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Introduction: Advances in machine learning (ML) methodologies, combined with 
multidisciplinary collaborations across biological and physical sciences, has the 
potential to propel drug discovery and development. Open Science fosters this 
collaboration by releasing datasets and methods into the public space; however, 
further education and widespread acceptance and adoption of Open Science 
approaches are necessary to tackle the plethora of known disease states.

Motivation: In addition to providing much needed insights into potential 
therapeutic protein targets, we  also aim to demonstrate that small patient 
datasets have the potential to provide insights that usually require many samples 
(>5,000). There are many such datasets available and novel advancements in ML 
can provide valuable insights from these patient datasets.

Problem statement: Using a public dataset made available by patient advocacy 
group AnswerALS and a multidisciplinary Open Science approach with a systems 
biology augmented ML technology, we aim to validate previously reported drug 
targets in ALS and provide novel insights about ALS subpopulations and potential 
drug targets using a unique combination of ML methods and graph theory.

Methodology: We use NetraAI to generate hypotheses about specific patient 
subpopulations, which were then refined and validated through a combination of 
ML techniques, systems biology methods, and expert input.

Results: We extracted 8 target classes, each comprising of several genes that 
shed light into ALS pathophysiology and represent new avenues for treatment. 
These target classes are broadly categorized as inflammation, epigenetic, heat 
shock, neuromuscular junction, autophagy, apoptosis, axonal transport, and 
excitotoxicity. These findings are not mutually exclusive, and instead represent a 
systematic view of ALS pathophysiology. Based on these findings, we suggest that 
simultaneous targeting of ALS has the potential to mitigate ALS progression, with 
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the plausibility of maintaining and sustaining an improved quality of life (QoL) for 
ALS patients. Even further, we identified subpopulations based on disease onset.

Conclusion: In the spirit of Open Science, this work aims to bridge the knowledge 
gap in ALS pathophysiology to aid in diagnostic, prognostic, and therapeutic 
strategies and pave the way for the development of personalized treatments 
tailored to the individual’s needs.

KEYWORDS

augmented intelligence, Open Science, targeted therapy, combination therapy, 
collaboration, machine learning, artificial intelligence, ALS

Introduction

The convergence of artificial intelligence (AI), machine learning 
(ML), and data science is adding new dimensions to the advancement 
of our understanding of disease biology (Yang, n.d.). Traditional drug 
discovery and development is a high-risk, time- and cost-consuming 
process that takes, on average, over a decade and over $1 billion for 
each new drug approved for clinical use (Schaduangrat et al., 2020; 
Sun et  al., 2022). By leveraging advanced AI/ML computational 
methods, meaningful insights can be derived from existing biological 
data (Iskar et al., 2012). As a result, pharmaceutical and biotechnology 
companies are beginning to incorporate these approaches to drive 
innovation in drug discovery (McKinsey, n.d.).

Given this paradigm shift, there is an urgent need to evolve 
infrastructure to foster the intersection between domain experts in AI 
and data science with life sciences (McKinsey, n.d.). As Judea Pearl 
once noted, “…data are profoundly dumb.,” suggesting that 
mathematics and computer science need to come together to develop 
methods that can extract valuable insights from data that are reflected 
in the causal factors driving the phenomenon being modeled while 
engaging biologists to provide contextual and plausibility insights 
(Pearl and Mackenzie, 2018). Technological efforts inspired by this 
mission are reported in this paper.

Currently, approximately 30% of the world’s data volume is 
generated from the healthcare industry (RBCCM, 2018). This 
estimation is only going to get higher as AI/ML techniques and our 
expertise of extracting insights evolves at a phenomenal pace (Dash 
et al., 2019; Hirschler, n.d.). There may be several barriers associated 
with accessing and extracting meaningful insights from healthcare 
data, including patient privacy and data integrity, but these roadblocks 
are actively being addressed by fostering collaborations with the ML 
community while embracing Open Science approaches to tackle 
healthcare challenges (Dash et al., 2019; Seh et al., 2020; Batko and 
Ślęzak, 2022; Miguel Cruz et al., 2022; Singhal and Carlton, n.d.). At 
its core, Open Science encourages transparency and collaboration 
with all stakeholders throughout the scientific research cycle, from 
conception and design to data production, analysis, and dissemination 
(OECD, 2015). The benefits of Open Science are well documented, 
and it is crucial that researchers are properly equipped with the 
knowledge and skills required to navigate an Open Science landscape 
(Zečević et al., 2020). It has become evident that Open Science will 
play an essential role in addressing health inequity, improving patient 
engagement, and treatment access for all patients (Holzmeyer, 2019; 
Norori et al., 2021). However, this requires increasing awareness of the 

power of Open Science and a collaborative effort to reduce the barriers 
that will enable better engagement in Open Science activities. Here, 
we demonstrate the value of Open Science to produce useful insights 
into amyotrophic lateral sclerosis (ALS) through partnerships between 
an AI/ML startup and academic collaborators.

ALS, also known as motor neuron disease or Lou Gehrig’s disease, 
is a relentlessly progressive neurodegenerative and neuromuscular 
disease that results in the loss of motor neurons that control voluntary 
muscles (Johns Hopkins, n.d.). ALS is the most common motor 
neuron disease in adults and the third most common 
neurodegenerative disease after Alzheimer’s disease and Parkinson’s 
disease (Logroscino et  al., 2018). Worldwide, ALS incidence is 
estimated to be 1.9 per 100,000 people per year, while the prevalence 
of ALS at any given time is estimated to be about 4.5 per 100,000 
people (Barceló et al., 2021; Park et al., 2022). Most concerning, the 
number of ALS cases worldwide is projected to increase by 69% from 
2015 to 2040 to approximately 376,000 cases a year, primarily due to 
the aging of the world’s population, especially in developing countries 
(Arthur et al., 2016).

Over 90% of ALS cases are thought to be sporadic, with the 
remaining 10% accounting for familial ALS (Nowicka et al., 2019). 
Many environmental and genetic risk factors are thought to 
contribute to sporadic ALS; however, none have been clearly linked 
to ALS onset (Nowicka et al., 2019). ALS is known to be a complex 
genetic disease, with a liability threshold model for ALS proposing 
that cellular damage accumulates over time due to genetic factors 
present at birth and exposure to environmental risks throughout 
life (Simpson and Al-Chalabi, 2006). The disease can exhibit as 
either bulbar or limb onset, with the former associated with 
accelerated disease course and a poorer prognosis, necessitating 
swift and robust therapeutic response. In contrast, the more gradual 
progression observed in limb onset affords a larger window for 
deliberating potential treatment approaches (Masrori and Van 
Damme, 2020). Due to notable disease heterogeneity, the diagnosis, 
progression, and prognosis vary for each individual, with early 
symptoms including stiff muscles, muscle twitches, gradual 
increasing weakness, and muscle wasting. The disease eventually 
advances to the point where most individuals lose critical motor 
function, ultimately resulting in paralysis and early death, usually 
from respiratory failure (Goutman et al., 2022). There is currently 
no cure for ALS, and treatment is focused on improving symptoms 
(Nowicka et al., 2019).

Disease heterogeneity, late-stage recruitment into 
pharmaceutical trials, and inclusion of phenotypically admixed 
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patient cohorts are some of the key barriers to successful clinical 
trials. In this new era of open science, ML approaches and large 
international datasets offer unprecedented opportunities to 
appraise candidate diagnostic, monitoring, and prognostic 
markers (Grollemund et al., 2019; Ziff et al. 2023).

In this paper, we aim to expand on previously reported work 
to demonstrate the potential for using modern ML technologies 
to learn from the many smaller datasets that are publicly available 
(Pun et  al., 2022). Smaller datasets are typically considered 
unsuitable for ML, but with the continuing advancement of ML 
and the utility of large language models (LLMs) to amplify signals 
from small datasets, work which demonstrates that pertinent 
insights are possible from smaller datasets is important. Here, 
we  utilize an Open Science approach, taking advantage of a 
public ALS dataset from the ALS Kaggle challenge, with no 
further integration of other data.

In the context of ALS research within the Kaggle challenge 
and using a shared dataset, various groups undertook analytical 
investigations to pinpoint key variables linked to different ALS 
pathologies. Notably, one group identified robust activation of 
p53 in TARDBP and sporadic ALS subgroups, while its activity 
was still elevated but considerably diminished in FUS and SOD1 
mutant ALS cases (Ziff et al., 2023). Another group used RefMap 
to identify ALS risk genes, integrating genome-wide association 
study (GWAS) data with molecular profiling to reveal genes 
associated with ALS-related molecular phenotypes like TDP-43 
mislocalization, hypoexcitability, and disruptions in neurotrophic 
signaling. Furthermore, this study identified ADAMTSL1, BNC2, 
KANK1, and VAV2 as significantly enriched rare variants linked 
to ALS, with correlations to disease severity (Zhang et al., 2022). 
A separate investigation identified variants in 22 genes associated 
with sporadic ALS patients, including NDUFS4, AC106707.1, 
ZC3H7B, AC023095.1, and CCD59, among others. Markedly, 
NDUFS4, similar to SOD1, plays a role in antioxidant defense 
mechanisms and stands out as a gene of interest in ALS research. 
Notably, this latter group successfully identified a set of genetic 
markers capable of detecting ALS in >30% of patients with a 99% 
confidence interval (Logan et al., 2022). Finally, the PandaOmics 
study identified high-confidence therapeutic targets from iPSC-
differentiated motor neurons (diMN)-derived and CNS data (Pun 
et al., 2022).

Using this same dataset, we set out to expand upon the drug 
target list provided in that work, and to report on targets that 
overlapped with their analysis, as further validation using an ML 
“playground” environment, NetraAI (Qorri et al., 2020; Choi et al., 
2021; Cook et al., 2023), that allows biological content experts to 
interact with ML-generated hypotheses to evaluate the findings for 
context and plausibility. Further, we present evidence that this is a 
well-defined subclass of bulbar initiated ALS patients whose genetic 
underpinnings corroborate the axonal transport machinery that is 
currently considered a likely etiological component for ALS 
pathophysiology. We provide novel insights that support this theory 
that can play an important role for future therapeutics. This Open 
Science approach aims to bridge the gap between advanced ML 
techniques and human medical expertise through AI. Our goal was 
to use these techniques to provide a synopsis of potential drug targets 
for ALS.

Methodology

Datasets

Answer ALS is the largest collaborative effort in ALS bringing 
together multiple research organizations and key opinion leaders. Over 
800 ALS patients and 100 healthy controls from 8 neuromuscular clinics 
distributed across the United States were enrolled in this project. A blood 
sample was collected at the first visit of each participant and iPSC lines 
were generated from peripheral blood mononuclear cells extracted from 
whole blood via an episomal iPSC reprogramming system. The 
consortium generated multi-omics data comprising of genomic, 
epigenomic, transcriptomic, proteomic, laboratory test, medical records, 
and other data (Baxi et al., 2022). We used transcriptomic records within 
the files named bulbar_vs_limb.csv and ctrl_vs_cas.csv which are 
currently being expanded for future research and competitions. These 
files were available on Kaggle for academia and industry. The former data 
file is meant to differentiate between how ALS initializes, specifically in 
the bulbar region or limbs, allowing our system to extract key sets of genes 
that are active in different patient subpopulations. The latter data file was 
used to differentiate biological mechanisms that play a role in ALS in 
general, and to generate genetic hypotheses about ALS subpopulations. 
The data used in the preparation of this article were obtained from the 
Answer ALS Data Portal (AALS-01184). For up-to-date information on 
the study and access to the data please visit https://www.answerals.org/.

Analysis

An ML playground environment called NetraAI (Qorri et al., 
2020; Choi et  al., 2021; Cook et  al., 2023) was made available to 
scientists at the Gladstone Institute. This allowed medical experts to 
interact with the ML-generated hypotheses to evaluate the findings 
and examine the etiological factors that were being suggested. Here, 
we bridged the gap that exists between advanced ML techniques and 
human medical expertise through augmented intelligence (Crigger 
et al., 2022). The methods used for the generation of the hypotheses 
that led to the target classes described in this paper consisted of ML 
methods paired with systems biology methods. In this context, 
we refer to ML-generated hypotheses as proposed insights about a 
patient subpopulation that satisfy the following criteria:

 • The insight must be about a specific subset of samples that the AI 
finds and include a multi-factor signature that pertains to 
this subpopulation.

 • The insight must pass significance testing by comparing the 
precisely defined subpopulation against other collections of 
samples or patients.

 • The insight is further strengthened by being passed through a 
LLM in order to shape it according to the existing literature and 
to transform it into a human readable statement.

An important issue is the small number of samples within the 
dataset used, as we did not augment our process with other data such 
as literature or other genetic datasets. Our process is based on 
authentic limitations that exist in rare disease clinical trials, which 
begins with inherently small sample sizes of patients. For this reason, 
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we built an ML pipeline using methods suitable for smaller sample 
sizes. By allowing the algorithms to segment the patient samples into 
clusters of varying confidence, and extracting precisely what factors 
are driving each cluster, we have a set of hypotheses that can be tested 
statistically and by human ALS experts. Smaller datasets do not have 
the sample size to accurately represent the variety of manifestations of 
ALS, but the sample we  had access to did provide insights into 
statistically significant patient subpopulations. The novelty of our 
approach stems from the following insights:

 • Small datasets need to be  partitioned into explainable and 
unexplainable subsets.

 • The explainable subsets are hypotheses, which are sets of variables 
and collections of samples that pass statistical significance testing. 
The unexplainable subsets are groups of patients that represent 
unknowns with respect to predictions from the resulting models. 
In other words, this process infuses the resulting models with the 
ability to be clear about what subtypes of patients it can make 
reliable predictions about, and those that will require more data 
and future efforts.

 • Knowledge of these explainable subsets and their driving 
variables improve leave out cross validation statistics significantly.

These subpopulations were then used to extract features that were 
supported through significance testing and expert validation. These 
were then used to seed biological network analyses and hypothesis 
generation. This is an example of augmented intelligence, where ML 
methods are used to enhance human expertise, especially when 
datasets are limited in sample size. This process was implemented 
as follows:

 1 Each dataset had a column with labels as it pertains to control 
subjects versus ALS patients, or limb versus bulbar initiation.

 2 Due to the smaller sample sizes of the datasets, we utilized 
Random Forest, Gradient Boosted Trees, support vector 
machines, UMAP, and methods previously described, to 
partition the data into subpopulations (Qorri et al., 2020; Choi 
et al., 2021; Cook et al., 2023). The sequence of these methods 
allows one to extract a set of genes that acted coherently to 
define different patient classes. Each of these sets of genes along 
with a subset of patients/subjects will now be referred to as a 
hypothesis, as defined above.

 3 The genes implicated for each hypothesis are then entered into 
a systems biology platform. The systems biology platform 
utilizes data on how proteins interact and co-express. These 
data are derived from Warde-Farley et al. (2010) and utilized 
in the following way:

 a Each gene implicated by the methods outlined (Qorri et al., 
2020; Choi et al., 2021; Cook et al., 2023) has a graph grown 
around it according to adjustable parameters. The genes that 
come from the hypotheses are considered parent nodes and 
the number of daughter nodes to be included is a parameter, 
e.g., maximum degree. Another parameter is the number of 
connections allowed for each daughter node (i.e., maximum 
daughter degree).

 b Graphs are grown according to protein interaction, gene 
co-expression, gene interactions, or domain similarity, and 
any of these in any combination can be  selected. If an 

interaction exists between any two proteins/genes, according 
to one of these parameters, an edge is formed between the 
pairs. The edges can be weighted based on a metric derived 
from publications about the interaction and reflects the 
confidence in that interaction.

 c Network centrality measures such as eigenvector, 
betweenness, and closeness centrality measures are used to 
derive a score for each gene in the network (Geraci et al., 
2012; Sekhar and Ambedkar, 2020). A linear combination of 
node metrics was used to determine which nodes were the 
most important from a drug target perspective. The parent 
nodes derived from the ML methods applied to the patient 
population dataset are used to evaluate the graph distance 
to other nodes implicated by the interaction data. Nodes that 
are farther away are penalized than those that are closer. 
However, the methods consider that high-degree nodes can 
be lethal, as drugging them could disrupt multiple critical 
molecular pathways. By using a linear combination of node 
metrics, one can utilize a combination of scores to capture 
different aspects of these graph theoretic metrics as outlined 
previously (Galan-Vasquez and Perez-Rueda, 2021; Viacava 
Follis, 2021). For instance, even though how many 
connections a protein has is important, targeting high degree 
proteins can also cause toxicity. This should be balanced with 
proteins that have the potential to modulate disease despite 
not being high degree but being connected to proteins that 
are. Thus, by combining multiple scores one can consider 
different molecular influencers that act through different 
topological mechanisms (Galan-Vasquez and Perez-Rueda, 
2021; Viacava Follis, 2021).

 d Potential targets are ranked according to their ability to 
interfere with a process that aligns with the ML-derived 
hypotheses, as described. Ideally, the parameters of the 
process are chosen so that lethal targets are avoided as well 
as ineffective proteins, which are far from the parent nodes. 
This is done by ranking all resulting daughter nodes by 
distance, degree, and centrality measures.

 e Targets are also linked with pathways and potential binding 
chemical compounds if they exist.

 4 The results of these computations, including the ranking of 
potential drug targets, the pathways they belong to, and 
binding chemical compounds were the outputs of the 
algorithms used. These outputs were used to decide which 
targets to include.

The ML methodology utilized is outlined in Figure 1 and has 
previously described in more detail (Qorri et al., 2020; Choi et al., 
2021; Cook et al., 2023). This was the methodology used to segment 
the patient population before applying the biological network methods 
described above.

Analytical methods and parameter choices

For a foundational understanding of the data’s structures and to 
facilitate feature reduction, a series of methods and parameters were 
adopted. During data preprocessing, features were centered by 
subtracting their respective means. Recognizing the varied feature 
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scales, the data underwent standardization to ensure every feature 
converged to a mean of 0 with a standard variance of 1. When 
implementing the PCA, we  opted for the “full” solver, a choice 
influenced by the manageable size of our dataset which promised a 
thorough decomposition. To zero in on the optimal components, a 
significant focus was placed on the cumulative explained variance, 
ensuring our emphasis was on principal components accounting for 
95% of the total variance. This approach was further cross-referenced 
by inspecting the “elbow” of the scree plot. The significance of features 
was gauged through their loading values, where features with 
pronounced absolute values were considered for the selection process. 
Furthermore, these features from PCA loadings were assessed against 
our domain expertise. This ensured that the pruned feature set was not 
just technically sound but also contextually relevant, particularly in 
the lens of potential ALS drug targets. Before embarking on these 
steps, multicollinearity among features was scrutinized using the 
variance inflation factor (VIF). Features breaching a VIF of 10 were 
given a closer look. With the dataset’s size being on the smaller side, 
outliers posed a risk of disproportionate influence. To counteract this, 
data distributions were visually examined and complemented with 
statistical methods geared toward outlier identification and assessment.

Our study also made use of the Random Forest method, an 
ensemble learning technique used for its capabilities in both 
classification and regression tasks. By leveraging a collection of 
decision trees, each being trained on a randomized assortment of data 
subsets and features, an aggregate predictive outcome was pursued. 
The primary intent here was the validation of features unearthed using 
our unique techniques. The dataset was strategically bifurcated, 
earmarking 80% for training purposes and the remaining for testing. 
Stratified sampling was integral in this division, a necessity arising 
from the class imbalance observed in our target variable. Utilizing the 
Scikit-learn library available in Python, we initialized the Random 
Forest with parameters such as 500 trees, the criterion set as “gini,” 
max depth restricted to 30, min_samples_split and min_samples_leaf 
defined as 5 and 2, respectively, and finally, a consistent random_state 
of 42. Post training, the Gini importance was extracted, which 
subsequently played a pivotal role in ranking features. A 
predetermined threshold was set at 0.005 for feature importance, 
selecting only those that surpassed this benchmark. Their inclusion 
was further bolstered by an out-of-bag (OOB) error measuring 0.03. 

For evaluations, a fresh Random Forest model was trained using the 
cherry-picked features, which was then validated against the testing 
subset. Finally, grid search was utilized specifically for hyperparameter 
fine-tuning, resulting in optimal parameters of n_estimators at 550 
and max_depth solidified at 32.

In our approach with t-SNE, we  settled on settings such as a 
perplexity of 30. This was largely due to its alignment with smaller 
datasets, effortlessly balancing between local and global structures. 
Accompanying parameters included a learning rate of 200, capped 
iterations at 1000, early exaggeration of 12, a balancing angle of 0.5, 
and a swift PCA-based initialization for the sake of faster convergence. 
Additionally, the metric was strictly defined as “euclidean.” We chose 
“exact” for the method parameter, offering an advantage over the 
Barnes-Hut approximation for petite datasets, all while 
minimizing complexity.

HDBSCAN clustering was configured as follows: The Minimum 
Cluster Size was fixed at 5, with the Minimum Samples mirroring this 
value by default. The Cluster Selection Method was distinctly marked 
as “eom” or Excess of Mass. In this phase, the Allow Single Cluster 
option was purposefully deactivated. Alpha was precisely set at 1.0, 
keeping avenues open to experiment with elevated values. The metric 
was once again aligned with the previous selection of “euclidean,” and 
Core Distance was singularly set at 1 to bolster computation times.

Lastly UMAP was used to decipher the intricate interrelations 
among patients, echoing discoveries from our in-house methods. 
Crucial parameters here were the n_neighbors fixed at 15, min_dist 
tailored to 0.1, the metric used was “euclidean,” a spread adjusted to 
1.0, and the min_dist_fraction set at 0.1 for this study.

This comprehensive approach, underlined by these carefully 
chosen parameters, was our roadmap to robust, interpretable results, 
all the while side-stepping pitfalls like overfitting and 
computational lags.

Target confidence evaluation

TargetMine, an Open Source and peer reviewed tool that uses 
known genetic relationships with disease, biological pathway data, 
and current drug information was used to provide confidence 
levels for the targets we  discovered with our NetraAI system 

FIGURE 1

Machine learning approach for patient subpopulation and gene set discovery. Using two ALS datasets, a tailored ML approach consisted of feature 
selection with random forest, unsupervised clustering, cluster exploration with t-SNE, HDBSCAN, UMAP, and statistical analyses to obtain between-
group differential gene expression for subpopulations of ALS patients. These were used to extract hypotheses about driving genes and then used to 
seed the previously described biological network analyses.
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(Chen et al., 2022). We compiled a comprehensive list of genes, all 
of which are included in this study. This list was formatted into a 
comma-separated value (CSV) file for computational analysis. 
The dataset was uploaded to the TargetMine platform, where 
we specifically selected Homo sapiens as the reference organism. 
In the “Analyse Data” tab, we  initiated the analysis procedure, 
where it was imperative to rectify the nomenclature of several 
genes to ensure system recognition. Following the successful 
recognition of all the genes, we  proceeded with the detailed 
analysis. TargetMine generated a downloadable report, of which 
the disease pathway enrichment section was of particular interest 
to our study. This section provided the statistical significance 
measures that underpinned our findings and facilitated the 
stratification of our target genes based on confidence levels and 
putative functionalities. All these data including pathway 
enrichment provide the data to derive significance values for the 
targets discovered by our process.

Results

ALS drug targets replicated by NetraAI

Several studies have attempted to identify key players in ALS 
pathology with hopes of elucidating relevant drug targets for this 
fatal disease (Batra et al., 2019; Hedl et al., 2019; Nowicka et al., 
2019; Wu et al., 2019). However, many identified targets relate to 

mitochondrial dysfunction, protein aggregation, RNA processing, 
axonal transport, oxidative stress, apoptosis, SOD1, 
phosphorylation, and the neuromuscular junction (Batra et al., 
2019). Most methods to extract these targets are based on 
symptoms and the mechanisms of disease development and 
progression; however, due to the heterogeneity of the disease, it 
is important to identify key players that can be  druggable in 
specific subsets of ALS patients. Several ML approaches have 
identified key genetic targets, and using NetraAI, we were able to 
verify several of the same gene targets that have been recently 
reported (Table 1) as well, we identified several genes that belong 
to the same gene family as those previously reported (Table 2; 
Pun et al., 2022). The functions reported in Tables 1, 2 are based 
on the protein family function as well as supporting literature 
that discusses a proposed mechanism or function. Within Table 1, 
DNM3TA, ERN1, HSPD1, PPIA, VCP, MAP3K5, MAKPK1, NOS1, 
PTK2, PTPRC, and RARA were previously identified high-
confidence therapeutic targets from iPSC-differentiated motor 
neurons (diMN)-derived and CNS data that belonged to the 
druggable classes defined by PandaOmics, with supportive 
evidence on their ALS or neurodegeneration, and ranked as the 
top-50 targets in at least one of the meta-analyses (Pun et al., 
2022). In contrast, PPP3CB, was identified as a novel therapeutic 
target in the previous reported findings (Pun et al., 2022). The 
findings presented in Table 2 represent gene targets that belong 
to the same protein family as other targets identified by the 
PandaOmics study.

TABLE 1 Previously found drug targets by PandaOmics replicated by our methodology.

Drug target Function References

DNMT3A (DNA methyltransferase 3 alpha) DNA methylation; apoptosis Wong et al. (2013)

ERN1 (Endoplasmic Reticulum to Nucleus Signaling 1) Sensor for endoplasmic reticulum unfolded protein 

response (UPR); protein aggregation, apoptosis

Medinas et al. (2017) and Montibeller and de 

Belleroche (2018)

HSPD1 (heat shock protein family D member 1) Innate immune response; FUS pathology, inflammation Gorter et al. (2019)

PPIA (Peptidylprolyl Isomerase A) Survival and growth pathways; mediator of 

inflammation; TDP-43 pathology
Pasetto et al. (2017) 

VCP (valosin containing protein) Protein segregation and degradation; DNA repair and 

replication; cell cycle regulation; mitochondrial 

dysfunction

Koppers et al. (2012) and Scarian et al. (2022)

PPP3CB (protein phosphatase 3 catalytic subunit beta) Calmodulin-binding activity; protein phosphatase 2B 

binding activity; NFAT signaling cascade; apoptosis; 

cellular degradation; protein aggregate degradation

RGD (n.d.)

MAP3K5 (Mitogen-Activated Protein Kinase Kinase 

Kinase 5) Mediator of apoptosis signaling
Medinas et al. (2017) 

MAPK1 (Mitogen-Activated Protein Kinase 1) Pasetto et al. (2017), Gorter et al. (2019)

NOS1 (Nitric oxide synthase 1)

Multifunctional signaling molecule and 

neurotransmitter; associated with SOD1 upregulation 

(role in ALS)

Almer et al. (1999), Kiernan et al. (2011), and Tripathi 

et al. (2020)

PTK2 (Protein Tyrosine Kinase 2)
Cell adhesion, migration, and survival; ubiquitous 

proteasome system and protein degradation
Lee et al. (2020)

PTPRC (Protein Tyrosine Phosphatase Receptor Type C) Transmembrane receptor protein phosphatase activity; 

immune cell function
Galan-Vasquez and Perez-Rueda (2021)

RARA (Retinoic acid receptor alpha) Autophagy Viacava Follis (2021) 

Genes listed in this table are the same as those reported in the PandaOmics study (Pun et al., 2022).
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Novel ALS targets uncovered by NetraAI

In addition to the drug targets shown in Table 1, which have 
already been previously reported and validated, as well as the targets 
shown in Table 2, which belong to the same gene family as those 
previously reported (Pun et al., 2022), NetraAI was able to uncover 
several targets that may shed light into ALS pathophysiology and 
treatment efforts. Interestingly, these targets can be grouped into a 
collection or family, called “target classes,” that align to a unique 
characteristic related to ALS (Figure 2). The target classes discussed 
here include inflammation, epigenetic, heat shock, neuromuscular 
junction, autophagy, apoptosis, axonal transport, and excitotoxicity.

These targets are not exhaustive, they represent select target 
classes that have the potential to play a role in ALS that warrant 
further investigation. Collectively, these target classes suggest that the 
simultaneous targeting of several key hallmarks of ALS with 
combination targeted therapy may have the potential to slow 
progression, with an enhanced possibility of maintaining and 
sustaining an improved quality of life (QoL) for certain ALS patients.

Inflammation target class for ALS

Neuroinflammation is suggested to begin in early ALS 
pathogenesis, with nervous and peripheral immune systems being 
impacted (McCauley and Baloh, 2018). Interestingly, we were able to 
distinguish an inflammation target class involving TNFα (Table 3). 
Given the role of TNFα in immune and inflammatory activity, this is 
not surprising, considering an innate immune response is 
characteristic of neurodegenerative diseases like ALS (McCauley and 
Baloh, 2018). However, the role of TNFα and its receptors TNFR1 and 
TNFR2 are controversial, with both protective and detrimental effects 
being reported (Guidotti et  al., 2021). Considering that 
neuroinflammation is a complex and atypical inflammatory process 
that is meant to protect the central nervous system from injury, in 
ALS, chronic neuroinflammation can lead to dysregulation that 
contributes to neurodegeneration. It is now thought that 
neuroinflammation has dual function, contributing to neuroprotection 
and possibly leading to neurotoxicity (Tortarolo et al., 2017; Guidotti 
et al., 2021).

Epigenetic target class for ALS

Epigenetic hallmarks have been linked with ALS, specifically with 
histone deacetylases (HDACs) and their inhibitors, highlighting a 
potential therapeutic avenue for ALS patients (Klingl et al., 2021). 
Using the same patient dataset, we also discovered a set of candidate 
genes that indicate potential HDAC dysregulation and methylation 
(Table 4). The genes in this target class encode numerous proteins 
associated with DNA binding and transcription factors, particularly 
histones and nucleosomes. Although HDAC is a known target for 
several disease states, including ALS, several HDAC inhibitors 
currently available have a host of toxic side effects and warrant further 
investigation to target specific HDACs in specific patient subgroups 
(Janssen et al., 2010). Collectively, these results highlight the role of 
epigenetic regulation in ALS pathophysiology.

Heat shock target class for ALS

In ALS, motor neurons have a deficit in the ability to activate the 
heat shock response (HSR) and do not upregulate the expression of 
heat shock proteins (Hsps) which are inhibitors of apoptosis and exert 
an anti-inflammatory response in glia (Apolloni et al., 2019). Here, 
we were able to uncover a heat shock target class, where the proteins 
encoded by the genes of interest are primarily associated with protein 
transport, such as, dynein, actin, and microtubules (Table  5). 
Evidently, ALS is driven by a collection of genes, with cases being 
highly heterogeneous; however, protein aggregates in the brain and 
spinal cord that are positive for SOD1, TDP-43, or OPTN are present 

TABLE 2 Targets belonging to the same protein family identified by our 
methodology.

Drug target Function References

NR3C2 (Nuclear 

Receptor Subfamily 3 

Group C Member 2)

Aldosterone signaling 

pathway

Yu et al. (2022) and Ziff 

et al. (2022)

KCNB1 (Potassium 

Voltage-Gated) 

Channel Subfamily B 

Member 1

Regulator of cortex and 

hippocampus neuronal 

firing

Yu et al. (2016)

P2RY12 (purinergic 

receptor)
Neuroinflammation; platelet 

aggregation

Amadio et al. (2014), 

Volonté et al. (2016), and 

Morillas et al. (2021)

SCYL3 (SCY1 Like 

Pseudokinase 3)

Neuronal function and 

survival; cell migration and 

adhesion

Pelletier (2016) and 

Kuliyev et al. (2018)

SLC25 (Solute 

Carrier Family 25 

Member 4, 5, 6, 18, 

22)

Mitochondrial function; 

neuron energy production

Apoptosis

Mitochondrial function

L-glutamate transmembrane 

transport; aspartate 

transmembrane support; 

malate–aspartate shuttle

Mitochondrial glutamate 

transporter

GeneCards-SLC25A18 

(n.d.), Häggmark et al. 

(2014), Kuliyev et al. 

(2018), and Aykaç and 

Şehirli (2020)

RPS6KA1 (ribosomal 

protein S6 kinase A1)
Mediator of cell survival; 

cell growth, motility, 

survival, and proliferation

UniProt, (n.d.) and 

Iridoy et al. (2019)

RPS6KA2 (ribosomal 

protein S6 kinase A2)

GeneCards-RPS6KA2 

(n.d.) and Zhang (2023)

KCNV2 (potassium 

voltage-gated channel 

modifier subfamily V 

member 2)

Neurotransmitter release 

regulation; neuronal 

excitability

Wu et al. (2006) and 

Gore et al. (2010)

Genes listed in this table belong to the same protein family as those reported in the 
PandaOmics study (Pun et al., 2022).

TABLE 3 Inflammation target class in ALS.

Inflammation target class

Drug target Function References

TNFα (Tumor 

Necrosis Factor 

Alpha)

Mediates immune and 

inflammatory activity

Tortarolo et al. (2017) and 

Guidotti et al. (2021)
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in nearly all ALS patients. Under normal physiological conditions, 
these protein aggregates are prevented and cleared by Hsps, providing 
further evidence that ALS motor neurons have an impaired ability to 
induce the HSR (Seminary et al., 2018).

Neuromuscular junction target class for ALS

In the context of ALS, distal axonopathy is a central hypothesis in 
the early stages of the disease where pathological changes occur at the 
neuromuscular junction (NMJ). Acetylcholinesterase (AChE) plays a 
crucial role in nerve-muscle contact, facilitation of neurite outgrowth, 
and NMJ formation and survival. Interestingly, ALS patients are 
characterized by abnormal AchE content in plasma, which may reflect 
neuromuscular disruption (Campanari et al., 2016). Here, we found 
HSPG2 to characterize the neuromuscular junction target class 
(Table 6). Interestingly, a research paper reported on HSPG2, among 
others, as a novel candidate mediator for disease progression. HSPG2 
plays a role in immunological and inflammatory disease, neurological 
disease, and skeletal and muscular disorders (Morello et al., 2019).

Autophagy target class for ALS

Similar to the epigenetic target class, the accumulation of protein 
aggregates is proposed to disrupt cellular processes that ultimately 
result in neurodegeneration. Evidently, this protein aggregation in 
neurons is a hallmark of ALS and may be due to defects in autophagy 
(Ramesh and Pandey, 2017; Amin et al., 2020). Here, in the autophagy 
target class, we uncovered several genes implicated in the cellular 
processes regulating autophagy (Table 7). Autophagy is responsible for 
maintaining cellular and protein homeostasis in response to nutrient 
depletion or organelle damage (Ramesh and Pandey, 2017). However, 

it is still unknown whether activation or inhibition of autophagy 
would be most effective in the treatment of ALS (Nguyen et al., 2019). 
Interestingly, SOD1 is a frequent ALS mutation and it is expected that 
aggregation of mutant SOD1 (mSOD1) is a crucial event in ALS 
pathogenesis, and dysregulation of autophagy has been linked to 
SOD1 aggregates in motor neurons (Nguyen et  al., 2019). This 
highlights the need to study further and identify therapeutic agents 
that target the clearance of these protein aggregates.

Apoptosis target class for ALS

In ALS, there is evidence of apoptosis through DNA 
fragmentation, caspase-9 activation, BAX overexpression, and 
reduced Bcl-2 expression (Erekat, 2022). Interestingly, mSOD1 

FIGURE 2

Overview of the proposed target classes for ALS uncovered by 
NetraAI. Novel genes associated with ALS characteristics can 
be grouped into 8 target classes: inflammation, epigenetic, heat 
shock, neuromuscular junction, autophagy, apoptosis, axonal 
transport, and excitotoxicity.

TABLE 4 Epigenetic target class in ALS.

Epigenetic target class

Drug target Function References

CHD4 (Chromodomain 

Helicase DNA Binding 

Protein 4)

Nucleosome remodeling 

and deacetylase complex; 

epigenetic transcriptional 

repression

CHD4 (n.d.) and 

Novillo et al. (2021)

HDAC1, 2, 3, 8 (Histone 

Deacetylation 1, 2, 3, 8)

Regulators of gene 

expression and cell 

differentiation

Janssen et al. (2010)

REST (RE1 Silencing 

Transcription Factor)
Neuronal gene repressor van Acker et al. (2019)

HMG20B (High Mobility 

Group 20B)

HMG proteins cause 

changes to chromatin 

structure by binding to 

DNA and nucleosomes

GeneCards-HMG20B 

(n.d.) and Artegiani 

(2010)

SAP18 (Sin3A Associated 

Protein 18)

Histone acetylation; 

regulation of eukaryotic 

gene expression

SAP18 (n.d.) and 

Kumari et al. (2023)

PHF21A (PHD Finger 

Protein 21A)

Histone deacetylase; 

neuron-specific gene 

repression

PHF21A (n.d.) and 

Hakimi et al. (2002)

KDM1A (Lysine 

Demethylase 1A) Histone demethylase

GeneCards-KDM1A 

(n.d.) and Casey et al. 

(2022)

MTA2 (Metastasis 

Associated 1 Family 

Member 2) Histone deacetylase; 

nucleosome remodeling

Boulasiki et al. (2023) 

and MTA3 (n.d.)MTA3 (Metastasis 

Associated 1 Family 

Member 3)

GATAD2B (GATA Zinc 

Finger Domain Containing 

2B)

Transcriptional repressor
GATAD2B (n.d.) 

Shieh et al. (2020)

MBD3 (Methyl-CpG 

Binding Domain Protein 3)

Nucleosome remodeling 

and histone deacetylase

Menafra and 

Stunnenberg (2014)

RAMP1 (Receptor Activity 

Modifying Protein 1)

Calcitonin-receptor-like 

receptor transport
Ringer et al. (2017)
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induces apoptosis via cytochrome c release and Bcl-2 degradation 
(Erekat, 2022). As a result, treatments targeting apoptosis can 
be helpful in rescuing neurons from cell death. In the apoptosis target 
class, several caspases as well as apoptotic mediators were identified 
(Table 8). Of note is that of the caspases identified, based on their 
mechanism of action and their position in the apoptotic signaling 
pathways, apoptotic caspases can be initiatory caspases (caspase 2, 8, 
9, and 10) and executioner or effector caspases (caspases 3, 6, and 7) 
(Erekat, 2022). As a result, similar to autophagy, whether promoting 
or inhibiting critical caspases involved in apoptosis presents as a 
therapeutic approach for ALS patients.

Axonal transport target class for ALS

Neurons have long axonal projections that rely on cytoskeletal 
integrity to maintain axonal stability, transport, and signaling 
(Theunissen et al., 2021). In ALS there is selective, early degeneration of 

motor neurons in the brain and spinal cord. Related to this, we identified 
a target class characterized by several genes that play a role in 
microtubule cytoskeletal organization (Table 9). Disrupted transport 
mechanisms can affect mitochondrial metabolism and degeneration, 
protein degradation, and RNA transport, collectively resulting in motor 
neuron death (Le Gall et al., 2020). Furthermore, within this target class, 
we  identified TARDBP and RPA1 which have been implicated in 
ER-Golgi transport dysfunction that is associated with ALS (Soo et al., 
2015). It is important to note that in this target class, we identify two 
HDACs, and conversely, in the heat shock target class, we identified 
dynactin. This observation demonstrates that ALS pathophysiology is 
characterized by overlapping systems and is heterogeneous (Le Gall 
et  al., 2020). It should be  emphasized that even though these gene 
candidates are organized under specific categories, the manifestation of 
the disorder, and the potential treatments, all depend on the fact that the 
corresponding proteins, and higher-order systems, interact with each 
other. Hence, these findings should not be considered isolated processes 
but parts of an emergent system.

Excitotoxicity target class for ALS

Finally, we  extracted a collection of genes implicated in 
excitotoxicity (Table  10). Excitotoxicity is a phenomenon that 
describes the toxic actions of excitatory neurotransmitters where 
prolonged activation starts a cascade of neurotoxicity that ultimately 
leads to the loss of neuronal function and cell death (Armada-Moreira 
et al., 2020). Importantly, excitotoxicity can both contribute to as well 
as be  a result of other deregulations, including mitochondrial 
dysfunction, neuronal damage, and oxidative stress (de Marco et al., 
2022). Similar to other target classes, there is evidence that 
dysregulation of mitochondrial calcium handling plays a role in 
excitotoxicity (Verma et al., 2022).

Drug target confidence evaluation

Utilizing an Open Source bioinformatics tool, TargetMine, 
we evaluated the confidence in the drug targets in the manuscript thus 

TABLE 5 Heat shock target class in ALS.

Heat shock target class

Drug targets Function References

HSPBP1 (HSPA 

(Hsp70) Binding 

Protein 1)

Ubiquitin protein ligase 

activity
Jing et al. (2021)

HSPA5 (Heat Shock 

Protein Family A 

(Hsp70) Member 5)
HSP70 chaperone

François-Moutal et al. 

(2022)HSPA9 (Heat Shock 

Protein Family A 

(Hsp70) Member 9)

ACTR1A (Actin-

Related Protein 1A)

Dynactin complex; 

ER-Golgi transport; 

chromosome movement; 

nuclear positioning; 

axonogenesis

ACTR1B (n.d.)ACTR1B (Actin 

Related Protein 1B)

DNAJB1 (DnaJ heat 

shock protein family 

(Hsp40) member B1)

Molecular chaperone Dilliott et al. (2022)

HSPD1 (Heat Shock 

Protein Family D 

(Hsp60) Member 1)

Chaperonin family; 

innate immune signaling

Bross and Fernandez-

Guerra (2016)

DCTN2, 3, 4, 6 

(Dynactin Subunit 2, 

3, 4, 6)

Dynactin subunits; 

ER-Golgi transport; 

chromosome movement; 

nuclear positioning; 

axonogenesis

Wang et al. (2018)

TABLE 6 Neuromuscular junction target class in ALS.

Neuromuscular junction target class

Drug target Function References

HSPG2 (heparan 

sulfate proteoglycan 2)

Extracellular matrix 

and cell-surface 

crosstalk

Morello et al. (2019)

TABLE 7 Autophagy target class in ALS.

Autophagy target class

Drug target Function References

MAP1LC3A 

(Microtubule-

associated protein 1 

light chain 3 alpha)

Autophagosome biogenesis 

and transport
Bonam et al. (2020)

ATG3 (autophagy-

related 3)
Autophagy regulation

Ramesh and Pandey 

(2017)

GABARAP (GABA 

Type A Receptor-

Associated Protein)

Autophagosome movement; 

protein aggregation inhibition; 

cytoskeleton interaction

Brennan et al. (2022)

ATG4C (autophagy-

related 4C cysteine 

peptidase)

LC3 conjugation system
van Beek et al. 

(2018)
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far (Chen et al., 2022). Adding our target genes to TargetMine we were 
provided with 11 overarching pathway categories, each with varying 
levels of confidence (Table 11). Of the 86 targets, 36 were associated 
with pathways of neurodegeneration including ALS, with a high level 
of confidence (3.4×10-16). Interestingly, 30 targets were also associated 
with SARS-CoV infection and interferon signaling, 35 targets were 
associated with RHO GTPase effectors, nuclear receptor signaling, 
chromatin modifying enzymes and viral carcinogenesis, 61 targets 
were associated with nervous system development, and 43 targets 
were associated with homeostasis and the neuronal system, all with 
high levels of confidence. All of the targets identified to be associated 
with cell cycle, transcriptional dysregulation in cancer, organelle 
biogenesis and maintenance, carboxyterminal post-translational 
modification of tubulin, bacterial infection pathways, and autophagy, 
which, despite having a lower confidence level, highlight that ALS may 
be a complex disorder. However, an alternative explanation is that 
there is a historical bias toward favored pathways and that genes are 
inherently promiscuous, making our molecular machinery highly 
connected. The output of the TargetMine software is included as a 
Supplementary file, which includes one table outlining the statistical 
significance of the pathways enriched for and the other with the 
pathways and genes themselves.

Identification of drivers of a subpopulation 
of limb and bulbar onset ALS patients

Utilizing a dataset consisting of 31 bulbar onset and 85 limb onset 
ALS patients, we identified distinct subpopulations, each defined by 
a specific set of driving genes (Figure 3). A subpopulation of 13 limb 
onset ALS patients was identified to be characterized by an elevated 
expression of IL200RA and LRRC23 (Loop  1). Even further, 
we identified a distinct subpopulation of 11 bulbar onset ALS patients 
(Loop  2) that was characterized by a decreased expression of 
TBC1D20, ALG3P1, CROCC2, AC109439.1, FAM151A, and 
NKX2101-AS1, and an elevated expression of TMEM14A. The 
remaining limb onset patients, which comprised the majority of the 

dataset, were characterized by expression patterns opposite to the 
bulbar subpopulation – specifically increased expression of TBC1D20, 
ALG3P1, CROCC2, AC109439.1, FAM151A, and NKX2101-AS1, and 
decreased expression of TMEM14A. These findings indicate that 
specific genetic factors may accurately delineate novel subtypes of 
bulbar and limb-initiated ALS. Unraveling these subpopulations has 
significant implications for clinical trials, as it can unveil alternative 
etiological subtypes that might respond more favorably to particular 
therapeutic interventions. A gene interaction network constructed of 
TMEM14A and FAM151A, revealed nearest neighbor connections to 
RAB1, RAB2, and TDP-43 (TARDBP in the gene interaction figure), 
suggesting the identification of a more aggressive ALS subpopulation 
within the bulbar onset patients (Figure 4).

We adopted z-score normalization prior to generating the 
heatmap (Figure  5) facilitated by the Seaborn Python library 

TABLE 8 Apoptosis target class in ALS.

Apoptosis target class

Drug target Function References

CASP7, 8, 9, 3 (Caspase 7, 

8, 9, 3)

Execution phase of 

apoptosis

Pasinelli and Brown 

(2006)

FADD (Fas Associated Via 

Death Domain)
Death signaling Raoul et al. (2002)

FAS (Fas cell surface death 

receptor)

Death signaling; caspase 

cascade
Raoul et al. (2002)

APPL1 (Adaptor Protein, 

Phosphotyrosine 

Interacting with PH 

Domain And Leucine 

Zipper 1)

Metabolic and 

inflammatory response 

regulator

Hsu et al. (2018)

DIABLO (Diablo IAP-

Binding Mitochondrial 

Protein)

Caspase activation Benn and Woolf (2004)

TABLE 9 Axonal transport target class in ALS.

Axonal transport target class

Drug target Function References

GSK3B (Glycogen 

Synthase Kinase 3 

beta)

Cell signaling regulation Choi et al. (2020)

CCT2, 3, 4, 5, 6, 7, 8 

(Chaperonin 

Containing TCP1 

Subunit 2, 3, 4, 5, 6, 7, 

8)

Ubiquitin protein ligase 

binding; unfolded 

protein binding

Bernardini et al. (2013) 

and Kim et al. (2017)

TUBA1C (Tubulin 

Alpha 1c)

Microtubule 

cytoskeleton 

organization

Buscaglia et al. (2020)

LRRC49 (Leucine Rich 

Repeat Containing 49)

Protein metabolism; 

actin and tubulin folding
GeneCards-LRRC49 (n.d.)

TCP1 (T-Complex 1)
Protein folding

Khorkova and Wahlestedt 

(2017)

TUBB1 (Tubulin Beta 

1 Class VI)
Neurogenesis; axon 

guidance and 

maintenance

Morello and Cavallaro 

(2015)TUBB2A (Tubulin Beta 

2A Class IIa)

HDAC6 (Histone 

Deacetylase 6)
Deacetylation; epigenetic 

repression and 

transcriptional 

regulation

Fischer et al. (2010) and 

Taes et al. (2013)HDAC7 (Histone 

Deacetylase 7)

TARDBP (TAR DNA 

binding protein)

RNA-binding protein 

involved in RNA 

biogenesis and 

processing; maintaining 

mitochondrial 

homeostasis

Todd et al. (2011)

RPA1 (replication 

protein A1)

Stabilizes single-

stranded DNA 

intermediates; DNA 

replication and cellular 

response to DNA 

damage

Haring et al. (2008)
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(Waskom, 2021). It is evident that certain genes distinctly differentiate 
the samples across respective classes. However, a limitation of this 
visual representation is the inability to distinctly highlight the 
subpopulations present within the heterogeneous sample group. This 
distinction emerges prominently through ML applications, where 
synergistic effects arise from integrating multiple variables 
concurrently. Nonetheless, the distinctiveness of several genes can 
be ascertained by contrasting the intensities above and below the 
demarcating black bar in Figure 3. The heatmap corroborates the 
highlighted trends explained in Figure 3, specifically that TMEM14A 
is upregulated for bulbar-initiated samples, while TBC1D20, ALG3P1, 
CROCC2, AC109439.1, FAM151A, NKX2.1.AS1 are all downregulated. 
IL20RA and LRCC23 are upregulated for limb-initiated samples, 
especially for the 13 samples represented in Loop 1 of Figure 3.

We employed two classifiers, namely Random Forest and Gradient 
Boosted Trees, to assess their performance using a leave-out cross-
validation approach. The Gradient Boosted Trees exhibited an 
accuracy of 70.7% in 10-fold cross-validation and 73.9% in 5-fold 
cross-validation, while the Random Forest classifier performed 
slightly better with accuracies of 74.1 and 75% in the respective cross-
validation schemes. These results suggest the presence of discernible 
patterns within the data.

To validate the robustness of these subtype discoveries alongside 
the previously mentioned driving transcriptomic factors, 
we constructed a new dataset comprising only these relevant variables 
and re-evaluated the classifiers using leave-out cross-validation. 
Notably, the use of this reduced dataset led to enhanced model 
accuracy. For instance, complex models like Random Forest yielded 
accuracies exceeding 80% in both the 10-fold and 5-fold cross-
validation iterations. Most notably, simpler models like logistic 
regression, which initially exhibited poor performance with an 
accuracy of approximately 65%, now generated stable models with an 
impressive accuracy of approximately 84% for both 10-fold and 5-fold 
cross-validations.

These findings highlight the utility of our approach in identifying 
subpopulations and driving transcriptomic factors, which can 
be further scrutinized through bioinformatics analyses. The improved 

accuracy of the models underscores the importance of considering 
these factors when characterizing ALS subtypes and devising tailored 
therapeutic strategies.

These targets were discovered after allowing ML to generate 
hypotheses about important genetic variables using the knowledge of 
protein–protein interactions and co-expression to extend our search. 
Protein interaction networks represent a rich source of data for 
understanding complex biological systems and deriving potential 
drug targets. These networks represent nodes and their interactions as 
edges, forming a complex graph that can be analyzed using various 
network analysis techniques.

Discussion

ALS is the most common motor neuron disease in adults and the 
third most common neurodegenerative disease; yet this debilitating 
disease has no cure due to gaps in our understanding of disease 
etiology and treatments focused on improving symptoms (Logroscino 
et al., 2018). In the spirit of Open Innovation, the EndALS Challenge 
was designed to connect the data science and AI community with 
neuroscientists to bridge the gap associated with ALS diagnosis and 
drug discovery (Armada-Moreira et al., 2020). EndALS was developed 
by not-for-profit organizations focused on helping ALS patients 
(EverythingALS and Answer ALS) in collaboration with Roche’s AI 
Center of Excellence, “AI with Roche” (a.k.a.aiR), Canadian public and 
private organizations (ALS Society of Canada, Ontario Brain Institute 
(OBI), and NetraMark Corp.), and administered by the data science 
and ML community platform Kaggle. The main mission has been to 
push the boundaries of knowledge in ALS biology to help with the 
diagnosis and therapeutic strategies for ALS patients (Armada-
Moreira et al., 2020). This report was aimed at being a follow-up of 
the PandaOmics paper that focused on the identification therpauetic 
targets for ALS using an AI-enabled biological target discovery 
platform (Pun et al., 2022). We reported on several genes that have 
been previously reported to be implicated in ALS Table 1, genes that 
belong to the same family as those previously reported Table 2, as well 
as genes that belong to the same protein family as those previously 
reported (Table 2), as well as 8 target classes that correspond to key 
characteristics of the disease: inflammation, epigenetic, heat shock, 
neuromuscular junction, autophagy, apoptosis, axonal transport, and 
excitotoxicity (Figure  2). The results presented in Tables 1, 2 are 
reported as they validate genes previously reported to be implicated 
in ALS as well as corroborate the results obtained using NetraAI (Pun 
et al., 2022). Even further, we identified a set of genetic drivers that 
differentiate between subpopulations of limb and bulbar onset ALS 
patients. Figure 3 was generated using a proprietary visualization 
technology and was previously employed to explore patient 
relationships in Alzheimer’s disease, bipolar disorder, and lung cancer 
(Qorri et  al., 2020; Choi et  al., 2021; Cook et  al., 2023). This 
technology, known as NetraPlay, complements standard ML 
pipelines, including those described in this paper and the cited works. 
It enables the discovery of hidden relationships from multimodal 
data, ensuring complete explainability without complex latent 
variables, as detailed in the referenced papers. To ensure 
reproducibility, interested readers may request access to a secure 
instance of NetraPlay by contacting the first author. Furthermore, by 
leveraging the insights presented here, readers can verify the 

TABLE 10 Excitotoxicity target class in ALS.

Excitotoxicity target class

Drug target Function References

GRIA3 (glutamate 

ionotropic receptor 

AMPA type subunit 3)

Glutamate receptor Comabella et al. (2009)

AKAP5 (A-kinase 

anchoring protein 5)

Synaptic plasticity and 

memory
Comabella et al. (2009)

GRIN1 (Glutamate 

Ionotropic Receptor 

NMDA Type Subunit 1)

Glutamate NMDA 

receptor; mediator of 

excitotoxicity

Young et al. (2017)

CAMK2A (calcium/

calmodulin-dependent 

protein kinase II alpha)

Calmodulin-dependent 

activity; long-term 

potentiation; learning

Honda et al. (2014)

ACTN2 (Actinin Alpha 2) Cytoskeleton protein 

scaffold
Savarese et al. (2020)
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TABLE 11 Pathway involvement and confidence of NetraMark identified targets.

Associated pathways Confidence level

Pathways of Neurodegeneration – Multiple Diseases: Alzheimer’s Disease | Amyotrophic Lateral Sclerosis

ACTR1A, ACTR1B, CAMK2A, CASP3, CASP7, CASP8, CASP9, DCTN2, ERN1, 

FADD, FAS, GRIA3, GRIN1, GSK3B, HDAC1, HDAC2, HDAC6, HSPA5, KDM1A, 

MAP1LC3A, MAP3K5, MAPK1, NOS1, PPP3CB, PTK2, REST, RPS6KA1, RPS6KA2, 

SLC25A4, SLC25A5, SLC25A6, TARDBP, TUBA1C, TUBB1, TUBB2A, VCP

3.4×10-16

SARS-CoV Infection | Interferon Signaling

CAMK2A, CHD4, DNAJB1, DNMT3A, GATAD2B, GSK3B, HDAC1, HDAC2, 

HDAC3, HDAC6, HDAC7, HDAC8, HMG20B, HSPA5, HSPA9, HSPG2, KDM1A, 

MAPK1, MBD3, MTA2, MTA3, NR3C2, PHF21A, PPIA, RARA, REST, RPA1, SAP18, 

TUBB2A, VCP

6.55×10-13

RHO GTPase Effectors | Signaling by Nuclear Receptors | Chromatin Modifying Enzymes | Viral Carcinogenesis

CASP3, CASP8, CHD4, DNMT3A, FADD, GATAD2B, GRIN1, GSK3B, HDAC1, 

HDAC2, HDAC3, HDAC6, HDAC7, HDAC8, HMG20B, HSPG2, KDM1A, MAP3K5, 

MAPK1, MBD3, MTA2, MTA3, PHF21A, PTK2, RARA, REST, RPA1, RPS6KA1, 

RPS6KA2, SAP18, SLC25A4, SLC25A5, SLC25A6, TUBB2A, VCP

2×10-10

Nervous System Development | Pathways in Cancer | Herpes Simplex Virus 1 Infection | Signaling by Receptor Tyrosine Kinases | Signaling by Interleukins | Diseases of 

Signal Transduction by Growth Factor Receptors and Second Messengers | PI3K-Akt Signaling Pathway | Human Papillomavirus Infection | MicroRNAs in Cancer

ACTN2, ACTR1A, ACTR1B, AKAP5, APPL1, ATG3, ATG4C, CAMK2A, CASP3, 

CASP7, CASP8, CASP9, CHD4, DCTN2, DIABLO, DNAJB1, DNMT3A, ERN1, 

FADD, FAS, GABARAP, GATAD2B, GRIA3, GRIN1, GSK3B, HDAC1, HDAC2, 

HDAC3, HDAC6, HDAC7, HDAC8, HSPA5, HSPA9, HSPD1, HSPG2, KDM1A, 

MAP1LC3A, MAP3K5, MAPK1, MBD3, MTA2, MTA3, NOS1, NR3C2, P2RY12, 

PPIA, PPP3CB, PTK2, PTPRC, RARA, REST, RPS6KA1, RPS6KA2, SLC25A4, 

SLC25A5, SLC25A6, TCP1, TUBA1C, TUBB1, TUBB2A, VCP

2.14 × 10-9

Homeostasis | GPCR Ligand Binding | Neuronal System

ACTN2, AKAP5, CAMK2A, CASP3, CCT2, CCT3, CCT4, CCT5, CCT6A, CCT7, 

CCT8, DCTN2, GABARAP, GRIA3, GRIN1, GSK3B, HDAC1, HDAC2, HDAC3, 

HMG20B, HSPA5, KCNB1, KCNV2, KDM1A, MAP1LC3A, MAP3K5, MAPK1, 

NOS1, P2RY12, PHF21A, PPIA, PPP3CB, PTK2, RAMP1, RPS6KA1, RPS6KA2, 

SLC25A4, SLC25A5, SLC25A6, TCP1, TUBA1C, TUBB1, TUBB2A

2.42×10-9

Cell Cycle | Mitotic | Class I MHC Mediated Antigen Processing and Presentation | Signaling by WNT | Deubiquitination

ACTR1A, APPL1, CAMK2A, CASP3, CASP7, CASP8, CASP9, DCTN2, DIABLO, 

FADD, FAS, GSK3B, HDAC1, HDAC2, HDAC3, HDAC6, HDAC7, HDAC8, HSPA5, 

MAPK1, PPIA, PPP3CB, PTK2, PTPRC, RPA1, SLC25A4, SLC25A5, SLC25A6, 

TUBA1C, TUBB1, TUBB2A, VCP

0.000306459

Transcriptional Misregulation in Cancer | Cell Cycle | Direct p53 Effectors | C-MYB Transcription Factor Network | Glucocorticoid Receptor Regulatory Network

AKAP5, CASP3, CASP7, CASP8, CASP9, DNMT3A, FAS, GRIA3, GSK3B, HDAC1, 

HDAC2, HDAC3, HDAC7, HDAC8, HSPD1, MAPK1, PPP3CB, PTK2, RARA, SAP18

0.00092631

Organelle Biogenesis and Maintenance

ACTR1A, CCT2, CCT3, CCT4, CCT5, CCT8, DCTN2, HDAC3, HDAC6, HSPA9, 

RARA, TCP1

0.004850972

Carboxyterminal Post-Translational Modifications of Tubulin

LRRC49, TUBA1C, TUBB1, TUBB2A 0.008692446

Bacterial Infection Pathways | Transcriptional Regulation by MECP2

CAMK2A, HDAC1, HDAC2, HDAC3, MAPK1, REST, VCP 0.009967429

Autophagy

ATG3, ATG4C, GABARAP, HDAC6, MAP1LC3A, VCP 0.021986433
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characterization of a subset of samples from the bulbar vs. limb data 
based on a set of transcriptomic markers.

In this way, the 8 target classes extracted using NetraAI highlight 
genetic drivers that are associated with subgroups of patients that can 
be useful in matching patients to therapy as well as for drug discovery 
in ALS. This is further supported by the stratification we identified in 
subpopulations of ALS patients based on disease onset. Thus, a 
personalized medicine approach can be made possible to pair patients 
to treatment(s) that address the target classes applicable to each 
patient through focused screening. Further, clinical trials in this space 
can benefit by understanding which patient subpopulations are best 
aligned with the mechanism of action of their drug, thereby improving 
drug response signal.

Notably, the target classes we  uncovered and the broad ALS 
characteristics they correspond to are not novel on their own, but 
rather the combination of genes driving each target class are novel 
(Figure 2). Even though each target class has its own overarching 
characteristic, we  noticed that some target classes also included 
genetic drivers related to other target classes. For example, in the heat 
shock target class (Table 5), there was the presence of dynactin, and in 
the axonal transport target class (Table 9), there were two HDAC 
genes. These results further support the claim that ALS is a 
multisystem disorder.

Further evidence of the complexity of ALS is highlighted in 
Table 11, where 11 primary pathway categories were identified that the 
targeted genes reported in this paper play a role in, with varying 
degrees of confidence. Although many targets were identified to 
belong to pathways of neurodegeneration for diseases including ALS, 
the other pathways raised interesting points of discussion. Of 
particular interest was the second category, namely SARS-CoV 
infection and interferon signaling. There have been reports linking 
interferon signaling to ALS, suggesting an early interaction between 
motor neurons and astrocytes during the pathological changes that 
take place in ALS (Wang et al., 2011). Additionally, a recent study 
focusing on the role of type I interferon response highlights that the 
role of interferon signaling in the absence of bacterial or viral infection 
can be  detrimental as noted in several neurological disorders, 
including ALS (Vitner et  al., 2016). These reports, among others 
highlight the importance of interferon signaling in ALS that warrants 
continued investigation, as well as explains why viral infection 
reappeared within several of the category pathways.

With respect to the stratification based on disease onset, the 
gene network connections to RAB1, RAB2, and TDP-43 which are 
known for their roles in intracellular transport, suggest that 
intracellular transport dysfunction may be a hallmark of bulbar 
onset ALS (Burk and Pasterkamp, 2019). This finding underscores 
the significance of TDP-43 in ALS pathophysiology through a 
physically interacting protein encoded by RPA1. Previous studies 
have implicated the roles of RAB1 and RAB2 in disrupted vesicle 
trafficking in ALS, but not for this specific subpopulation (Parakh 
et al., 2018). This finding might indicate a more aggressive form of 
the disease and provides additional evidence pointing to the 
significant role of TDP-43 in ALS. Further, this highlights the role 
of RPA1 as a biomarker for this subpopulation.

In this report, we set out to present a set of targets associated with 
the complex and heterogeneous disease of ALS. While some targets 
reported here have been linked and associated with ALS previously, 
validating the impact of the novel ML methods employed by NetraAI, 

others did not initially have a direct link to ALS or were not supported 
with high confidence levels. Since we were able to accurately and 
efficiently identify previously reported targets, we can with some level 
of confidence claim that these novel targets are playing a role in the 
manifestation of ALS pathophysiology. However, a limitation of this 
report lies in that it is an in-silico exploration of data. Despite using 
techniques that have been validated in other studies, the outcomes of 
this report are hypotheses that can be used as a framework for future 
studies in the nature of the disease as well as for drug discovery 
and development.

The findings presented in this report highlight the magnitude of 
meaningful results that can be obtained from the intersection of AI/ML 
with scientists, biologists, and the public, implicit to the concept of Open 
Science. Physicians and medical scientists spend decades becoming 
content experts in the details of a disease, the experience of the patient 
population, and the etiological factors that influence prognosis and the 
course of the disease. Currently, most groups utilizing ML are siloed into 
computer science and medical or research teams, where the groups 
struggle to communicate and collaborate. Fortunately, there are now 
tools that provide a platform for medical scientists to be involved in the 
model selection process, bridging the enormous gap that currently exists 
between these different areas of expertise.

Open Science tools can potentially capture the lived 
experience of clinicians and integrate this into AI/ML analyses. 
Our approach was to utilize ML algorithms to generate hypotheses 
surrounding the pathophysiology of ALS. By fusing this analysis 
with other systems biology tools, the target lists extend to genetic, 
co-expression, and protein interaction networks. As a result, these 
augmented intelligence tools can generate three kinds 
of hypotheses:

 • What are groups of patients most closely related to each other?
 • What genetic factors explain this grouping?
 • What proteins can be potential drug targets?

In turn, these hypotheses can be tested for statistical significance 
and, more importantly, can be evaluated for clinical significance by 
physicians and biologists for context and biological plausibility.

In general, most enterprise data is unstructured, and this includes 
text, speech, imaging, and PDF files, all related to clinical encounters, 
with volumes of data rapidly growing with the adoption of electronic 
health records. ML in combination with data analysis can improve 
drug development, particularly in identifying accurate biomarkers and 
developing predictive models (Vamathevan et al., 2019). However, the 
main challenge with working with patient populations is the lack of 
large datasets, where there are insufficient numbers of samples despite 
having up to tens of thousands of variables that ML can learn from. 
Thus, there is an increased need to develop techniques amenable to 
small datasets, such as the methods utilized for the discovery of the 
targets reported in this paper. Furthermore, methods that create 
artificial data representations of the patient population are also being 
considered (Silva, 2019). Methods like this attempt to embed the data 
into a geometric space so that learning becomes augmented by 
elucidating structures within the data (Qi and Luo, 2022). Other 
methods involve generating more data, assuming the original dataset 
is of high enough quality. This utilizes a type of ML that is referred to 
collectively as generative ML, and of recent interest are generative 
adversarial networks (Ashrapov, n.d.). These ML methods learn from 
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the available data and then create artificial datasets that can then 
be used to create predictive models.

The approach used to generate the list of potential drug targets 
for ALS relied on the idea that statistics is a very powerful tool to 
assign some level of confidence to hypotheses. This means that if 
we had a system that could generate hypotheses, then we could use 
statistics and human expertise to evaluate them. In the case used 
here, these hypotheses are collections of samples and a collection of 
genes. These insights can be  evaluated through statistical 
significance testing and simultaneously reviewed for biological 

plausibility. Hypotheses that survive this dual scrutiny can then 
be pushed forward for more research. Importantly, we recognize 
that small datasets often do not capture the heterogeneity involved 
for complex disorders; however, it is very possible that part of the 
distribution is captured, and novel insights gleaned. Future work 
should be focused on experimental validation of novel potential 
targets described here, to confirm their functional relevance in ALS 
pathophysiology. Furthermore, the interactions between the target 
classes can assist in gaining a more comprehensive understanding 
of the multifaceted nature of ALS.

FIGURE 3

Map of limb and bulbar ALS patients. Class A (red circles) indicate bulbar-initiated samples and Class B (blue stars) indicate limb-initiated samples. 
Loop 1 corresponds to a subpopulation of limb onset ALS patients. Loop 2 corresponds to a subpopulation of bulbar onset ALS patients. Loop 2 
consists of a hidden group of 11 bulbar initiated samples and Loop1 consists of 13 limb associated samples. Note that in this representation the samples 
are so close to each other that some of the samples within the loops are obfuscated.
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Conclusion

In the spirit of Open Science, the results highlighted in this paper 
emphasize the impact that advancements in ML approaches in 
collaboration with scientific and medical researchers hold on the 
potential to revolutionize drug discovery and development. By using 
a small ALS dataset and a unique combination of ML methods, 
we have not only validated previously reported drug targets in ALS 
but also uncovered critical insights into ALS subpopulations. Our 
findings encompass 8 target classes of genes that relate to ALS 
pathophysiology that inform on its etiology and represent novel drug 
targets, as well as identify a unique, potentially more aggressive 
subpopulation of bulbar onset ALS patients that are characterized by 
a distinct set of genetic drivers. This systematic view offers the 
promise of simultaneously targeting multiple aspects of ALS to 
mitigate disease progression and enhance the QoL of patients. 

Furthermore, our identification of subpopulations based on disease 
onset paves the way for personalized treatments, tailored to individual 
needs, highlighting the importance for open data efforts in 
rare diseases.

Open Science is being increasingly adopted, with national and 
global movements to bridge the knowledge gap that currently exists 
between AI/ML, and scientific and medical researchers. In line with 
these movements, Open Science has enabled us to derive meaningful 
insights into the etiology of ALS. This highlights the global benefit that 
this approach can have. However, as this is an evolving framework, 
greater adoption, caution, and deep expertise is required of the 
researchers before navigating this landscape. The work further 
highlights the importance of ML methods that can handle smaller 
sample sizes through the generation of hypotheses, as this allowed for 
the extraction of targets that required much larger datasets to reveal 
through more data expensive methods.

FIGURE 4

Protein Interaction Map Revealing connections to TDP-43. Protein interaction network derived by genes found in a potentially aggressive subtype of 
bulbar onset ALS driven by TBC1D20, TMEM14A, RAB1A, RAB2A, TDP-43 (TARDBP), and RPA1. Purple edges represent co-expression and pink lines 
represent physical interactions. Created using GeneMania.
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