimination between different theoretical accounts 
compared to behavioral data. Secondly, some of the models’ assumptions 
are incompatible with recent empirical findings (Evans and 
Wagenmakers, 2020). For example, the motor response and the decision 
process have been shown to be temporally intertwined (Servant et al., 
2015, 2016), contradicting the DDM assumption of sequentiality. A 
future step to address such a problem will consist of replacing random 
sources of variability with systematic ones. Other limitations include 
falsifiability issues which could arise with some EAMs (Heathcote et al., 
2014; Jones and Dzhafarov, 2014). If the parameters are not properly 
constrained, the high flexibility of such models could result in an 
unfalsifiable model (Heathcote et al., 2014).

FIGURE 2

Experimental task from Kaneko and Sakai (2015). A mostly green probability cue indicates a 67% probability of seeing a moving Gabor patch, while a 
mostly purple cue indicates a 33% probability of seeing a moving Gabor patch. The Gabor patch is shown until the participant presses a key, indicating 
that he has decided. A subsequent decision-response mapping cue instructs the participants to report whether the Gabor patch was moving or not.
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3. Cognitive modelling of attention 
and prior probability

3.1. Attention

A diverse range of attentional tasks, from Posner Cueing to 
Multiple Object Tracking, is essential for comprehensively probing the 
intricate nature of attention. Each paradigm targets specific attentional 
aspects, such as spatial, feature-based, or object-based attention, 
enabling a more holistic understanding. As attention is a multifaceted 
phenomenon, employing various tasks ensures a more accurate and 
nuanced portrayal of its mechanisms and limitations. This broad 
perspective is crucial for the development of cognitive models of 
attention, whose primary goal is to encompass the different attentional 
mechanisms under a common theoretical framework.

An example of this comes from the developed of a variant of the 
DDM called attentional drift-diffusion model (aDDM; Krajbich et al., 
2010). The aDDM is based on the idea that attention mediates the 
formation of visual short-term memory traces, a concept previously 
formalized by Smith and Ratcliff (2009). The attentional drift-diffusion 
model keeps the main properties of the DDM but makes further 
assumptions about the role of eye movements. Specifically, the model 
assumes that as participants allocate gaze time onto one option relative 
to the other, they are more likely to choose the gazed option. Such 
assumption is formalized as a drift rate bias towards the attended choice 
(see Figure 4). The aDDM predicts that participants will tend to choose 
the last seen option, unless the choice’s value is significantly worse than 
the alternative option; a prediction that has received empirically support 
(Smith and Krajbich, 2018) across different decision-making domains 
(e.g., food- and money-related, risky, and social choices), consolidating 
the role of eye movements in attention orienting. Crucially, promising 
prospects derive from the recent expansion of the aDDM, in which the 
probability of fixation on an alternative is expressed as a logistic function 
of its accumulated value (Gluth et al., 2020). Such models highlight how 
the attentional mechanisms not only increase evidence accumulation, 

but also account for the value of the available options (Smith and 
Krajbich, 2019).

Two more recent studies investigated how spatial attention 
influences perceptual decision-making with the classic DDM, while 
recording electroencephalography (EEG) data. The paradigm, shared 
between the two studies, consisted in a house/face discrimination task 
which featured a spatial attention cue before the stimulation (see 
Figure 5). The first study (Ghaderi-Kangavari et al., 2023) consisted in 
a model comparison test, measured with deviance information 
criterion (DIC) and R2. The authors reported that the winning model 
allowed non-decision time to vary between the spatial attention 
conditions. This finding diverges from the idea that attention affects 
drift rates by increasing signal-to-noise ratio during evidence 
accumulation (Smith et al., 2004; Krajbich, 2019; Klatt et al., 2020) but 
remains in line with DDM predictions (Smith et  al., 2004). 
Nonetheless, this result may not reflect the same attentional processes 
investigated in previous studies as the uncertainty factor induced by 
the coherence manipulation influences attentional effects (Smith and 
Ratcliff, 2009). It is also worth noting that the authors report a 
significant correlation between the amplitude of contralateral N2 
component and non-decision time, corroborating previous studies 
(Klatt et al., 2020). These findings were extended by the second study 
(Ghaderi-Kangavari et al., 2022) investigating how spatial attention 
affects different sub-components of non-decision time. Visual 
encoding time was found to be influenced by spatial attention but not 
exclusively. In fact, the authors speculate that motor execution time 
might be affected as well. Considering that older adults were found to 
have significantly higher non-decision times compared to younger 
adults (Klatt et al., 2020), both hypotheses remain plausible.

3.2. Prior probability

Several EAM-based studies that probed prior probability 
manipulations converged on the idea that they mainly influence the 

FIGURE 3

Visual representation of the DDM. The timeframe between stimulus onset and the execution of the response includes both decision- (black) and non-
decision- (red) related processes. The evidence accumulation begins at a starting point that is sampled from a uniform distribution (green), and 
proceeds with a mean speed known as the drift rate, which is sampled from a normal distribution (blue). Once the threshold is reached, we assume 
that the participant commits to a choice and initiates the motor command. The duration of non-decision processes is sampled from a uniform 
distribution.
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starting point parameter (Ratcliff and McKoon, 2008; Simen et al., 
2009; Forstmann et al., 2010; Mulder et al., 2012; White and Poldrack, 
2014; Garton et al., 2019). More recently, researchers combined the 
DDM with fMRI data to reveal how prior probability affects neural 
dynamics during a face/house discrimination task (Dunovan and 
Wheeler, 2018). The authors reported that the model with the best fit 
allowed both starting point and drift rate to vary between prior 
probability conditions. At the neural level, the drift rate bias mapped 
onto pre- and post-stimuli BOLD activity in the Inferior Temporal 
Cortex (ITC), indicating that quality of evidence is reflected by 
physiological activity in this category-selective region. This result 
corroborates previous findings that found prior probability 
manipulations to affect the drift rate parameter (Hanks et al., 2011; 
Kelly et  al., 2021). Another recent study (Garton et  al., 2019) 

investigated age-related differences in prior probability bias. The 
results indicate that flexibility of bias control, which refers to the 
tendency to be biased, is minimally impaired with age.

3.3. Summary

Taken together, studies investigating the role of attention and prior 
probability via cognitive modelling reveal a complex picture. The 
discrepancies within studies on attention or expectation might be due to 
the heterogeneity of paradigms used, deployed strategies by participants 
or unknown latent factors. Nonetheless, the different impact of age on 
attention and expectation biases supports the view in which these 
psychological phenomena arise from different mechanisms.

FIGURE 4

Visual representation of the aDDM. In the aDDM, fixating one option biases the slope of the relative decision value towards that choice. As in the DDM, 
when the relative decision value reaches one of the boundaries, a decision is made.

FIGURE 5

Experimental task from Ghaderi-Kangavari et al. (2022, 2023). There are three possible spatial attention cues, the one-sided arrows are informative 
while the two-sided arrow is uninformative. The stimulus can either be a face or a house, and it can either have high coherence (low noise) or low 
coherence (high noise). The participant is asked to report whether the stimulus is a face or a house after the stimulation is over, during the response 
window.
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Attentional manipulations, which have been often linked to the 
drift rate parameter, and thus to the speed of evidence accumulation, 
have also been shown to influence non-decision time. Such findings 
suggest that attention has a broad impact on cognition, which is not 
measurable by a single DDM parameter. This is in line with the 
generally shared view of attention as an all-round cognitive 
phenomenon, not attributable to a single brain region but rather to a 
network of regions. Components of the frontoparietal network have 
repeatedly been associated with spatial attention (Nobre and Kastner, 
2014), including the posterior parietal cortex, intraparietal sulcus, 
dorsal premotor/posterior prefrontal cortex and anterior cingulate 
cortex. On the more temporal side, the results showing a correlation 
between the contralateral N2 component and non-decision time pave 
the way for future studies investigating the influence of attention on 
the motor component of non-decision time, e.g., via 
electromyography-based models of decision-making (Servant et al., 
2021). The overall picture suggests that the selective influence of 
spatial attention manipulations on DDM parameters is challenged.

Several studies investigating prior probability manipulations have 
been shown to influence drift rate (Hanks et al., 2011; Dunovan and 
Wheeler, 2018; Kelly et al., 2021), in addition to the established influence 
on starting point (Ratcliff and McKoon, 2008; Simen et  al., 2009; 
Forstmann et al., 2010; Mulder et al., 2012; White and Poldrack, 2014; 
Garton et  al., 2019). The diffuse influence of prior probability 
manipulations on both drift rate and starting point suggests that a 
multistage process might be in place (Dunovan and Wheeler, 2018). In 
line with this hypothesis, drift rate between prior probability conditions 
correlates with the ITC BOLD activity (Dunovan and Wheeler, 2018) 
while activation in the frontoparietal network is associated with shifts in 
the starting point parameter (Mulder et al., 2012).

4. Conclusion

In this paper, we  reviewed the most popular methodological 
approaches used to study decision-making biases. We illustrated the 
properties of statistical models and explained why their descriptive 
function is fundamental to empirical research. Nonetheless, we also 
discussed how such models do not provide enough insight into the 
cognitive processes underlying decision-making. We  continued by 
illustrating how cognitive models overcome the limitations of statistical 
models by providing a formal description of the investigated cognitive 
processes; the obtained results are unambiguously interpretable 
according to the model’s assumptions. We reviewed studies that applied 
both Signal Detection Theory and Evidence Accumulation Models and 
showed that EAMs have a significant advantage over SDT because they 
incorporate response time measures, in addition to response choice. 
Early applications of cognitive models, such as the SDT, provided means 
to quantify the bias. More advanced cognitive models, such as EAMs, 
can account for the relationship between RT distributions and accuracy 
(Forstmann et al., 2016). Particularly, the DDM have been shown to 
reliably explain a variety of speeded decision-making tasks. Finally, 
we reviewed recent studies which manipulated expectation and attention. 
Even if the emerging picture remains elusive, cognitive models of 
decision-making can help us to disentangle intricately intertwined 
processes such as attention and expectation.

In conclusion, investigating decision-making biases is a necessary 
step to achieve a greater understanding of the decision-making 

process. This is true for both basic and clinical research. We argue that, 
at this point in time, the implementation of state-of-the-art cognitive 
models is the best approach to quantify biases, test formal theories and 
advance the field of research.

5. Future outlook

While cognitive models are useful for identifying and quantifying 
(e.g., attentional) biases, they leave open the question of which neural 
dynamics lead to these biases.

A prominent class of models used to explain the neural dynamics 
of evidence accumulation are attractor neural network models (Wang, 
2002; Wong and Wang, 2006; Quax and Van Gerven, 2018; Esnaola-
Acebes et al., 2022). Attractor dynamics entail that the neural networks 
have one or more stable states, to which the network converges over 
time. These models have also been successful in explaining a wider 
variety of cognitive processes including memory (Hopfield, 1982) and 
classification (Chaudhuri and Fiete, 2019). The temporal dynamics of 
these models can lead to response time and choice data that are highly 
similar to those predicted by the evidence accumulation models 
(Keung et al., 2020). Attractor neural network models have been used 
to investigate which neural parameters lead to known phenomena in 
RT data. For example, Lo and Wang (2006) used a neural network 
model of cortico-basal ganglia dynamics to show that adjustments in 
response caution (decision thresholds) could be  implemented by 
adjusting the strength between synapses of the cortico-striatal 
connections. Moreover, nonlinear attractor models can explain post-
error response time biases in the absence of feedback (Berlemont and 
Nadal, 2019) and confidence-related sequential effects observed in 
empirical data (Berlemont et al., 2020).

Despite it is yet unclear how biases in attention or prior probability 
could be implemented in attractor neural network models, a recent 
study that fit such models to empirical RT data (Berlemont et al., 
2020) offers exciting opportunities for direct comparison with 
evidence accumulation models.
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