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Introduction: The automatic precision detection technology based on

electroencephalography (EEG) is essential in epilepsy studies. It can provide

objective proof for epilepsy diagnosis, treatment, and evaluation, thus helping

doctors improve treatment e�ciency. At present, the normal and acute phases of

epilepsy can be well identified through EEG analysis, but distinguishing between

the normal and chronic phases is still tricky.

Methods: In this paper, five popular complexity indicators of EEG signal, including

approximate entropy, sample entropy, permutation entropy, fuzzy entropy and

Kolmogorov complexity, are computed from rat hippocampi to characterize the

normal, acute, and chronic phases during epileptogenesis. Results of one-way

ANOVA and principal component analysis both show that utilizing complexity

features, we are able to easily identify di�erences between normal, acute, and

chronic phases. We also propose an innovative framework for epilepsy detection

based on graph convolutional neural network (GCNN) using multi-channel EEG

complexity as input.

Results: Combining information of five complexity measures at eight channels,

our GCNN model demonstrate superior ability in recognizing the normal, acute,

and chronic phases. Experiments results show that our GCNN model reached the

high prediction accuracy above 98% and F1 score above 97% among these three

phases for each individual rat.

Discussion: Our research practice based on real data shows that EEG complexity

characteristics are of great significance for recognizing di�erent stages of epilepsy.

KEYWORDS

EEG complexity measures, entropy, graph convolutional neural network, epilepsy

diagnosis, chronic stage

1. Introduction

Epilepsy is a neurological disorder defined as a transient occurrence of clinical features

produced by abnormal excessive or synchronous neuronal (Fisher et al., 2005). Worldwide,

more than 50 million people have epilepsy, affecting humans of all ages, ethnicity, and

society. It has been classified as one of the most highly challenging neural psychiatric diseases

that the World Health Organization (WHO) focuses on prevention and treatment (Saxena

and Li, 2017). Epilepsy is characterized by recurrent seizures caused by abnormal discharge

of brain neurons and an ongoing predisposition to recurrent seizures. The patients with
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epilepsy mainly include those with reflex seizures and those with

more than one unprovoked seizure after 24 h. In particular,

compared to the general population, the probability of having

recurrent seizures in the next 10 years for epileptic patients who

have had a single seizure is at least 60% (Fisher et al., 2005).

Therefore, the diagnosis and treatment of epilepsy are of great

significance for humans, while accurate prediction of epileptic

seizures is crucial for achieving precision treatments in epilepsy.

The rat pilocarpine (PILO) model of temporal lobe epilepsy (TLE)

is an animal model in which central cholinergic receptors are

activated to induce seizures by pilocarpine, a post-ganglionic

cholinergic drug that can produce quasi-cholinergic effects by

directly exciting M-cholinergic receptors (Song et al., 2016). Since

the damage and indications of the rat PILO model are comparable

to those of human TLE, it is a widely used animal epilepsy model of

TLE. This model exhibits three important phases (Song et al., 2016):

(1) the normal phase—1 day before status epilepticus (SE), (2) the

acute phase—the duration of SE and 6–24 h after SE, and (3) the

chronic phase—marked by occurrences of spontaneous recurrent

seizures (SRS) after SE.

As one of the most potent and economical tools to record

and monitor the brain’s electrical activity, in recent years,

electroencephalogram (EEG) analysis has become a hot topic

in epilepsy diagnosis, and related studies for both doctors and

researchers (Karlócai et al., 2011). Analyzing EEG recordings

can provide an objective reference for diagnosing epilepsy-related

diseases, such as the identification, prediction, focus location, or

treatment evaluation of epilepsy (Karlócai et al., 2011). Various

features extracted from EEG signals play essential roles in disease

diagnosis as they can help researchers to describe the characteristics

and mechanism of epileptic seizures. Basically, EEG signal features

are divided into four categories. Time-domain features analyze how

signal changes with time (Srinivasan et al., 2005; Sharmila and

Geethanjali, 2018; Wei et al., 2019), frequency-domain features

depict how signal lies within each frequency band (Srinivasan

et al., 2005; Faust et al., 2010; Wen and Zhang, 2017), time-

frequency domain features are characteristics consider both time

and frequency domain (Tzallas et al., 2009; Wang et al., 2017),

while nonlinear features regard the brain as a system to describe

its complexity and the amount of information (Yuan et al., 2011; Li

et al., 2017; Wang et al., 2017). Many previous studies have made

significant progress in epilepsy detection based on one or more

of these EEG signal features (Boonyakitanont et al., 2020). Since

EEG signal shows non-stationary and nonlinear dynamic behavior

when measuring the electrical activity of a brain (Natarajan et al.,

2004), EEG signal features based on nonlinear dynamic properties

may be better than the other three types of features in mining

and detecting the regular changes of EEG in different stages of

epileptogenesis. Recently, more and more researchers treated the

dynamic changes of brain activity as a complex nonlinear system to

study their complexity. Thus, some nonlinear complexitymeasures,

especially various entropy indices, have attracted the great attention

of researchers through their outperformance in characterizing EEG

signals by quantifying the complexity and amount of information

(Liang et al., 2015).

Most early studies achieved good performance for

applying complexity measures and one or more classifiers to

distinguish different stages of epilepsy by analyzing EEG signals.

Sharma et al. (2014) built epileptic seizure detection models

based on four complexity measures, including Shannon entropy,

Renyi entropy, approximate entropy (ApEn), and sample entropy

(SampEn), to classify the EEG signals during focal and non-focal

epilepsy and achieved 87% accuracy by the least squares support

vector machine (LS-SVM) classifier. To achieve auto-detection

of focal and non-focal EEG recordings, Arunkumar et al. (2017)

yielded the highest accuracy of 98% by feeding five different

entropy features to the non-nested generalized exemplars (NNge)

classifier after comparing with other four different classifiers,

including naıve bayes classifier (NBC), radial basis function

(RBF), support vector machines (SVM), and k nearest neighbor

(KNN). Xiang et al. (2015) trained SVM using fuzzy entropy

(FuzzEn) to detect epileptic seizures from normal groups and

reached a detection rate of 98.31 and 100% on two different

datasets, respectively.

However, most of these notable results were obtained from

distinguishing epileptic EEG signals in the acute stage of epilepsy

from normal. The study on EEG characteristics in the chronic

stage has seldom been mentioned. Due to the fact that epilepsy

patients are mostly in the chronic phase rather than the acute

phase, identifying the chronic phase of epilepsy is particularly

important for the timely diagnosis and treatment of epilepsy. It is

beneficial to study and predict the chronic phase of epilepsy: (1) the

pathophysiological mechanism of epilepsy and the effects and side

effects of long-term medication in epileptic patients can be better

understood; (2) and chronic seizures of epilepsy patients can be

intervened and treated in advance. Hence, the primary motivation

behind this work is to clarify the role of the complexity measures of

EEG signals during acute and chronic seizures from normal groups.

Further, it has been observed that most studies used traditional

machine learning algorithms, such as SVM, Decision Tree, and

KNN, to implement the classification tasks. Due to the simplistic

structure of these conventional machine learning algorithms, only a

single channel of EEG signals can be considered in the classification

tasks. Nevertheless, multi-channel EEG is widely used for diagnosis

and therapy in clinical practice because brain diseases are rarely

limited to a specific region (Bullmore and Sporns, 2009). This

prompted us to consider an advanced classifier that can integrate

multi-channel EEG for epileptic detection.

Graph convolutional neural network (GCNN) is a deep neural

network classification model capable of handling multichannel

EEG signal analysis (Craley et al., 2022). It is an improvement

of convolutional neural networks (CNN) and can preserve richer

connection information than 2D or 3D matrices by considering

EEG signals to be nodes in a topological graph and representing the

relationships between them using edges (Lian et al., 2020). GCNN

can describe the internal relationship between different graph’s

nodes, therefore providing a way to explore the relationship among

multiple EEG channels in the EEG-based classification (Song et al.,

2018). Thus, in recent years, GCNN has been applied and made

an enormous impact on EEG-based recognition, including emotion

recognition (Zhang et al., 2019), neurological disease diagnosis

(Wagh and Varatharajah, 2020), sleep stage classification (Jia et al.,

2020), epilepsy diagnosis (Covert et al., 2019; Li and Jung, 2021),

and brain motor imagery (Hou et al., 2022).

In this paper, we developed an automatic epileptic detection

system via GCNN using five complexity measures of EEG,
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TABLE 1 Electrode coordinates for areas of interest in the rat PILO model

of TLE during epileptogenesis.

Names of parts Coordinates

Cornu ammonis 1 (CA1) AP: 3.3–3.7 mm from Bregma, ML:

2.0–3.0 mm, and DV: 3.0–3.5 mm

from the surface of neocortex

Cornu ammonis 3 (CA3) AP: 3.3 mm, ML: 3.5–3.7 mm, and

DV: 3.0–3.5 mm

The surface of neocortex of the

bilateral parietal lobe (Reference

Electrode)

AP: 7.0 mm, ML: 6.0 mm

Dentate gyrus (DG) AP: 5.6 mm, ML: 4.0 mm, and DV:

6.0 mm

including approximate entropy, sample entropy, permutation

entropy, fuzzy entropy, and Kolmogorov complexity to monitor

dynamic changes and distinguish EEG recordings among normal,

acute, and chronic stage of epilepsy. Statistically significant

indicators are useful in indicating the difference between chronic

and normal stages, prompting doctors to intervene in advance.

2. Materials and methods

2.1. EEG recordings

The experimental data used in this paper was from a previous

study (Song et al., 2016), in which the rat PILOmodel of TLE is used

in this experiment (Song et al., 2016). In particular, the subject rats

were injected with pilocarpine to induce seizures and were stopped

by utilizing diazepam. The EEG signals were recorded during the

experiment by drilling holes in the skull at specific locations and

implanting microelectrodes. The coordinates for particular sites of

interest in the hippocampus in our study are shown in Table 1.

According to Song et al. (2016), each EEG recording has around

600,000 sampling points (10 min), and the original dataset could

be mainly divided into six stages, including normal (1 day before

SE), pre-seizure (30, 20, and 10 min before SE), acute [10 min

after SE, 10 min before, and after utilizing diazepam (i.e., DZP

injection)], stable (1, 2, and 3 h after the diazepam), latent (1, 3,

and 7 days after SE), chronic (7, 14, and 28 days after SE) stages.

Figure 1 describes and compares the 1 s waveforms (250–500 Hz)

selected randomly from normal, acute, and chronic phases for

representative rat (no.16) in channel CA1(R). Intuitively looking

from Figure 1, the EEG of the acute phase is far from that of the

normal and the chronic phases, with much wider amplitude and

some typical waveform, while the difference between the normal

phase and the chronic phase is not obvious.

2.2. Complexity measures

Five complexity metrics, including ApEn, SampEn, FuzzEn, PE,

and KC, have been computed to quantify the dynamic changes

of EEG signals during different stages of epileptogenesis. A brief

introduction to these metrics is given in this section.

2.2.1. Approximate entropy
Approximate Entropy (ApEn) was proposed by Pincus et al.

(1991) from the perspective of measuring the complexity of signal.

It is a non-linear dynamic measure that quantifies the incidence

of new information in the time series (Pincus et al., 1991). The

higher the probability of a new pattern being generated in this time

series, the higher the complexity of the sequence and the higher the

corresponding ApEn value.

The calculation of ApEn is calculating the degree of self-

similarity of a time series, that is, the difference between the

probability of mutual approximation of m points adjacent to the

sequence and the probability of mutual approximation of m + 1

points. Compared with the statistical characteristics such as mean

and variance, ApEn can better reflect the characteristics of signal

sequence in structural distribution.

2.2.2. Sample entropy
In order to reduce the estimation bias in the calculation

of ApEn by comparing it to its own data segment, Sample

Entropy (SampEn) was proposed by Richman and Moorman

(2000). Different from ApEn, SampEn eliminates self-matches

in the algorithm and computes the difference of logarithms of

the probabilities. Therefore, SampEn is more accurate, more

consistent, and not sensitive to the missing values.

2.2.3. Permutation entropy
Proposed by Bandt and Pompe (2002), Permutation Entropy

(PE) provides a quantification measure of the complexity of a time

series by capturing the order relations between reconstructed

subsequences. Computed from the extracted probability

distribution of the ordinal patterns (Henry and Judge, 2019),

the value of PE may account for the temporal ordering structure

(time causality) of a given time series. The PE approach is robust

to noise, computationally efficient, and invariant with respect to

non-linear monotonic transformations of the data.

2.2.4. Fuzzy entropy
Inspired by the concept of fuzzy set (Zadeh et al., 1996), Chen

et al. (2007) proposed a new measure of complexity for time series

in 2007, called Fuzzy Entropy (FuzzEn). Modified from ApEn and

SampEn, but unlike them, FuzzEn measures the similarity of two

vectors based on the idea of “fuzzy.” That is, the similarity is

no longer 1 or 0 determined by a single threshold but a fuzzy

membership function, thereby blurring the similarity measure.

2.2.5. Kolmogorov complexity
As an early complexity measure, Kolmogorov Complexity (KC)

was first proposed by Solomonoff (1960) and then developed by

Chaitin (1977). According to Li and Vitányi (2008), for a given

string or sequence, KC is defined as the size of the smallest

program that is needed to generate that string. It was also known

as “algorithmic complexity,” “Kolmogorov-Chaitin complexity,”

“shortest program length,” etc. Unlike Shannon’s information
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FIGURE 1

One second EEG waveforms in normal, acute, and chronic phases from rat no.16 in channel CA1(R), 250–500 Hz.

theory, KC is a measure of randomness or irregularity of individual

objects rather than the average information of a random source.

2.3. Classification

In order to integrate all these complexity metrics at different

channels, in this section, a GCNN-based classification framework

is proposed and implemented to automatically identify and detect

the acute and chronic stages of epilepsy.

2.3.1. Graph convolutional neural network
(GCNN)

Our automatic epileptic detection system is built on GCNN

proposed by Defferrard et al. (2016). GCNN is an extension

framework that combines classical convolutional neural networks

(CNN) and spectrum theory. Three main steps are involved to

generalize CNNs to graphs, including designing the localized

convolutional filters on graphs, clustering the similar vertices,

and transforming spatial resolution for higher filter resolution

(Defferrard et al., 2016). Thus, in addition to retaining the

advantages of CNN, GCNN can deal with homogeneous and

heterogeneous data (Such et al., 2017). In particular, it is capable

of extracting features from unstructured data, such as graph

representations, by performing convolutions on graph signals

(Raeisi et al., 2022). Meanwhile, using graph as the input, GCNN

provides a useful tool for processing signals frommultiple channels

simultaneously. Figure 2 shows a flow diagram of this automatic

epileptic detection system for distinguishing EEG signals during the

acute or chronic stage of epilepsy from normal.

2.3.1.1. Graph construction

As presented in Figure 2A, the inputs of our GCNN classifier

are constructed on graphs with complexity measures. After

collecting and preprocessing the 10-min 8-channel EEG as

mentioned in Section 2.1, five complexity characteristics were

extracted from each 1s-epoch EEG of each channel. To construct

graphs, the sets of features are organized as a matrix. In particular,

each feature matrix for a 1s-epoch EEG has eight rows and five

columns, representing five extracted features at eight channels.

Then, graphs representing five kinds of complexity at eight

channels were generated and labeled with their specific stage (i.e.,

normal/acute/chronic). In this case, we notice that the connectivity

pattern between channels may exist some kind of similarity in three

stages of epilepsy. Therefore, to reduce potential interference due

to this continuity between the three different stages, we construct

each complete graph with eight nodes and all edges equal to 1, as

the input to GCNN.

2.3.1.2. GCNN classification model

To achieve epileptic detection tasks, the constructed graphs

were inputted to the classifier for training and validation to find

the best GCNN model in identifying the specific stages (i.e.,

normal/acute/chronic) of current EEG fragments. As presented in

Figure 2B, this GCNN network comprises two graph convolution

blocks, two fully connected (FC) layers, and a softmax output

layer. Each convolution block consists of a graph convolution layer,

a max-pooling layer, and a Rectified Linear Unit (ReLU) active

function. Specifically, the purpose of the convolution layer is to

capture the features from the input graphs and learn the features

that would be useful for the classification tasks. The max-pooling

layer is a down-sample operation, which reduces the computation

and avoids overfitting by decreasing the number of parameters to

learn. Afterward, the ReLu layer will replace the input with zero

if it is negative; otherwise, it will retain the original value. It is

expressed by:

ReLu(x) = max(0, x), (1)
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FIGURE 2

The architecture of the three-stage epileptic detection using complexity-GCNN classifier. (A) Graph construction for five complexity measures at

eight channels. (B) epileptic detection GCNN classification model.

After a repeated graph convolution block, two FC layers

followed. In particular, between these two FC layers, a ReLu layer

was used, and a regularization technique called dropout was applied

to avoid overfitting. Finally, the softmax activation function was

used for three-stage epileptic detection tasks to obtain the result.

The detailed configuration of this GCNN classification model is

shown in Table 2.

2.3.2. Evaluation metrics
Three typical assessment methods: confusion matrix,

accuracy and F1 score are employed to evaluate the

classification performance of the GCNN model constructed

on complexity measures.

2.3.2.1. Confusion matrix

It is a 3 × 3 matrix that tells us the rate of true positives and

false positives when the sampled signal is from normal, acute, and

chronic stages, respectively.

2.3.2.2. Accuracy

The overall accuracy is a classifier’s ability to correctly predict

the classes and is defined as:

Accuracy =
Correct Predictions

Total Predictions
× 100%. (2)

2.3.2.3. F1 score

The F1 score refers to a balanced measure between two other

metrics: precision and recall, where precision is the ability of the

TABLE 2 The configuration of the GCNN-based classifier.

Layer Output size (Tensor)

Input [6∗ , 1, 8, 5]

GconvBlock1 Graph convolution

Pool

ReLU [6, 10, 4, 3]

GconvBlock2 Graph convolution

Pool

ReLU [6, 20, 2, 1]

Flatten [6, 40]

FC1 Fully connected

ReLU [6, 15]

Dropout [6, 15]

FC2 Fully connected [6, 3]

Prediction Softmax [6, 3]

∗The batch size of training is six and the result will contain six training units.

classifier to identify the positive class with accuracy, and recall is

the ability of a model to predict each of the positive observations

within a data set correctly. It is expressed as:

F1 score =
2× Precision× Recall

Precision+ Recall
× 100%. (3)
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FIGURE 3

Dynamic changes of the complexity at 15 successive time slots of PILO modeling.

TABLE 3 Results of one-way ANOVA for distinguishing normal, acute, and chronic phases.

Complexity measure Mean di�erence in multiple comparisons F-test p-value

Normal-acute (p-value) Normal-chronic (p-value)

ApEn 0.7710 (5.1e-9) 0.0961 (5.4e-9) 1660.3 1.3e-215

SampEn 1.4203 (5.1e-9) 0.0858 (8.8e-8) 5502.9 0

PE 0.0310 (5.1e-9) 0.0200 (5.1e-9) 302.4 1.5e-85

FuzzEn 0.6199 (5.1e-9) 0.1011 (5.1e-9) 1711.6 2.2e-218

KC 0.1014 (5.1e-9) 0.0125 (8.2e-9) 1493.2 4.5e-206

3. Results and discussion

This section demonstrates the main results of EEG complexity

analysis and three-stage epileptic detection.

The procedures of EEG processing and feature extraction

were carried out using MATLAB R2022a. Statistical analyses

were performed using SPSS 25.0, and the GCNN-based

three-stage epileptic classification was conducted using

Python 3.9.12.

During data processing, each 10-min EEG recording

sample with 600,000 data points was divided into non-

overlapping 1s epochs, resulting in 600 epochs and

1,000 data points in each epoch. Then, EEG signals

were decomposed by wavelet transform based on

the Haar wavelet and extracted a specific frequency

band spanning 250–500 Hz (Fast Ripples). Following

the data pre-processing, five complexity measures,

including ApEn, SampEn, PE, FuzzEn, and KC, are

calculated on each EEG epoch of the eight channels for

further analysis.

3.1. Dynamic changes in complexity

To demonstrate the dynamic changes of the complexity for all

stages mentioned in Section 2.1, a boxplot of the PE distributions

at 15 successive stages of the channel CA1(L) of representative rat

(no.16) is given in Figure 3. It was found that in the normal period

(1 day before SE), the PE values are at a relatively high level, and

the EEG shows a large randomness. The complexity starts to drop

30 min before SE, then continues to fall sharply until the DZP is

injected. The decreasing of the complexity suggests that with the

onset of epilepsy, EEG gradually presents some regular rhythms,

which reduces the complexity. Afterward, from 10 min after DZP

injection, PE values continue rising and recover to normal by 3 h

after DZP injection. However, after the effect of DZP subsides, it is

found that the values of PE begin to decline to a certain extent in

the chronic stage. This indicates the appearance of SRSs. Using PE

as a representative of EEG complexity clearly shows the dynamic

changes of the brain’s electrical activity before and after SE, in

the process of seizure and DZP injection, and the chronic phase

(Figure 3).
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FIGURE 4

The line charts with error bars (95% CI) of each of the complexity measures in three epileptic stages for representative rat (no.16) (A–E).

TABLE 4 The hyperparameter settings of the GCNN-based classifier for

classification.

Hyperparameter Values

For individual
subject

Across all
subjects

Learning rate 0.001 0.001

Epochs 3 50

Batch size (Train) 6 6

Batch size (Test) 2,175 540

Momentum 0.5 0.5

Log interval 10 10

Activation function ReLU ReLU

3.2. Statistical significance

EEG Complexity metrics at normal, acute, and chronic stages

were compared through one-way ANOVA. The F-test statistics and

the two-tailed p-values were presented in Table 3. Tukey’s test was

performed for pairwise comparison for the complexity between any

two of the stages, and the mean differences (p-values) for normal

and acute stages, normal and chronic stages were also given in

Table 3. In this part, three 10-min EEG recordings, including “1

day before SE,” “10 min before DZP injection,” and “28 days after

SE” were selected to represent normal, acute epilepsy, and chronic

epilepsy, respectively. Each 10-min EEG recording was divided

into 20 equal-length epochs. So, the number of each computed

complexity measure for normal, acute, and chronic groups in

one-way ANOVA is 160, including epochs from eight channels.

Through the results of one-way ANOVA, we found that using

complexity as a feature can well reflect the differences between

normal, acute, and chronic phases. Regardless of the type of

complexity, the p-values of the F-tests are close to zero. In the

pairwise comparisons using Tukey post-hoc testing, there is also

a significant difference in complexity between normal and acute

phases, as well as between normal and chronic phases, with p-values

all below 10−7. These results indicate that complexity measures are

beneficial features in distinguishing different stages of epilepsy.

In fact, the difference between normal and chronic stages is

rarely mentioned in literature. Song et al. (2016) tried to detect

and quantify different phases of epileptogenesis by implementing

average and peak spectral power of high-frequency oscillations

(HFOs). They successfully found the dynamic changes between

the acute and normal stages but failed to show statistical

significance for differences between the chronic and normal

stages using spectral power, the characteristic based on linear

theories. Meanwhile, line charts of means and their 95% confidence

intervals (CI) are presented to visualize the differences for all the

five complexity measures in acute, normal, and chronic phases

(Figure 4). Lines with eight colors represent eight EEG signal

channels, including two reference channels (Ref 1 and Ref 2).

It is clear from Figure 4 that different complexity measures

reflect similar laws, that is, the mean complexity of EEG is at a

relatively high value in the normal period, while in the acute phase

of epilepsy, the mean complexity has a significant decline, which

confirms that during epilepsy, EEG will continue to appear some

particular waveforms and become regular. In the chronic period,

entropy will rise again, even returning to a level close to the normal
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FIGURE 5

The confusion matrices of GCNN-based classifier for three-stage epileptic detection based on (A) rat no.16, (B) rat no.19, (C) rat no.22, and (D) rat

no.23, respectively.

TABLE 5 Classification performance of GCNN based on complexity

measures.

Subject Accuracy (%) F1 score (%)

Normal Acute Chronic

Rat no.16 0.9944 1.0000 0.9917 0.9916

Rat no.19 0.9981 0.9972 0.9972 1.0000

Rat no.22 0.9926 0.9917 0.9972 0.9888

Rat no.23 0.9833 0.9862 0.9863 0.9773

Combined 0.8782 0.9725 0.8603 0.7927

phase but slightly lower than the normal phase. In particular, for

PE, the gap between the normal and chronic phases is relatively

apparent. Another noteworthy point is that two reference channels

(Ref 1 and Ref 2) are also included in this comparison. However, it

is interesting to see from the line charts listed in Figure 4 that these

two reference channels (Ref 1 and Ref 2) express similar complexity

during the main stages of PILO modeling.

3.3. Classification performance

To evaluate the performance of complexity indicators in

classifying the normal, acute, and chronic stages of epilepsy, we

conduct GCNN-based classification with hyperparameter settings

listed in Table 4 for each individual rat, and across all rats. The

data was split into training, validation and testing sets, with a

50–20–30% partition. Figure 5 includes four confusion matrices

obtained for four rats, where the detection rates of the three

phases are calculated. Other useful evaluation indicators of model

classification such as accuracy and F1 score are also listed in Table 5.

From the confusion matrices shown in Figure 5, the probability

of being detected (i.e., sensitivity) for acute and normal phases

is relatively high, reaching between 99.45 and 100%, while the

detection rate of chronic phase is slightly lower, but still more than

95%. The classification performance across all subjects is shown in

the last row of Table 5. It can be seen that when the measures of the

four rats were merged, the effectiveness of classification decreased

considerably due to the heterogeneity among individual rats.

To demonstrate the superiority of complexity metrics in

differentiating chronic phases of epilepsy, we calculated two sets

of EEG characteristics: one includes five complexity measures,

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1211096
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zheng et al. 10.3389/fncom.2023.1211096

FIGURE 6

The principal component analysis (PCA) score plots of (A) general features and (B) complexity features.

and another has five general features: mean, variance, maximum,

minimum, and skewness. Taking representative rat (no.16) as an

example, the principal component (PC) method is applied to the

two normalized five-dimensional characteristic data matrices to

compress them to two-dimensional metrics. Figure 6 are 2-PC plots

obtained from these two sets of features.

From Figure 6, the normal and acute phases can be well

distinguished under either set of features. However, general

indicators and complexity measures differ in their ability to

distinguish normal and chronic phases. As shown in Figure 6A,

there is a significant overlap between the yellow (i.e., chronic

phase) and blue points (i.e., normal phase), so the general

indicators mix these two phases. Nevertheless, the points of

normal and chronic phases can be easily recognized using

complexity measures (Figure 6B). Thus, the comparison in

Figure 6 gives us a preliminary impression that complexity

measurement can effectively identify the chronic phase

of epilepsy.

4. Conclusion

In this paper, the differences in EEG between normal and

chronic phases of epilepsy for rats were studied in depth for

the first time. By calculating five commonly used complexity

measures: ApEn, SampEn, PE, FuzzEn, and KC, the dynamic

changes in brain waves during seizures can be perfectly displayed.

Results of one-way ANOVA and PCA score plots show that

complexity features can well reflect the differences between

normal, acute, and chronic phases with extremely small p-

values. In particular, among with these complexity metrics, PE

exhibits the greatest discrepancy between normal and chronic

stages. In order to integrate five complexity measures at eight

channels, an automatic epileptic detection system via GCNN

is developed. Our model reaches high performance in epilepsy

detection that the recognition rate of each individual rat can

achieve more than 98%, even 100%, including normal and chronic

stages. In our case study, a comparison between modeling based

on each individual subject and modeling across all subjects

highlighted the non-negligible heterogeneity among individual

rats. Modeling across all subjects may inadequately account

for these individual differences, thus diminishing the model’s

fit to individual data. In contrast, modeling based on each

individual subject can provide highly personalized models for

each individual, significantly enhancing model accuracy, especially

when the chronic phase is considered. This underscores the

necessity of employing modeling based on each individual

subject for personalized treatment recommendations in practical

epilepsy management, ensuring better alignment with patients’

unique needs.

While the above experiments yielded promising results in

the classification of three epilepsy stages, our investigation was

limited to the effectiveness of this framework solely in rat data

and for just one type of epilepsy. In future work, we intend

to extend the application of this framework to human EEG

datasets. Concurrently, we will make adjustments to both graph

representations and model parameters to elucidate the distinct

characteristics of human EEG data, thus enhancing the model’s

generalization capabilities.
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