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Examining electroencephalogram
signatures of people with multiple
sclerosis using a nonlinear
dynamics approach: a systematic
review and bibliographic analysis
Christopher Ivan Hernandez*†, Shaida Kargarnovin†, Sara Hejazi
and Waldemar Karwowski

Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management
Systems, University of Central Florida, Orlando, FL, United States

Background: Considering that brain activity involves communication between

millions of neurons in a complex network, nonlinear analysis is a viable tool for

studying electroencephalography (EEG). The main objective of this review was to

collate studies that utilized chaotic measures and nonlinear dynamical analysis in

EEG of multiple sclerosis (MS) patients and to discuss the contributions of chaos

theory techniques to understanding, diagnosing, and treating MS.

Methods: Using the preferred reporting items for systematic reviews and meta-

analysis (PRISMA), the databases EbscoHost, IEEE, ProQuest, PubMed, Science

Direct, Web of Science, and Google Scholar were searched for publications that

applied chaos theory in EEG analysis of MS patients.

Results: A bibliographic analysis was performed using VOSviewer software

keyword co-occurrence analysis indicated that MS was the focus of the research

and that research on MS diagnosis has shifted from conventional methods, such

as magnetic resonance imaging, to EEG techniques in recent years. A total of 17

studies were included in this review. Among the included articles, nine studies

examined resting-state, and eight examined task-based conditions.

Conclusion: Although nonlinear EEG analysis of MS is a relatively novel area of

research, the findings have been demonstrated to be informative and effective.

The most frequently used nonlinear dynamics analyses were fractal dimension,

recurrence quantification analysis, mutual information, and coherence. Each

analysis selected provided a unique assessment to fulfill the objective of this

review. While considering the limitations discussed, there is a promising path

forward using nonlinear analyses with MS data.
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chaos, electroencephalogram, nonlinear dynamics, multiple sclerosis, complexity
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Introduction

Multiple sclerosis (MS) is a progressive condition affecting
the central nervous system (CNS). It is characterized by the
formation of widespread lesions, also known as plaques, in the
brain and spinal cord (Chiaravalloti and DeLuca, 2008). These
plaques primarily impact the protective myelin sheath surrounding
the nerve fibers, leading to a disruption in the transmission of nerve
impulses (Trapp et al., 1998, 1999; Steinman, 2001). Traditionally,
MS has been associated with inflammatory demyelination as the
primary disease mechanism. However, recent evidence suggests
that early axonal damage or loss plays a significant role, leading
to permanent disability (Chelune et al., 2008). There is an ongoing
debate about whether the pathology observed in the gray matter is
distinct from that seen in the white matter, if it is a consequence
of white matter axonal injury, or even if it shares similarities
with white matter pathology (Benedict et al., 2008). Due to the
widespread occurrence of plaques, MS manifests with a wide range
of symptoms, including motor, cognitive, and neuropsychiatric
issues (Brassington and Marsh, 1998). It is important to note
that each individual with MS presents a unique combination of
symptoms and disease progression.

Furthermore, cognitive impairments can manifest
independently of physical disability, which makes their detection
and recognition challenging (Gordon et al., 1994). This variability
in symptoms and disease course complicates understanding the
disease process and the development of effective treatments. While
the exact cause of MS remains unknown, current research suggests
that immunological, genetic, and viral factors contribute to its
development (Cobble, 1992). Other symptoms of MS include
weakness of the limbs or changes in sensory perception, physical
disability and imbalance, visual problems, dizziness, or facial
paralysis (Kesselring, 2005; Cao et al., 2015; Raeisi et al., 2020).
The brain, spinal cord, and CNS are all significantly affected
by MS due to its aggressive myelin damage (Dachraoui et al.,
2021). Various studies have explored the brain’s nature as a
nonlinear dynamical system, highlighting its intricate complexities
(McKenna et al., 1994; Faure and Korn, 2001; Kotini et al., 2007).
These complexities span different levels of analysis, encompassing
the intricate dynamics of individual neurons to the broader macro
networks within the human brain (Di Ieva et al., 2015).

A complex disease like MS has numerous pathophysiological
features, necessitating the implementation of reliable tools and
methods for its evaluation and assessment (Dachraoui et al.,
2021). The McDonald criteria are widely used for diagnosing
MS. This involves the combination of known clinical features,
cerebrospinal fluid (CSF) analyses, imaging techniques such as
magnetic resonance imaging (MRI), and blood tests. Since there
are no distinct markers for diagnosing MS, McDonald criteria and
reviewing a patient’s medical history are the best approaches for
an accurate diagnosis (Ömerhoca et al., 2018). When a patient
experiences a neurological deficit that lasts at least 24 h, MRI with
an intravenous contrast agent is used to examine how lesions are
dispersed within the CNS. The aim of this procedure is to identify
the temporal and spatial distribution of lesions within the CNS
(Ömerhoca et al., 2018). Research and new findings have evolved
the McDonald criteria over the years, with the most recent update
occurring in 2017. The criteria are applied to patients with a typical

clinically isolated syndrome, similar to an MS relapse, but in a
person that has not been diagnosed with MS (Thompson et al.,
2018).

Among all the neuroimaging methods, MRI is currently
the most widely used in MS diagnosis. Although it can be a
useful technique, MRI does not correspond well with clinical
manifestations of disease, and it is invasive, expensive, and time-
consuming (Hossain et al., 2022). Aside from considering initial
symptoms, past neurological disorders, medical conditions, etc.,
other methods for diagnosing MS include cerebrospinal fluid
(CSF) analysis, evoked potential (EP), and blood samples analysis
(Ghasemi et al., 2017). Evoked potential tests, such as those for
visual, brain stem auditory, and somatosensory responses, can
provide information on demyelination in the optic nerve and
CNS. Additionally, diagnostic assistance may be obtained through
CSF analysis for myelin basic protein, immunoglobulin-gamma
(IgG) determinations, and blood sample analysis to detect vitamin
deficiencies (Ghasemi et al., 2017). Physicians’ experience suggests
that MRI, CSF, and EP can be subjective, invasive, and time-
consuming. It is suggested that results may be subjective because
routine visual inspection may yield subjective results, leading to
overlooking important changes that could have been prevented
(Karaca et al., 2021). Furthermore, the data are analyzed on a group
basis due to the small sample size, and the grouping approach
cancels out individual variations (Twose et al., 2020).

Electroencephalography (EEG) analysis could serve as the basis
of a diagnostic method for monitoring organ-level changes in brain
activity associated with MS; even structural changes due to MS
that are not detectable by imaging techniques can be detected
by EEG analysis (Carrubba et al., 2012). EEG is a non-invasive,
painless, and cost-effective method for identifying brain diseases
(Torabi et al., 2017). Many illnesses are associated with irregular
EEG patterns. EEG signals can thereby be used to detect seizures,
monitor cognitive activities, investigate the effects of sleep, and
study Parkinson’s and Alzheimer’s diseases, among others (Sanei
and Chambers, 2008).

In terms of signal characteristics, EEG has chaotic behavior
because the amplitudes of EEG signals fluctuate in a seemingly
random manner with respect to time (Rodriguez-Bermudez and
Garcia-Laencina, 2015). However, in this context, “randomly”
does not imply true randomness but rather refers to the evident
and unpredictable nature of the amplitude changes observed
in EEG signals (Natarajan et al., 2004). It is important to
note that despite the appearance of randomness, EEG signals
are deterministic (Pritchard and Duke, 1995). The theories of
nonlinear dynamical systems and chaos theory provide frameworks
to understand and describe complex behaviors exhibited by
deterministic systems that may appear random (Kargarnovin et al.,
2023). Therefore, it is necessary to analyze EEG signals with
the help of appropriate signal-processing algorithms to uncover
the hidden information within them (Beniczky and Schomer,
2020). Subsequently, researchers have recognized EEG as a signal
that possesses nonlinear dynamical attributes. Moreover, EEG
signal characteristics were previously captured using linear and
parametric methods. Even though linear methods (e.g., fast Fourier
transform, wavelet transform, and autoregressive models) have
produced reasonable results, they are incapable of extracting
EEG’s underlying nonlinear features and are not always accurate
(Pritchard and Duke, 1995; Al-Fahoum and Al-Fraihat, 2014;
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Di Ieva et al., 2015; Rodriguez-Bermudez and Garcia-Laencina,
2015). According to Rodriguez-Bermudez and Garcia-Laencina
(2015), nonlinear analysis has been applied to a variety of
biomedical applications in recent years, such as electrocardiogram
(ECG), electromyogram (EMG), electrooculogram (EOG), and
magnetoencephalogram (MEG) analyses, and have been proven
effective in that they are able to capture the intricate and nonlinear
dynamics associated with EEG signals, quantify and characterize
the nonlinear features present in nonlinear signals, differentiate
between healthy and pathological EEG signals, and forecast future
states of EEG signals (Rodriguez-Bermudez and Garcia-Laencina,
2015).

The purpose of this review was to collate recent studies that
analyzed EEG data obtained from populations with MS using
nonlinear dynamical methods and chaos theory. Accordingly,
we limited the search to EEG studies that utilized chaos theory
to identify indexes for brain deficits or cognitive impairments
observed in people with MS. The goal was to determine if chaos
theory is useful in identifying biomarkers in individuals with MS
and healthy controls.

The current review is organized as follows: the “Methodology”
section outlines the search strategy and inclusion and exclusion
criteria used to retrieve the articles included. The “Results” section
presents the literature search results, bibliometric analysis, study
characteristics, and a general overview of the discussion. The
“Discussion” section addresses the theoretical implications and
application of nonlinear dynamics and chaos theory in the analysis
of EEG in patients with MS. In the final section, “Conclusions,”
we discuss future directions and developments in the application
of nonlinear dynamics theories in the field of neuroscience to help
patients with MS.

Methodology

Review standards

The systematic literature review paper followed the preferred
reporting items for systematic reviews and meta-analyses
(PRISMA) (Moher et al., 2009). Articles were selected based
on the research questions below, and the search strategy to refine
the list is identified below.

Research questions

• RQ1: How does EEG help study MS?
• RQ2: What chaotic measures and tools have been used to

analyze EEG of MS patients?
• RQ3: What are the ways in which chaos theory techniques have

assisted EEG analysis in understanding and diagnosing MS?

Search strategy

Our search was conducted in the following databases:
EbscoHost, IEEE, ProQuest, PubMed, Science Direct, Web of

Science, and Google Scholar. We used two major sets of keywords.
We began by selecting keywords that appeared most frequently
in nonlinear analysis of neurological diseases research. We used
the Boolean operator “OR” between nonlinear dynamics terms to
ensure all potential articles were taken into account. As a second
set of keywords, we searched for “Multiple Sclerosis” to find studies
using chaos theory for MS patients. The results of using a third
set of keywords, such as “EEG” or “Electroencephalography,” were
very limited; therefore, we decided to broaden our search and only
use two major sets of terms with no restrictions regarding the
publication date:

(Chaos OR Entropy OR Fractals OR “Fractal Analysis” OR
“Correlation Dimension” OR “Hurst Exponent” OR “Lyapunov
Exponent” OR “Phase Space” OR “Wavelet” OR “Recurrence
Quantification Analysis” OR “Horizontal Visibility Graph”
OR “L-Z Complexity” OR “Empirical Mode Decomposition”
OR “Coherence” OR “Mutual Information” OR “Nonlinear
Dynamic∗” OR “Nonlinear Complex∗” OR “Nonlinear Analysis”
OR “Complex∗ Analysis” OR “Nonlinear System∗”) AND
“Multiple Sclerosis.”

Criteria for inclusion and exclusion

The following inclusion criteria were applied: (a) papers written
in English; (b) peer-reviewed; (c) experiments in humans; (d)
studies using electroencephalograms or EEG.

The following papers were excluded: (a) opinions and
viewpoints; (b) books and chapters (c) articles that were not related
to the research questions; (c) studies that did not present original
research; (d) articles that aimed to answer mental health concerns
with EEG analysis; (e) articles that discussed the development
of the feature extraction method; (f) studies on brain disorders
and diseases such as Parkinson’s, epilepsy, seizure, schizophrenia,
Alzheimer’s disease, autism, and depression; (g) studies utilizing
data collection methods other than EEG. The results of the PRISMA
search are shown in Figure 1.

PRISMA chart

Data collection and reporting
A summary of relevant information is presented in

Supplementary Table 1, which displays the study category,
nonlinear dynamical analysis, number of participants, the number
of EEG channels, experiment, and major findings.

Results

Literature search

The review was conducted in accordance with PRISMA
guidelines (Moher et al., 2009). A flowchart of the procedures
for identifying, screening, and selecting studies for this review is
given in Figure 1. Initially, 1,001 papers were identified in the
first step of identification. Removal of duplicates resulted in 434
articles. Selection of relevant scientific articles from the remaining
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FIGURE 1

Results of our systematic literature review presented in a PRISMA flowchart.

434 papers was performed by referring to predefined inclusion and
exclusion criteria.

Large-scale bibliometric analysis

Our bibliometric analysis was conducted with VOSviewer
software (van Eck and Waltman, 2010). VOSviewer’s bibliometric
network of maps can be used for visualizing and analyzing trends
in publications in a particular field. Using VOSviewer, one can
create a network of scientific publications, scientific journals,
maps of co-authorship, countries, and keyword co-occurrences.
It is possible to change the frequency of keywords and remove
nonessential keywords as needed. Data mining can also be done
using VOSviewer software, as well as mapping and grouping of
articles from research databases (Xie et al., 2020).

Each database result was downloaded in.ris format and then
combined into one file using Zotero’s citation management
software. The.ris file exported from Zotero was used as an input
file in VOSviewer after duplicates were removed and citations were
refined. In the co-occurrence of keywords analysis, the minimum

number of occurrences of a keyword was set to 5. Among 1,812
keywords, 108 met the threshold. In accordance with the criteria
selected, VOSviewer software provided a network visualization
graph of the analysis of the keywords (Figure 2). A number of
keywords that were more general than technical, such as human,
male, female, and adult, were excluded from the analysis.

Items are labeled and circled according to their weight. Items
with higher weight have a larger label and circle. Links are co-
occurrences between two keywords, and two keywords are more
related if they are located close together. A numerical value
represents the strength of each link in the VOSviewer network.
Stronger links have a higher value. The value is calculated by
counting the number of publications in which two keywords
appear together.

The co-occurrence analysis graph presented in Figure 2 shows
that all keywords are well related to other relevant keywords,
with MS, magnetic resonance imaging, and algorithms having the
highest occurrence frequency.

Table 1 shows the top 20 keywords and the number of their
occurrences and total link strength.
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FIGURE 2

Network visualization of keyword co-occurrence.

As shown in Figure 2, the term “Multiple Sclerosis” has the
largest circle and label and is located at the center of all keywords,
indicating that MS is the primary focus of the current literature
review.

The proximity of “Multiple Sclerosis” to
“Electroencephalography” shown in Figure 3A, which is an
overlay graph, indicates that “Electroencephalography” has
occurred frequently with “Multiple Sclerosis” in this literature
review. In general, “EEG” and “Electroencephalography” are
associated with keywords such as classification, feature extraction,
and machine learning.

In addition, in Figure 3, different keywords are visualized based
on publication year. Each circle represents a certain period of time.
In the bottom right corner of the map, a color bar indicates how
scores are mapped to colors. In this instance, light green and yellow
represent the most recent years, whereas dark blue and purple
represent the early years of research in this field. This kind of map
can be used to identify research gaps and trends easily.

When comparing the keywords “Electroencephalography” and
“Magnetic Resonance Imaging,” which occur most frequently

with “Multiple Sclerosis,” “Electroencephalography” has a yellow
color corresponding to years 2018 and later. In Figure 3B,
“Magnetic Resonance Imaging” has a purple color corresponding
to years 2010 and before. Clearly, the focus of research in
recent years in relation to the diagnosis of MS has shifted to
electroencephalography techniques. The smaller circle and label of
“Electroencephalography” support the observation that EEG is a
developing research field for MS therapy.

Study characteristics

The sample size of the studies ranged from two participants to
100 participants. The mean, mode, median, and standard deviation
of the participant numbers are 33.35, 20, 29, and 23.75, respectively.
The selected studies were published between 2000 and 2022.
All studies included MS patients and healthy controls. Between
studies, we found two distinct types of experimentation: resting-
state experiments and task-based experiments. We have therefore
divided the discussion into these categories. The papers that
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TABLE 1 Top nineteen keywords with their occurrences and
total link strengths.

Keyword Weight
(occurrences)

Total link
strength

Multiple sclerosis 130 658

Magnetic resonance imaging 57 385

Algorithms 35 311

Brain – pathology 24 198

Entropy 30 192

Multiple sclerosis –
pathology

19 177

Brain 22 152

Magnetic resonance
imaging – methods

17 149

Reproducibility of results 13 119

Lesions 13 109

Feature extraction 15 108

Multiple sclerosis – diagnosis 16 108

Wavelet transforms 14 101

Machine learning 14 100

Multiple sclerosis –
physiopathology

21 99

Image segmentation 11 93

Fractals 14 88

Brain – diagnostic imaging 10 84

Central nervous system 11 81

Multiple sclerosis –
diagnostic imaging

10 80

discussed details about their experiments focused on performance
in attentional, visual, cognitive, or motor tasks. There were only
five studies published on nonlinear analysis of EEG of MS patients

before 2015, but after 2015 there was an increase in the number of
publications in this field.

Overview of the review

To answer research questions 1–3, the role of EEG in MS
studies must first be understood; therefore, we describe the
importance of EEG in MS research (RQ1). We then give a brief
introduction to nonlinear dynamical methods utilized for EEG
analysis of MS patients (RQ2). Finally, we discuss how nonlinear
dynamics techniques in different experimental settings have been
helpful in MS EEG studies for understanding, diagnosing, and
treating MS (RQ3).

Discussion

The “Discussion” section is divided into four major sections, as
illustrated in Figure 4. Readers can see how the information in the
“Discussion” section is organized by referring to the flowchart.

EEG in MS research

As previously mentioned, cognitive deficits are some of the
frequent symptoms of MS, affecting 40 to 65% of patients (Hansen
et al., 2015; Korakas and Tsolaki, 2016). Information processing
speed, attention, working memory, and verbal and visual memory
are among the domains affected by cognitive dysfunction in MS
(Prakash et al., 2008; Amato et al., 2010; Hansen et al., 2015;
Korakas and Tsolaki, 2016). Cognitive impairments caused by MS
are believed to be caused by white matter lesions and disruptions in
fiber tracts critical for cortical connectivity (Calabrese et al., 2009;
Harrison et al., 2010; Llufriu et al., 2017). Even though this is a
viewpoint that is commonly accepted today, MRI results do not
always coincide with disabilities shown in cognitive test results.

FIGURE 3

Side-by-side comparison: (A) overlay map of the keyword “electroencephalography” and (B) overlay map of the keyword “magnetic resonance
imaging”.
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FIGURE 4

Overview of the “Discussion” section.

MS cognitive dysfunction may be addressed by advanced imaging
techniques, but these methods are often unavailable for regular
medical evaluations. Similarly, MRI techniques such as voxel-based
morphometry and diffusion tensor imaging-based fiber tracking are
currently used to investigate changes in brain connectivity from
anatomical aspects. These techniques are mainly applied to finding
information regarding the underlying anatomical structures of
large, unidirectional fibers rather than obtaining information about
millisecond-level functional connectivity interactions (Cercignani
et al., 2002; Audoin et al., 2007; Cader et al., 2007; Reich et al., 2007).
Considering the shortcomings of neuroimaging techniques such as
MRI, recent studies suggest that brain oscillatory signals observed
in EEG can aid the diagnosis of cognitive deficits and facilitate the
identification of pathological conditions (Hardmeier et al., 2012;
Tewarie et al., 2013; Babiloni et al., 2016). For example, studies
examining resting-state EEG parameters have demonstrated that an
increase in slow-wave power (theta power, 4–7 Hz) and a decrease
in fast-wave power (beta power, 13–30 Hz) may lead to reduced
attentional control. Accordingly, an increase in the theta/beta ratio
indicates a decline in attention and information-processing speed
(Keune et al., 2019).

Nonlinear dynamical methods in EEG
analysis of MS

In this section, we delve into a crucial aspect of our research by
summarizing the nonlinear dynamical analysis techniques utilized
in the examination of EEG signatures in individuals with MS.
By exploring these techniques, we address our second research
question (RQ2), which focuses on the specific chaotic measures
and tools employed to analyze EEG data in MS patients. By
providing this detailed overview, we aim to offer a comprehensive
understanding of the methodologies employed in previous studies,
which not only aids in answering our research question but also
allows us to evaluate the existing body of knowledge in the

field. These nonlinear analysis methods serve as valuable tools
in unraveling the intricate dynamics and complexities present
within EEG signals of MS patients, ultimately contributing to
a more comprehensive understanding of the neurophysiological
manifestations of MS. Figure 5 shows the general flowchart of the
selected studies.

Chaos theory combined with classification
approaches

A variety of machine learning models to diagnose MS have
been developed using MRI data, fMRI data, EEG data, etc. Since
the symptoms, severity, and progression of MS vary enormously
among individuals, each patient’s prognosis and subsequent
treatment decisions should be tailored to their initial conditions.
A machine learning algorithm can enable the search and analysis
of large datasets about potential biomarkers to help find a clinically
useful course of treatment (Hossain et al., 2022).

Seven articles used feature extraction, feature selection, and
feature classification in their studies (Ahmadi and Pechenizkiy,
2016; Torabi et al., 2017; Kotan et al., 2019; Raeisi et al., 2020;
Karaca et al., 2021; Karacan et al., 2022; Mohseni and Moghaddasi,
2022).

To gain a comprehensive understanding of the methods
employed, Table 2 provides a detailed overview of the feature
extraction, selection, and classification methods each article
employed, along with the nonlinear analyses used to analyze the
data. We have also provided a list of definitions related to the
concepts of chaos and complex systems in Table 3 as a reference
for common terminology. This comprehensive summary highlights
the diverse approaches adopted in the studies. The following is
a description of the chaotic measures used in studies combining
nonlinear dynamical methods with classification:

Wavelets
Wavelets were developed in the 1980s as a substitute for

Fourier transform. Currently, wavelets are used for analyzing
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FIGURE 5

A general outline of the methodology used in studies included in this review proposing automated algorithms to separate MS patients from healthy
controls.

signals, image processing and recognition, turbulence, etc., in a
variety of different fields such as physics, fluid dynamics, and
others (Pavlov et al., 2012). Continuous wavelets are useful in
explaining nonstationary signals where their spectral composition
and statistical characteristics fluctuate over time. According to
Pavlov et al. (2012), wavelets:

• show the time-frequency structure of signals, which permits
localization of certain features in time and frequency domains;
• allow efficient analysis of short-term time series that have a

small population of characteristic oscillation periods;
• allow for the selection of the basic functions into which the

signal is expanded, allowing for the consideration of data-
specific characteristics; and
• ensure efficient analysis of noisy data.

There is a smoothing effect in MS data processing that poses a
challenge. Large signals can exhibit these localized features as peaks
or noise. To separate the true features from noise without bias, a
few studies (Karaca et al., 2021; Karacan et al., 2022) have used
wavelet transforms for MS EEG to capture these localized features
in different resolutions. The continuous wavelet transform (CWT)
is a mathematical operation that involves multiplying the original
signal by a wavelet function ψ that is scaled and shifted across all
time. The CWT coefficients are obtained using Equation 1 where
f (t) represents the original signal, a is the scaling coefficient, and
b is the shift coefficient (Karaca et al., 2021).

Wf
(
a, b

)
=

∫
+∞

−∞

f (t) ψa,b (t) dt (1)

The wavelet function, ψa,b (t), is the complex conjugate of the
wavelet function and is defined as follows:

ψa, b (t) =
1
√
|a|

ψ

(
t−b

a

)
(2)

Empirical mode decomposition (EMD)
Nonlinear and nonstationary signals can be analyzed using the

empirical mode decomposition (EMD) method. EMD decomposes
nonlinear signals into intrinsic mode functions (IMFs). IMFs refer
to output signals whose amplitudes and frequencies are slowly
shifting. The components of the main signal can be reflected in
IMFs. It is important to note that some of these components are

of limited use, while others reflect the characteristics of the original
signal. Thus, selecting the appropriate IMFs is crucial (Kotan et al.,
2019).

Empirical mode decomposition (EMD) breaks down the non-
periodic and non-stationary signal, XDFT (t), into a limited set of
IMFs and a residue, rN (t), as shown in Equation 3.

XDFT (t) =
N∑

j=1

IMFj (t)+ rN (t) (3)

In Equation 3, N represents the total number of IMFs [IMFj (t)
denotes the jth IMF], and rN (t) corresponds to the residue obtained
by selecting N IMFs (de Santiago et al., 2018).

The IMFs must satisfy two key conditions: firstly, the number of
extremes (maxima and minima) and the number of zero crossings
should either be equal or differ by no more than one throughout
the dataset. Secondly, the mean value of the envelope formed by the
local maxima and the envelope formed by the local minima should
be zero at each point. In essence, the IMFs exhibit nearly periodic
behavior with a mean of zero (de Santiago et al., 2018).

To decompose the signal, X (t) = XDFT (t), into its constituent
IMFs, the following four-step method is employed:

1) Identify all extreme points (maxima and minima) of the
signal, X (t).

2) Create the upper and lower envelopes (UE and LE) by
interpolating the maxima and minima using a cubic spline.

3) Calculate the mean value, (t) = UE(t)+LE(t)
2 .

4) Obtain the signal, c(t), by subtracting the mean from the
original signal: c (t) = X (t)−M (t) .

This process is repeated iteratively until the resulting signal,
c(t), satisfies the criteria of an IMF. At this stage, c (t) becomes
IMF1, and the residue, r (t) = X (t)− c (t), replaces the original
input signal for the subsequent step (1). Therefore, X (t) = r (t) (de
Santiago et al., 2018).

In one of the selected articles, Kotan et al. (2019) used the
EMD approach to distinguish between MS and healthy controls.
Considering that one of the major causes of disability in MS patients
is visual deficits, Raeisi et al. (2020) proposed a method based on
visual stimulation and EMD for classification.

Torabi et al. (2007) employed the following feature extraction
methods to find the most appropriate combination of nonlinear
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e TABLE 3 Terms associated with chaos theory.

Bifurcation A phenomenon whereby the topological characteristics of a
dynamical system’s solutions change due to a minor alteration of
a system’s parameter (i.e., an oscillation state transitions to a chaotic
state) (Tsumoto et al., 2012).

Phase space A group of potential system states. Phase space is essential for the
analysis of dynamical systems (Pham, 2020).

Attractor A region in the d-dimension phase space. This region consists of
points with characteristics that are used to measure a dynamical
system and identify a specific region in phase space. As a system
commences with unique characteristics, a point begins at a distance.
Over time, it approaches the attractor, hence why these regions of
space are termed “attractors” (Pham, 2020).

Fractals Complicated sets with a non-integer dimensions that exhibit
statistical self-similarity across various scales (Aguirre et al., 2009).

Correlation
dimension

Represented as CD or D2, the correlation dimension is the
fractional dimensionality of a fundamental process concerning the
geometric reconstruction in embedded phase space. The values of
the correlation dimension range between zero and the embedded
dimension. A value greater than one typically represents a chaotic
system (Ma et al., 2018).

Fractal
Dimension

The quantitative measurement of the irregularity of an object. It
shows the capability of the set to fill the Euclidean space in which
it exists, and it quantitatively describes fractal properties (Xu et al.,
1993).

dynamical methods and classifier methods to differentiate MS
patients from healthy subjects (Torabi et al., 2007).

Lempel-Ziv complexity
Lempel-Ziv (LZ) complexity is a measure used to analyze the

complexity of discrete-time physiologic signals, such as frequency,
number of harmonics, frequency variability of signal harmonics,
and signal bandwidth (Aboy et al., 2006). The calculation
of the LZ complexity steps involves graining the time series
X (x1, x2, ..., xn) into subsequences using a threshold value,
which is always the average quantity. The signal is divided into
two parts based on the threshold, assigning 1 to data larger than
the threshold and 0 to data smaller than the threshold (Zhao et al.,
2023).

T =
n∑

i=1

xi 1 ≤ i ≤ n

si =

{
0, xi < T
1, xi ≥ T

(4)

This graining process creates a sequence P = {s1, s2, ..., sn}.
Subsequences S and Q are then connected to form SQ. For
example, if S = {s1, s2, ..., sr} and Q =

{
sj, ..., sj+m

}
, then SQ is

SQ =
{

s1, s2, ... sr, sj, ..., sj+m−1
}

. If Q is not a subset of SQ, it
becomes a new subsequence, and if Q is a subset of SQ, it is
reconstructed as Q =

{
sj, ..., sj+m+1

}
. The number of times Q

becomes a new subsequence is indicated as c (n). Subsequently, the
complexity is normalized by the following equation:

C =
c (n) log2n

n
(5)

However, since coarse graining ignores details of the original time
series, a refined graining method is developed using median and
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quartiles as boundary points to divide the signal into four sections:

si =


0, xi < lower quartile

1, lower quartile ≤ xi < M
2, M ≤ xi < upper quartile

3, xi ≥ upper quartile

1 ≤ i ≤ n (6)

M denotes the median. Lastly, the refined Lempel-Ziv complexity
(Equation 7) can be defined as:

Cr =
c (n) log4n

n
(7)

Lempel-Ziv (LZ) has been applied to analyze the reactions of
neurons in the primary visual cortex when exposed to various
stimuli (Szczepaski et al., 2003). Also, it has been employed to
evaluate the entropy of neural discharges, commonly referred to
as spike trains (Amigó et al., 2004). LZ complexity has several
advantages, and they are as follows:

• it can be applied to any time series;
• it can be used with nonstationary signals;
• it is a nonlinear measure that is non-parametric; and
• it is not difficult to compute.

In EEG signals, the reliance between amplitude and frequency
plays an important role in the calculation since the binarization
is led by slow rhythms. Thus, slow rhythms, or high amplitudes,
impact the mean or median more than faster rhythms or low
amplitudes (Ibáñez-Molina et al., 2015). LZ complexity is a suitable
measure to aid in further understanding the complex and random
nature of the EEG signals obtained from subjects with MS (Torabi
et al., 2017).

Entropy
Entropy is a measure used to examine the ambiguity of

an information source and the probability distribution of the
source’s samples. Entropy can be an indicator of the complexity
of a system. There are several types of entropy analyses, such
as approximate entropy (ApEn) and sample entropy (SampEn)
(Ma et al., 2018). Quantifying irregularity in time series is done
using ApEn (Pincus, 1991). However, ApEn requires a large
dataset, and if the data length is short, the method is not robust
enough (Richman and Moorman, 2000). SampEn is defined as
the negative logarithm of the conditional probability that two
sequences of m points remain similar when m+1 is reached,
with each vector being counted over all others except itself.
Thus, unlike ApEn, SampEn is relatively consistent irrespective
of dataset size (Richman and Moorman, 2000). Mohseni and
Moghaddasi (2022) used sample entropy in the feature-extraction
step of their proposed method to create an MS diagnostic
tool (Mohseni and Moghaddasi, 2022). See reference Li et al.
(2018) for more information on entropy, its measures, and
variants.

Hurst exponent
This measure appraises long-term memory processes in a

time series. To analyze a time sequence X (x1, x2, ..., xn) with
continuous values, the first step is to take the logarithm of the

sequence and then perform a single differentiation of Mi.

Mi = log
(

xi + 1
xi

)
, i = 1, 2, ..., n− 1 (8)

This results in a logarithm sequence. The logarithm sequence is
then divided into “A” adjacent subsets, with each subset having
a length of h = (n − 1)

A . Within each subset, the mean value is
denoted as ea and the standard deviation as Sa, where a = 1, 2,...,
A. Within each subset, the accumulated intercept of the mean for
each previous k point is calculated as follows:

Xk,a =

k∑
i=1

(
Mi,a − ea

)
, k = 1, 2, ..., h (9)

The fluctuating range of each subset can be obtained by Ra:

Ra = max
(
Xk,a

)
−min

(
Xk,a

)
(10)

Next is rescaling the range:(
R
S

)
h
=

(
1
A

)
×

(
Ra

Sa

)
(11)

By increasing the value of h, we can obtain the rescaled range
of subsets with varying lengths. The Hurst exponent describes
the proportional relationship between (R/S)h and h as (R/S)h =

c × hHE, where c is a constant and HE is the Hurst exponent. Thus,
the Hurst exponent can be estimated by plotting the logarithm of
(R/S)h against the logarithm of h. The slope of the fitted line in the
plot corresponds to the Hurst exponent (Zhao et al., 2023).

The value of the exponent ranges between 0 and 1. There are
three classification categories:

• H = 0.5 represents randomness with a lack of correlation;
• 0 < H < 0.5 represents an inversely related process; and
• 0.5 < H < 1 represents a correlated process with chaotic

characteristics (characteristics fall on a 1/f power spectrum)
(Ma et al., 2018).

Kotan et al. (2019) extracted the Hurst exponent from the
collected EEG signals in MS patients to examine the self-similarity
of the data.

Lyapunov exponent
The Lyapunov exponent is a measure used to evaluate

the average exponential divergence or convergence of nearby
trajectories in phase space. A positive Lyapunov exponent indicates
chaos in the system (Yakovleva et al., 2020).

k (t) = Keλ1t (12)

In formula 12, the equation k(t) represents the measure of divergent
distance, where K represents the initial distance and λ1 denotes the
largest Lyapunov exponent (Zhao et al., 2023).

In this approach, a proper feature selection is necessary for
improving modeling efficiency and laying the groundwork for
subsequent steps (Wang et al., 2013). As a final step, different
classification methods will be used to identify MS patients from
controls, including k-nearest neighbors (KNNs), support vector
machines (SVMs), artificial neural networks (ANNs), and random
forests (RFs), among others (Ahmadi and Pechenizkiy, 2016;
Torabi et al., 2017; Raeisi et al., 2020).
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Fractal analysis
Fractal analysis is a measure of the complexity and self-

similarity of a signal that is investigated in the phase space via
the attractor dimension or other correlated parameters, and it is
able to analyze information at shorter intervals when compared to
other linear and nonlinear analyses (Accardo et al., 1997). More
specifically, fractal analysis quantitatively assesses the roughness of
neural structures, approximation of time series, and representation
of patterns. It is able to differentiate different brain states in the
physiopathological spectrum (Di Ieva et al., 2015). According to
Accardo et al. (1997), there are several ways to calculate the fractal
dimension (i.e., box counting, Walker’s Ruler, and a modified
correlation dimension D2 analysis) (Mandelbrot and Mandelbrot,
1982; Pickover and Khorasani, 1986; Tirsch et al., 1991; Gonzato
et al., 1998). Higuchi’s is the most widely used method for
determining fractal dimension.

The calculation of Higuchi’s fractal dimension involves
analyzing a time series data sequence, denoted as
X (1) , X (2) , ..., X (N), where N represents the total number
of samples. The process begins by selecting a scale factor, m, which
determines the length of the subseries for analysis and k represents
the index of the subseries being analyzed. For each subseries, the
cumulative length, L(m, k), is computed using a specific formula
that compares the absolute differences between adjacent data
points within the subseries (Porcaro et al., 2020):

Lm
(
k
)
=

1
k

 ∑
i=1,int

( N−m
k
)
∣∣X (m+ik

)
−X

(
m(i−1)k

)∣∣. N−1
int
(N−m

k
)


(13)
N represents the original time series X’s length, and N−1

int
( N−m

k
) is a

factor used to normalize the function. The cumulative lengths are
then averaged across all subseries to obtain L

(
k
)
, the average length

for the given scale factor:

L
(
k
)
=

∑k
m=1 Lm

(
k
)

k
(14)

Finally, the Higuchi fractal dimension is calculated by taking the
logarithm of L

(
k
)
:

FD =
ln
(
L
(
k
))

ln
(
1/k

) for k = 1, 2,..., kmax (15)

The resulting fractal dimension value represents the fractal
dimension of the time series, providing insight into its complexity.

The fractal dimension is always expected to be between 1 and
2 since the dimension of a plane is 2, and the dimension of a line
is 1. The fractal dimension increases when an EEG line fluctuates
as more of the plane is covered (Accardo et al., 1997). A fractal
dimension analysis of an MRI scan clearly shows the changes in
white matter and gray matter in the early stages of MS. Clinical
decision-making could be supported by the use of this approach
as an early diagnostic biomarker (Di Ieva et al., 2015). Torabi et al.
(2017), Kotan et al. (2019), and Mohseni and Moghaddasi (2022)
extracted nonlinear features such as fractal dimensions to explore
the nonlinear nature of EEG signals and sub-bands in MS patients
(Torabi et al., 2017; Kotan et al., 2019; Mohseni and Moghaddasi,
2022). Porcaro et al. (2019) used fractal dimensions to analyze task-
based EEG to develop a better treatment method (Porcaro et al.,
2019).

Recurrence quantification analysis (RQA)
Recurrence is defined as stretches of long or short repeated

patterns that exist in living and non-living systems. As signals
become more complex, recurrence becomes more uncommon
(Webber and Zbilut, 2005). Analyzing recurrence patterns requires
a mathematical or quantification analysis, which paves the way
for using RQA (Webber and Marwan, 2015). Five variables are
considered in RQA: percent recurrence (REC) or recurrence rate
(RR), percent determinism (DET), maximal length in the diagonal
direction (Dmax), Shannon entropy of the frequency distribution
of the diagonal line lengths (ENT), and trend (TND) (Webber
and Marwan, 2015). These measures are mainly concerned with
the lengths, numbers, and distributions of the diagonal lines in
recurrence plots. Three additional variables were added to examine
intermittency and chaos-order transitions: laminarity (LAM), the
average length of vertical structures (trapping time or TT), and
the maximal length of the vertical structures (Vmax). These RQA
parameters can be obtained from the recurrence plots (RP) of the
EEG signals using the following formulas (Khodabakhshi and Saba,
2020):

RR =
1

N2

N∑
i,j=0

Ri,j (16)

Where N is the total count of states and xi is the considered state.

DET =
∑N

l=lmin
lP
(
l
)∑N

i,j Ri
(17)

Here, lmin, refers to the length of the smallest diagonal line, while
P
(
l
)

represents the distribution of frequencies for different lengths(
l
)

of diagonal lines. The Dmax, ENT, and LAM, respectively, are
given by:

Dmax = max
({

li; i = 1, ..., Nl
})

(18)

ENT = −
N∑

l=lmin

P
(
l
)

lnP
(
l
)

(19)

LAM =
∑N

v=vmin
vP (v)∑N

v=1 P (v)
(20)

In this context, P (v) refers to the histogram that captures the
distribution of lengths, (v), of vertical lines. In addition, TT and
Vmax are calculated by:

TT =
∑N

v=vmin
vP (v)∑N

v=vmin
P (v)

(21)

Vmax = max ({vi; i = 1, ..., Nv}) (22)

Several studies have compared EEGs from patients with those
from healthy controls using RQA identifiers, seeking to identify a
relationship between baseline EEG and MS status (Carrubba et al.,
2012, 2019). RQA is useful in various nonlinear datasets and can
also be coupled with principle component analysis (PCA) (Webber
and Marwan, 2015).

Horizontal visibility graph (HVG)
Systems in real life that have many components interacting

nonlinearly usually require correlation analysis. Similarly,
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correlation analysis has evolved into complex network analysis
(Xie et al., 2019). Finding synchronization between the signals of a
neural system, such as the brain, has a critical role in characterizing
the system activities and the integration of information within and
across a disorder. The visibility graphs (VGs) algorithm enables
the mapping of time series to complex networks. In the case of
an EEG signal {x (t)}Nt=1 with N data samples, each sample is
represented as a node in a histogram-based graph. The height
of each histogram bar corresponds to the value of the respective
data node. Connections between nodes exist if the tops of the bars
are visible. For two nodes (ti, xi) and (tj, xj), an edge is formed
between them if there exists any data node (tk, xk) between (ti, xi)

and (tj, xj) that satisfies the convexity criterion (Lacasa et al., 2008):

xi − xk

tk − ti
>

xi − xj

tj − ti
, ti < tk < tj (23)

The horizontal visibility graphs (HVGs) algorithm is a modified
version of the VG algorithm. In HVG, two data nodes (ti, xi) and
(tj, xj) are considered to have horizontal visibility if they meet the
condition stated in Equation 24 (below):

xi, xj > xk, ti < tk < tj (24)

Therefore, (tk, xk) represents a data node located between (ti, xi)

and
(
tj, xj

)
. The complex network is represented by an adjacency

matrix A =
(
aij
)

N × N , where aij = 1 if nodes ti and tj are connected,
and aij = 0 if they are not (Ahmadi and Pechenizkiy, 2016).

The application of synchronization measures, such as VGs
and HVGs, to capture any intrinsic interactions between two-
time series that are not stationary can thus prove beneficial (Dong
et al., 2019). Thus, synchronization measures that capture the
key features of the system can significantly contribute to our
understanding of it. Based on EEG signals from healthy controls
and MS patients, the authors suggest the successful application of
the HVG method to construct a synchronization matrix of the brain
network (Ahmadi and Pechenizkiy, 2016).

Mutual information
Mutual information is a measure of nonlinear dependence

between two random variables. It is reliant on the random variable
that diverges from random chance. If both random variables are
independent, the joint entropy of their variables equals the sum
of the marginal entropies. Dependence is observed when the joint
entropy is less than the sum of the marginal entropies. If the joint
distribution of two random variables is given by p(X, Y) and their
factored marginal distributions are p(X) and p(Y), the formula for
mutual information, I(X;Y) is as follows (Moermans et al., 2018):

I(X;Y) =
∑
y∈Y

∑
x∈X

p (X, Y) log(
p(X, Y)

p (X) p(Y)
) (25)

The values for mutual information can range from 0 to infinity,
where 0 represents total independence between the random
variables, and infinity represents two correlated and continuous
random variables (Smith, 2015). The effect of treatment on fatigue
in MS was evaluated by calculating mutual information between
the somatosensory and motor cortex in each hemisphere (Porcaro
et al., 2019). Other studies have also used mutual information
to evaluate and compare two EEG signals (Lenne et al., 2013;
Tramonti et al., 2018).

FIGURE 6

Frequency of different nonlinear analysis methods.

Coherence
Coherence has been extensively employed across a range of

research disciplines, including but not limited to time-series-
based studies, physics, and image processing, for the purpose of
measuring the linear synchronization between two-time series.
In simple terms, coherence denotes the interrelationship of two-
time series at a specific frequency. One important application of
coherence is in linear filtering, particularly in the context of EEG
analysis that involves the presence of noise (Lenne et al., 2013).

In this context, for EEG data, coherence calculations can
determine neural population synchronization levels among
different brain regions (Nunez et al., 1999). The classic expression
for coherence is:

rxyω =
sxyω

√sxxωsyyω
(26)

In this equation, sxyω indicates the cross-spectrum between x and y
signals in the ω frequency (Jouzizadeh et al., 2021).

Coherence seeks to understand the information transfer
between a known variable and an unknown variable. The
measure increases with dependency between the two variables
(Lenne et al., 2013). In progressive MS patients, EEG coherence
shows a significant decrease between the anteroposterior and
interhemispheric areas in alpha and theta bands, which correlates
with cognitive dysfunction and subcortical lesion severity found on
MRI results (Leocani et al., 2000; Lenne et al., 2013).

Figure 6 lists the name and frequency of each method used in
the studies included in this review. The most common method of
chaos quantification was fractal dimension analysis.

MS studies utilizing chaotic measures:
findings

As part of the first studies on MS, tasks were used to
identify abnormal activity in associated brain regions or networks
involved in the task. Over time, studies of resting-state functional
connectivity became more prevalent (Rocca et al., 2022). In these
studies, large-scale functional networks of the brain were mapped,
and it was established that MS pathology impairs functional
connectivity, resulting in a degradation of the anticipated network
following the course of the disease. There is evidence that reduced
attentional capacity may be associated with an increase in theta
activity in resting-state EEG and a decrease in beta-wave activity

Frontiers in Computational Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fncom.2023.1207067
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1207067 June 24, 2023 Time: 15:50 # 13

Hernandez et al. 10.3389/fncom.2023.1207067

(Keune et al., 2017). Thus, this section provides a summary of the
main findings from the studies included in this literature review.
These studies either used resting-state experiments or task-driven
tests for visual, attentional, or cognitive impairments identified in
signature EEGs of patients with MS.

Resting-state experiments
Kotan et al. (2019) compared three methods for selecting

IMFs for EEG signals; power-based, correlation-based, and power-
spectral density-based combined with Hurst exponent and Higuchi
fractal dimensions. Then, three classifiers: KNN, multilayer
perceptron neural networks, and RF, were employed to detect
cognitively impaired and cognitively intact MS patients using the
nonlinear features of Hurst exponent and fractal dimension. The
authors concluded that IMF selection methods have a variable effect
on accuracy based on classifier selection. The findings of their study
indicate that different methods for selecting IMFs have varying
effects on the classification accuracy of EEG signals collected from
multiple sclerosis (MS) patients. Therefore, it is recommended
to employ various IMF selection methods along with different
classifiers and different types of signals to better understand their
effects on classification accuracy.

Using RQA, Carrubba et al. (2019) developed a method for
detecting MS from EEG signals. They assessed RQA application by
statistically comparing the values of its quantifiers of EEGs from
patients having MS with values from the EEGs of healthy subjects.
They found that optimal embedding dimension and a time delay
of 5 points maximize RQA’s ability to detect deterministic activity
in EEG time series (Carrubba et al., 2019). In the MS patients,
the RQA quantifier values were significantly higher than those
in the healthy controls, indicating that the disease is associated
with detectable changes in the EEG. Accordingly, a decrease in
complexity associated with MS was observed in EEG recurrence
plots (Carrubba et al., 2010). In another study by Carrubba et al.
(2012), the same RQA method was employed. They proposed
that EEG signals represent an instantaneous sum of contributions
from several neural networks that elicit intra- and internetwork
interactions. Therefore, the authors used RQA quantifiers to detect
any changes from the “unknown, but certain laws” that brains
without MS usually follow. The authors examined the RQA
quantifiers, percent recurrence (%R), and percent determinism
(%D). They observed an increase in %R in MS patients and no
difference in %D in MS patients compared with healthy subjects,
suggesting that %R is an indicator of nonlinearity (Carrubba et al.,
2012). Therefore, due to their ability to reveal evoked potentials,
%R and %D are possible indicators for MS diagnosis.

Lenne et al. (2013) also analyzed functional information about
interhemispheric and intra-hemispheric cortical communication.
As part of their methodology, they compared the coherence
between different EEG bands and the mutual information between
bipolar EEG signals between patients and healthy controls.
The main outcome of cortical communication impairment in
MS was a significant decrease in mutual information between
brain areas. This study indicated that averaged interhemispheric
mutual information in the resting state may indicate neurological
dysfunction in MS patients. In addition, these findings indicate that
this nonlinear measure may serve as an indicator of MS patients’
information processing deficits. Using mutual information, one

can thus characterize the connectivity of brain information
transmission (Lenne et al., 2013).

The results reported by Leocani et al. (2000) align closely with
those reported by Lenne et al. (2013). The authors observed a
reduction in coherence in EEG activity between the anteroposterior
and interhemispheric areas in the cognitively impaired MS patients.
Some findings revealed that there was unusual synchronization and
hyperconnectivity in certain frequency bands, which could be due
to the compensatory mechanisms or pathological abnormalities
associated with MS. These findings emphasized that coherence
analysis could be used as an indicator for cognitive dysfunction
connected to multiple sclerosis (MS) while understanding changes
that take place in the brain. Thus, cognitive impairment in
MS is contingent on the corticocortical connection tied to the
demyelination and/or the axonal loss that lies beneath the cortex
in the white matter (Leocani et al., 2000).

Tramonti et al. (2018) used weighted symbolic mutual
information (wSMI) to evaluate non-random joint fluctuations
between two EEG signals after participants underwent gait
rehabilitation. Their analysis provided strong results for
understanding behavioral changes and showed that phase
synchronization is correlated with functional recovery (Tramonti
et al., 2018).

Carrubba et al. (2010) successfully applied chaotic measures
for the diagnosis of MS. By introducing a subliminal stimulus in
patients with MS and those without and through RQA quantifiers,
they tested whether cognitive processing was altered in patients
with MS, finding that MS patients had 27% onset responses in
EEG signals and subjects without MS had 85% onset responses.
Using this study’s methodology, one can assess the degree of
synchronization between brain networks, which is exactly the high-
level brain function they believed to be impaired (Carrubba et al.,
2010).

Mohseni and Moghaddasi (2022) also employed nonlinear
feature extraction and classification. Through segmenting random
signals in EEG signals, they proposed a model for diagnosing
MS. While the alpha, beta, and gamma sub-bands have an impact
on signal analysis, the robustness of the technique with random
selections of 15-to-30-second segments of the EEG signal and
the detecting power of the algorithm makes it appropriate for
generalization (Mohseni and Moghaddasi, 2022).

Jouzizadeh et al. (2021) applied coherence analysis to
understand the functional connectivity of MS. They discovered
differences in the functional connectivity between patients with
MS and healthy subjects. The information transfer and increase in
communication distances were observed due to the deficit in global
efficiency and the increase in path size. To add, it was determined
that MS has a large impact on the brain since the connectivity
patterns in the frontal, parietal, and occipital regions were all
affected, which indicates there would be issues with the cognitive,
sensory, and visual processing areas. The authors noted that the
results produced similar results to those generated by fMRI, and
it was also determined that betweenness centrality and small-world
propensity are effective indicators in differentiating an individual
with MS from an individual without MS (Jouzizadeh et al., 2021).

Buyukturkoglu et al. (2017) aimed to investigate the functional
connectivity patterns in the brain related to fatigue in multiple
sclerosis (MS) patients. They focused on the concept of functional
connectivity, which refers to the degree of coherence or
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synchronization between different brain regions. The main finding
of the study was that a potential EEG-Neurofeedback system
for MS fatigue should train patients to voluntarily decrease
coherence in the beta frequency band between homologous
temporoparietal cortices. By targeting and modulating this specific
brain organization feature, which becomes more altered as fatigue
symptoms worsen, the researchers believe that the symptom of
fatigue can be ameliorated. The choice of the beta frequency
band was based on its involvement in motor processing and
its potential relevance to the experience of fatigue. Additionally,
the researchers considered that training in the alpha and/or beta
bands might yield better results compared to slow delta or high
gamma bands, as the latter can be affected by eye artifacts, which
are common during visual tasks involved in EEG-Neurofeedback
training (Buyukturkoglu et al., 2017).

With that, the studies in this section call attention to the
variety of methods and techniques used for analyzing EEG signals
collected at a resting state. Methods and techniques, such as
IMF selection methods, recurrence quantification analysis (RQA),
coherence analysis, mutual information, and mutual information,
were all used in their respective experiments to extract nonlinear
features and evaluate the functional connectivity in MS patients.
These studies show how these measures can be used for detecting
changes caused by MS in EEG signals and recognizing signs of
cognitive dysfunction, neurological impairment, and information
processing deficits accompanied by MS. The variety in the findings
highlights the importance of identifying the appropriate analysis to
understand the EEG activity in subjects with MS.

Task-based experiments
Raeisi et al. (2020) used an extension of bivariate empirical

mode decomposition (BEMD) to analyze a task-based experiment
(three visual stimuli were used to distinguish MS from healthy
groups in the study). Each possible pair of EEG recordings
was pre-processed to extract five pairs of IMFs by the bivariate
empirical mode decomposition (BEMD) method. Phase synchrony
between each pair of IMFs was calculated utilizing the mean
phase coherence (MFC) method and Hilbert transform. To classify
healthy and MS subjects, ReliefF and KNN classification methods
were applied. Based on the results, the accuracy, sensitivity, and
specificity of the red-green task were 93.09, 91.07, and 95.24%,
respectively, while those of the black-white task were 90.44, 88.39,
and 92.62%, and those of the blue-yellow task were 87.44, 87.05, and
87.86%. The experimental results indicated that the method could
be generalized to automate MS diagnosis systems (Raeisi et al.,
2020).

Karacan et al. (2022) focused on classifying the environment
according to EEG signals. A cognitive task was performed on a
computer by healthy volunteers and the MS patient group, and
then the same task was performed in a virtual reality environment.
After extracting chaotic entropies and fractal dimensions, the
accuracies of different classification methods were compared.
A KNN classifier performed best for volunteers with MS with an
accuracy of 95.45%. Additionally, after inducing photic stimulation
in different EEG subbands [delta (1–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), and beta (13–30 Hz)] and feature extraction, the
proposed ensemble subspace KNN classifier algorithm performed
the automatic classification of MS with an accuracy of 80%, a
sensitivity of 72.7%, a specificity of 88.9%, and a positive predictive

value of 88.9%. The authors proposed using photonic stimulation
EEGs for the pre-diagnosis of MS (Karacan et al., 2022).

The nonlinear model proposed by Torabi et al. (2017) classified
healthy individuals and individuals with MS into two groups.
The authors used the nonlinear features of EEG signals to
distinguish healthy volunteers and MS patients performing a
color-and-luminance-changing task and a direction-changing task.
The Katz fractal dimension was the most “informative nonlinear
feature” when combined with an SVM. Their model achieved high
classification performances of 93.08 and 79.79% for the direction-
based and the color-luminance-based tasks, respectively (Torabi
et al., 2017).

Porcaro et al. (2019) sought an alternative treatment method
to address fatigue brought upon by the side effects MS patients
experience with pharmaceutical treatments. They carried out a five-
day transcranial direct current stimulation (tDCS) focusing on the
somatosensory representation of the body (S1), known as FaReMuS
treatment. Utilizing fractal dimension and mutual information,
48% of the variance of fatigue was explained, paving the way
for personalized neuromodulation techniques that can be used to
address fatigue in patients with MS. The authors observed that
the left side of the whole-body somatosensory area (S1) showed a
significant change after neuromodulation. The nonlinear analyses
helped demonstrate that left S1 was impaired in MS patients prior
to treatment, and the difference between S1 in MS patients vs.
healthy patients disappeared after treatment, which is a significant
step toward identifying an improved treatment (Porcaro et al.,
2019).

Tomasevic et al. (2013) The findings of this study, in terms
of coherence analysis, indicate that indices related to movement
execution are significantly associated with fatigue rather than
morpho-structural measures related to the primary sensorimotor
network. Specifically, fatigued patients exhibited cortico-muscular
coupling at faster frequencies and corrected the pressure exerted
during handgrip at higher frequencies. The disruption of primary
somatosensory network patterning in MS indicates that intra-
cortical synchronization phenomena affecting cortico-muscular
coupling also play a significant role in motor control. The study
suggests that the quality of communication between the cortex and
muscles is impaired in fatigue, while the spectral features of the
motor cortex and muscular oscillatory activities remain unaltered
(Tomasevic et al., 2013).

The studies in this section underscore the diverse array of
methods and techniques used for analyzing EEG signals collected
while participants completed a task. The studies provide valuable
insight into the growing body of knowledge regarding using EEG
in the diagnosis, treatment, and understanding of MS. EEG-based
techniques provide essential tools for academics, physicians, and
patients in the pursuit of better management and care for people
with MS by using modern signal processing, nonlinear analysis, and
creative intervention strategies.

Limitations of the studies in this review

The selected studies are subject to several limitations.
The sample sizes of some were relatively small (Ahmadi and
Pechenizkiy, 2016; Carrubba et al., 2019; Karaca et al., 2021).
Furthermore, several studies did not have a diverse participant
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group (e.g., all females). The results may differ if males were
included in the study (Carrubba et al., 2010). Another limitation
that we identified in the selected studies was the lack of physical
exertion in task-based experiments. Examining chaotic data while a
patient with MS performs an exerting physical task may provide
additional unique results that may help further understand the
complexity of brainwave activity in patients with MS. However, it
is crucial to acknowledge the potential challenges associated with
inducing artifacts during physical task experiments and the need
for meticulous methodological considerations (Jiang et al., 2019).
To address this, future studies incorporating physically exerting
tasks should apply appropriate pre-processing techniques to
minimize artifacts, such as independent component analysis (ICA)-
based algorithms, regression, adaptive filter, common component
analysis (CCA), or combinations of other methods tailored to
the specific artifacts induced by the physical tasks (Jiang et al.,
2019). These methods have shown promise in dealing with various
artifacts encountered in EEG recordings, including muscle artifacts.
Additionally, prior to the physical task, participants should be
adequately prepared and familiarized with the experimental setup
through clear instructions and practice sessions, reducing potential
sources of artifacts related to task execution. Therefore, the findings
of future studies could be strengthened by including larger numbers
of participants from different groups and by them performing
various physical tasks.

Conclusion

The aim of this review was to provide an extensive overview of
existing knowledge on the use of nonlinear dynamics in analyzing
the EEG results of MS patients. In the selected studies, chaos in
brainwave activity as measured with an EEG was explored in both
the resting-state and during task-based experiments. In the task-
based experiments, participants were asked to perform attention,
vision, and cognition tasks to determine how such activities affect
people with MS vs. people without. In the resting-state experiments,
participants were at rest with no stimuli present. The authors of
the studies were able to examine the similarities and differences
between both sets of participants with several different nonlinear
analyses. Wavelets, EMD, entropy, and RQA were some of the
most commonly used nonlinear methods used to make sense
of the nonlinear data acquired. Thus, there are numerous ways
in which chaos theory techniques have assisted EEG researchers
in understanding, diagnosing, and treating MS, and these are
summarized below.

A decrease in mutual information between brain areas provided
researchers with an indicator of MS patients’ processing deficits,
and HVG captured key features of systems via the synchronization
matrix of the brain network. Both analyses provided results that
helped researchers better understand MS and inform further
(Ahmadi and Pechenizkiy, 2016). There are several promising
methods for diagnosing MS, with RQA and machine learning
algorithms being notable (Carrubba et al., 2010, 2019). For
example, the quantifier value %R (percent recurrence) is increased
in MS patients compared with healthy patients, indicating its
potential as a possible indicator of MS (Carrubba et al., 2012).
Additionally, the model proposed by Mohseni and Moghaddasi
(2022) utilizing nonlinear feature extraction and classification

demonstrated promising results for diagnosing MS (Mohseni and
Moghaddasi, 2022). Machine learning algorithms can enable the
search and analysis of large datasets about potential biomarkers
to help find clinically useful courses of treatment (Hossain et al.,
2022). Furthermore, to avoid the negative side effects associated
with pharmaceutical treatments, Porcaro et al. (2019) utilized
fractal dimension and mutual information to better understand
fatigue with the hope of developing improved treatments (Porcaro
et al., 2019).

Multiple sclerosis (MS) studies can be clinically translated into
improved diagnostic tools, advanced treatments, assistive devices,
etc. However, chaotic analysis is not just applicable to MS; it
can detect seizures in epileptic patients, diagnose Alzheimer’s
disease, and provide beneficial information for other neurological
disorders, all of which demonstrate the potential for nonlinear
analysis of chaos to be highly effective in the medical profession
(Jacob and Gopakumar, 2018).
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Amigó, J. M., Szczepański, J., Wajnryb, E., and Sanchez-Vives, M. V. (2004).
Estimating the entropy rate of spike trains via lempel-ziv complexity. Neural Comput.
16, 717–736. doi: 10.1162/089976604322860677

Audoin, B., Ibarrola, D., Malikova, I., Soulier, E., Confort-Gouny, S., Duong,
M. V. A., et al. (2007). Onset and underpinnings of white matter atrophy at the very
early stage of multiple sclerosis - a two-year longitudinal MRI/MRSI study of corpus
callosum. Multiple Sclerosis 13, 41–51. doi: 10.1177/1352458506071215

Babiloni, C., Del Percio, C., Capotosto, P., Noce, G., Infarinato, F., Muratori, C.,
et al. (2016). Cortical sources of resting state electroencephalographic rhythms differ in
relapsing–remitting and secondary progressive multiple sclerosis. Clin. Neurophysiol.
127, 581–590. doi: 10.1016/j.clinph.2015.05.029

Benedict, R., Shucard, J., Zivadinov, R., and Shucard, D. (2008). Neuropsychological
impairment in systemic lupus erythematosus: a comparison with multiple sclerosis.
Neuropsychol. Rev. 18, 149–166.

Beniczky, S., and Schomer, D. L. (2020). Electroencephalography: basic biophysical
and technological aspects important for clinical applications. Epilept. Disord. 22,
697–715. doi: 10.1684/epd.2020.1217

Brassington, J. C., and Marsh, N. V. (1998). Neuropsychological aspects of multiple
sclerosis. Neuropsychol. Rev. 8, 43–77.

Buyukturkoglu, K., Porcaro, C., Cottone, C., Cancelli, A., Inglese, M., and Tecchio,
F. (2017). Simple index of functional connectivity at rest in Multiple Sclerosis fatigue.
Clin. Neurophysiol. 128, 807–813. doi: 10.1016/j.clinph.2017.02.010

Cader, S., Johansen-Berg, H., Wylezinska, M., Palace, J., Behrens, T. E., Smith, S.,
et al. (2007). Discordant white matter N-acetylasparate and diffusion MRI measures
suggest that chronic metabolic dysfunction contributes to axonal pathology in multiple
sclerosis. Neuroimage 36, 19–27. doi: 10.1016/j.neuroimage.2007.02.036

Calabrese, M., Agosta, F., Rinaldi, F., Mattisi, I., Grossi, P., Favaretto, A., et al. (2009).
Cortical lesions and atrophy associated with cognitive impairment in relapsing-
remitting multiple sclerosis. Arch. Neurol. 66, 1144–1150.

Cao, H., Peyrodie, L., Agnani, O., and Donzeì, C. (2015). Nonlinear analysis of
postural sway in multiple sclerosis. Hawaii: Zenodo.

Carrubba, S., Frilot, C., and Marino, A. A. (2019). Optimization of recurrence
quantification analysis for detecting the presence of multiple sclerosis. J. Med. Biol.
Eng. 39, 806–815.

Carrubba, S., Minagar, A., Chesson, A. L. Jr., Frilot, C. II, and Marino, A. A. (2012).
Increased determinism in brain electrical activity occurs in association with multiple
sclerosis. Neurol. Res. 34, 286–290. doi: 10.1179/1743132812Y.0000000010

Carrubba, S., Minagar, A., Gonzalez-Toledo, E., Chesson, A. L., Frilot, C.,
and Marino, A. A. (2010). Multiple sclerosis impairs ability to detect abrupt
appearance of a subliminal stimulus. Neurol. Res. 32, 297–302. doi: 10.1179/
016164109X12536042424135

Cercignani, M., Bozzali, M., Iannucci, G., Comi, G., and Filippi, M. (2002). Intra-
voxel and inter-voxel coherence in patients with multiple sclerosis assessed using
diffusion tensor MRI. J. Neurol. 249, 875–883. doi: 10.1007/s00415-002-0752-y

Chelune, G. J., Stott, H., and Pinkston, J. (2008). “Multiple sclerosis,” in Textbook of
clinical neuropsychology. Studies on neuropsychology, neurology and cognition, eds J. E.
Morgan and J. H. Ricker (New York, NY: US: Psychology Press), 599–615.

Chiaravalloti, N. D., and DeLuca, J. (2008). Cognitive impairment in multiple
sclerosis. Lancet Neurol. 7, 1139–1151.

Cobble, N. (1992). The rehabilitative management of patients with multiple
sclerosis. J. Neurol. Rehabil. 6, 141–145.

Dachraoui, C., Mouelhi, A., Drissi, C., and Labidi, S. (2021). “Chaos theory
for prognostic purposes in multiple sclerosis,” in Transactions of the institute of
measurement and control, (Thousand Oaks, CA: Sage).

de Santiago, L., Sánchez-Morla, E., Blanco, R., Miguel, J. M., Amo, C., Ortiz,
et al. (2018). Empirical mode decomposition processing to improve multifocal-visual-
evoked-potential signal analysis in multiple sclerosis. PLoS One 13:e0194964. doi:
10.1371/journal.pone.0194964

Di Ieva, A., Esteban, F. J., Grizzi, F., Klonowski, W., and Martin-Landrove,
M. (2015). Fractals in the neurosciences, Part II: Clinical applications and future
perspectives. Neuroscientist 21, 30–43. doi: 10.1177/1073858413513928

Dong, K., Che, H., and Zou, Z. (2019). Multiscale horizontal visibility graph analysis
of higher-order moments for estimating statistical dependency. Entropy 21:1008.

Faure, P., and Korn, H. (2001). Is there chaos in the brain? I. Concepts of nonlinear
dynamics and methods of investigation. Comptes Rendus Sci. Series III Sci. Vie 324,
773–793. doi: 10.1016/s0764-4469(01)01377-4

Ghasemi, N., Razavi, S., and Nikzad, E. (2017). Multiple sclerosis: pathogenesis,
symptoms, diagnoses and cell-based therapy. Cell J. 19:1.

Gonzato, G., Mulargia, F., and Marzocchi, W. (1998). Practical application of fractal
analysis: problems and solutions. Geophys. J. Int. 132, 275–282.

Gordon, P. A., Lewis, M. D., and Wong, D. (1994). Multiple sclerosis: Strategies for
rehabilitation counselors. J. Rehabil. 60, 34–39.

Hansen, S., Muenssinger, J., Kronhofmann, S., Lautenbacher, S., Oschmann, P.,
and Keune, P. M. (2015). Cognitive screening tools in multiple sclerosis revisited:
sensitivity and specificity of a short version of Raos brief repeatable battery. BMC
Neurol. 15:246. doi: 10.1186/s12883-015-0497-8

Hardmeier, M., Schoonheim, M. M., Geurts, J. J., Hillebrand, A., Polman,
C. H., Barkhof, F., et al. (2012). Cognitive dysfunction in early multiple sclerosis:
altered centrality derived from resting-state functional connectivity using magneto-
encephalography. PLoS One 7:e42087. doi: 10.1371/journal.pone.0042087

Harrison, L. C. V., Raunio, M., Holli, K. K., Luukkaala, T., Savio, S., Elovaara, I., et al.
(2010). MRI texture analysis in multiple sclerosis: toward a clinical analysis protocol.
Acad. Radiol. 17, 696–707. doi: 10.1016/j.acra.2010.01.005

Hossain, M. Z., Daskalaki, E., Brüstle, A., Desborough, J., Lueck, C. J., and
Suominen, H. (2022). The role of machine learning in developing non-magnetic
resonance imaging based biomarkers for multiple sclerosis: a systematic review. BMC
Med. Inform. Decis. Making 22:242. doi: 10.1186/s12911-022-01985-5

Ibáñez-Molina, A. J., Iglesias-Parro, S., Soriano, M. F., and Aznarte, J. I. (2015).
Multiscale lempel–ziv complexity for EEG measures. Clin. Neurophysiol. 126, 541–548.

Jacob, J. E., and Gopakumar, K. (2018). “A Review of Chaotic Analysis of
EEG in Neurological Diseases,” in 2018 International CET conference on control,
communication, and computing (IC4), (Thiruvananthapuram: IEEE), 181–186.

Jiang, X., Bian, G. B., and Tian, Z. (2019). Removal of artifacts from EEG signals: a
review. Sensors 19:987.

Jouzizadeh, M., Ghaderi, A. H., Cheraghmakani, H., Baghbanian, S. M., and
Khanbabaie, R. (2021). Resting-state brain network deficits in multiple sclerosis
participants: evidence from electroencephalography and graph theoretical analysis.
Brain Connect. 11, 359–367. doi: 10.1089/brain.2020.0857
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