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It has been hypothesized that the ventral stream processing for object recognition

is based on a mechanism called cortically local subspace untangling. A

mathematical abstraction of object recognition by the visual cortex is how

to untangle the manifolds associated with di�erent object categories. Such a

manifold untangling problem is closely related to the celebrated kernel trick

in metric space. In this paper, we conjecture that there is a more general

solution to manifold untangling in the topological space without artificially

defining any distance metric. Geometrically, we can either embed a manifold

in a higher-dimensional space to promote selectivity or flatten a manifold to

promote tolerance. General strategies of both global manifold embedding and

local manifold flattening are presented and connected with existing work on the

untangling of image, audio, and language data. We also discuss the implications

of untangling the manifold into motor control and internal representations.
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1. Introduction

Is dimensionality a curse or a blessing? The term “curse of dimensionality” was coined

by Richard Bellman when studying dynamical programming in the 1960s (Bellman, 1966).

It refers to various phenomena that arise from the analysis and organization of data in high-

dimensional spaces. Specifically, all objects tend to become sparse and dissimilar in many

ways as the dimensionality increases, which prevents common data organization strategies

from being efficient. To overcome such a curse of dimensionality, various non-linear

dimensionality reduction techniques such as IsoMAP (Tenenbaum et al., 2000) and locally

linear embedding (LLE) (Roweis and Saul, 2000) have been developed to reveal the low-

dimensional structure embedded in high-dimensional observation data.

The blessing of dimensionality (Donoho, 2000) is a more counter-intuitive concept. To

illustrate this concept, we start by considering a classical toy example of XOR decision for

the linear perceptron (Rosenblatt, 1958). There is no 2D linear classifier that can separate the

two different classes of XOR decision. However, with an additional dimension z = x ⊕ y,

it is straightforward to linearly separate two classes in a 3D space (x, y, z) (e.g., hyperplane

z = 1
2 will do). Another example of so-called two-circle data consisting of two concentric

circles, each representing a different class. Again, there exists no linearly classifier that can

separate red from blue in 2D; while linear separability can be easily satisfied in 3D by taking

into account the third and redundant dimension r =
√

x2 + y2 into account.
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We note that the issue of dimensionality is often tangled

with that of linearity. For example, Kernel trick (Schölkopf, 2000)

in support vector machine (SVM), which allows linear learning

algorithms to learn a non-linear function or decision boundary,

can be interpreted as a special class of techniques exploiting the

blessing of dimensionality. In face verification (Chen et al., 2013),

linear feature dimension as large as 100K has been reported to

improve performance due to the blessing of dimensionality. More

recently, the class of convolutional neural networks, equipped

with non-linear rectifying linear units (ReLU), has shown excellent

performance in various vision tasks from image classification

to object recognition. Between non-linearity and dimensionality,

which plays a more fundamental role?

In this paper, we advocate for the blessing of dimensionality

from a manifold untangling perspective (Chung and Abbott, 2021).

The problem of manifold untangling (a.k.a. disentanglement,

Brahma et al., 2015) can be formulated as an extension of the

manifold embedding and knotting problem (Skopenkov, 2008) in

differential topology. Originating from Whitney’s original work in

1930 (Whitney, 1936), blessing-of-dimensionality related results

include embedding of the n-manifold in R2n and unknotting

in R2n+1 (Wu, 2008). These classical results in the theory of

differential topology inspire us to tackle the problem of manifold

untangling by iteratively constructing overparameterized direct-fit

models (Hasson et al., 2020) in a higher-dimensional space. The

main contributions of this paper are summarized below.

• Manifold untangling without a distance metric. In topological

space, we show how to improve the manifold capacity by a

unified untangling approach.

• Two general strategies for untangling manifolds: global

embedding vs. local flattening. We show how embedding and

flattening jointly improve manifold capacity by promoting

selectivity and tolerance.

• Model-agnostic for multimodal data. We apply the

theory of manifold untangling to several recent works

on multiview image recognition, invariant audio recognition,

and perceptual video straightening.

• Biological connection with the hypothesis of cortically

local subspace untangling in ventral stream processing and

trajectory untangling in motor control.

2. Manifold untangling: what and why?

2.1. Problem formulation

The problem of manifold untangling originated from the

modeling of ventral stream processing in neuroscience (DiCarlo

and Cox, 2007) (see Figure 1). To explain how object recognition

works, a major challenge is the form of high-dimensional visual

representations. An object manifold (e.g., the image projected onto

the retina) is characterized by variations of its pose, position, and

size, which can be mathematically abstracted as a low-dimensional

curved surface inside the retinal image space. It follows that

different objects, such as varying face identities, correspond to

different manifolds. The term “object manifold” specifically refers

to low-dimensional subspaces underlying population activities

embedded in high-dimensional neural state space according to

Chung and Abbott (2021). Themanifolds embedded in the ambient

neural state space (called the neural population geometry in Chung

and Abbott, 2021) include both sensory/motor and cognitive

regions of the brain.

To illustrate the problem of manifold untangling more vividly,

we can use an analogy with tangled shoelaces in our familiar

3D Euclidean space. The task of object recognition is analogous

to untangle these shoelaces but in a higher-dimensional space

of visual representations. In the literature, manifold untangling

(a.k.a. disentanglement, Brahma et al., 2015) has also been

studied for other data modalities, such as image (Cohen et al.,

2020), speech (Stephenson et al., 2019), video (Hénaff et al.,

2019), and language (Mamou et al., 2020). There are two

conflicting objectives for manifold untangling (DiCarlo et al.,

2012): promoting selectivity (i.e., to separate two manifolds

associated with different identities/objects) and boosting tolerance

(i.e., to achieve invariance to pose, position, scale, and cluttered

background). Selectivity and tolerance are closely related to the

two types of errors (false alarm and miss detection) in pattern

recognition. The fundamental hypothesis behind our approach

is that nature has discovered a clever solution to manifold

untangling in the topological space which the need of defining a

distance metric.

2.2. Motivation: topological space does not
require a distance metric

One of the long-standing open problems in manifold discovery

is how to calculate the geodesic distance between two points on

a manifold. Unlike the Euclidean distance, the geodesic distance

is intrinsically tangled with the locally curved low-dimensional

geometry of the manifold. Without knowledge of local geometry,

calculating the geodesic distance or building a kernel becomes a

tangled problem like manifold learning (Ma and Fu, 2012). Can one

solve the problem of untangling a manifold without discovering

its local low-dimensional structure? Does there exist a universal

solution to manifold untangling by global operations such as

homotopy (Hatcher, 2005)?

We argue that the answer is affirmative. Our basic intuition is

based on the observation that it is easier to untangle a manifold in a

higher-dimensional space (Fusi et al., 2016). A simple justification

is based on the observation that a knot in three dimensions can

be untied when placed in a four-dimensional space (Crowell and

Fox, 2012). More generally, in higher dimensions than four, there is

enough “space” to untie any knot by smoothly transforming it into a

circle. Recent studies on unsupervised disentanglement of manifold

(Horan et al., 2021) show that local isometry (related to embedding)

and non-Gaussianity (required by linear generative models) make

disentanglement possible. Both conditions are more easily satisfied

in higher-dimensional spaces.

To quantify the effectiveness of manifold untangling, the

manifold capacity (Chung et al., 2018) has been derived from

the mean-field theoretic analysis. The basic idea is to find the

maximum number of dichotomies that are linearly separable in a

high-dimensional space. Conceptually, manifold capacity can be

enhanced by promoting selectivity (e.g., pushing object manifolds
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FIGURE 1

Illustration of manifold untangling by neuronal population along the ventral visual processing stream (DiCarlo and Cox, 2007). This figure was created

from the published paper in TRENDS in Cognitive Sciences, Vol. 11, No. 8, James J. DiCarlo and David D. Cox, Untangling Invariant Object

Recognition, 333–341. Copyright Elsevier (2007).

away from each other) or boosting tolerance (e.g., smoothing

rugged surfaces of object manifolds). More rigorously, there

are two complementary approaches to maximize the manifold

capacity: manifold embedding (promoting selectivity) in a higher-

dimensional space and manifold flattening (boosting tolerance)

to facilitate linear separability. The main question lies in the

construction of embedding or flattening functions to increase the

manifold capacity, as we will elaborate next.

3. Manifold embedding and flattening

3.1. Manifold embedding and unknotting
theory

Theorem 1. Whitney Embedding Theorem (1936).

Any smoothmanifoldM of dimensionm ≥ 2 can be embedded

into R2m+1.

In 1958, W.T. Wu proved that every connected n-manifold

unknots in R2n+1 for n > 1 (Wu, 2008). The theory of differential

manifold was extended into surgery theory by J. Milnor in the

1960s, which became a major tool in high-dimensional topology.

An important class of smoothing manifolds was to use obstruction

theories (Hirsch, 1963). Obstruction theory is concerned with when

a topological manifold has a piecewise-linear structure and when a

piecewise-linear manifold has a differential structure.

The intuition that higher-dimensional space facilitates the task

of manifold untangling has not been well-documented in the

literature. The closest result seems to be (Tauro et al., 2014).

To shed some insight to the blessing of dimensionality, we have

conducted a simple experiment with the synthetic two-moon data

(see Figure 2A). It is easy to observe that these data are not linearly

separable in R2; however, we have verified that after locally linear

embedding (LLE) (Roweis and Saul, 2000), a linear dichotomy

exists, as shown in Figure 2B. Note that unlike kernel trick in

support vector machine, we do not resort to non-linearity but

the blessing of dimensionality for a data representation that is

less tangled.

Based on the above line of reasoning, the basic ideas behind

our approach to maximize the manifold capacity in a higher-

dimensional space are as follows. On the one hand, we want

to increase the number of distinct manifolds by promoting the
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FIGURE 2

Blessing of dimensionality. (A) Two-moon data are not linearly separable in R2; (B) t-SNE visualization of the LLE embedding in R4. Note that

two-moon data becomes linearly separable after embedding in a higher-dimensional space R4 through locally linear embedding (LLE) (Roweis and

Saul, 2000).

selectivity of data representations (i.e., pushing more manifolds

away from each other). This objective can be achieved by

embedding the manifold into a higher-dimensional space

using the generalized kernel trick such as LLE or IsoMAP

(Tenenbaum et al., 2000) (note that we use them in the

opposite direction to non-linear dimensionality reduction—

i.e., as the tools of non-linear dimensionality increase). On

the other hand, we want to increase the number of separable

dichotomies by promoting tolerance of data representations.

This is aligned with the idea of manifold flattening by

constructing identity-preserving transformations (DiCarlo

et al., 2012) or smoothing the decision boundaries (Verma

et al., 2019). Both global embedding and local flattening

contribute to the objective of manifold untangling, but in a

complementary manner.

3.2. Global manifold embedding

At the global level (i.e., working with the entire manifold

as a whole), there are two broad classes of manifold embedding

techniques: kernel methods and sparse coding. Both of them can

re-represent input data in a higher-dimensional space to facilitate

the task of manifold untangling.

3.2.1. Recursive and generalized kernel methods
A well-known method, named the kernel trick, is to

generalize distance-based algorithms to operate in the feature

space (Schölkopf, 2000). The key idea is to construct a non-linear

mapping function φ :X → Y where x ∈ X and φ(x) ∈ Y

denote the input and feature spaces, respectively. Then, the kernel

trick is implemented by the dot product in the feature space,

i.e., k(x, x′) =< φ(x),φ(x′) >. For the class of positive definite

kernels, rigorous results, such as Mercer’s theorem (Vapnik, 1999)

guarantees the generalization of distance metric for a wide range of

kernel constructions (e.g., radial basis function and neural tangent

kernel). As a concrete example, Figure 3 illustrates the idea behind

the kernel trick for a toy example of separating points within a circle

from those outside.

The effectiveness of the kernel trick is often attributed to its

non-linearity related to the input space. However, dealing with

non-linearity is always challenging—e.g., despite the conceptual

simplicity of the kernel trick, it is often much more difficult

to reason with the optimality of different approaches to kernel

construction. More importantly, as shown in Figure 3, the blessing

of dimensionality offers a refreshing perspective to understand

the kernel trick. The new dimension introduced by the kernel

geometrically warps the data points in such a way that they can

be more easily separated by a linear classifier. Such a simple

observation inspires us to tackle the manifold untangling by

recursively applying the kernel trick.

More specifically, we propose to generalize the non-linear

mapping function φ :Xn → Xn+1, n ∈ N, where xn ∈ Xn and

φn(xn) ∈ Xn+1, dim(Xn+1) > dim(Xn) denote the input and

output spaces in the n-th layer, respectively. Our intuition is that

manifold untangling is closely related to the approximation by

non-linear sigmoid functions (Cybenko, 1989).

Theorem 2. Universal Approximation Theorem.

For any continuous function f (x) and sigmoidal function σ ,

there exists a universal approximation by g(x) =
∑N

j=1 αjσ (y
T
j x +

θj) such that |f (x) − g(x) < ǫ| for all x ∈ In, where In denotes an

n-dimensional unit cube.

The approximation result above can be interpreted as

the untangling of the non-linear function f (x) by successive

concatenation of N sigmoid unit in a single hidden layer. Each

unit partially untangles the non-linear function until the input

function is straightened into a linear one. Connecting this result

with our manifold untangling intuition, we can interpret multilayer

feedforward networks as universal approximators (Hornik et al.,

1989) that recursively untangle a non-linear function (decision

region) until we reach the linear separable regime.
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FIGURE 3

Kernel trick in the inner product space (left: input space, right: feature space). The kernel is given by φ((a,b)) = (a,b, a2 + b2) and K(x, y) = x · y+ ‖

x ‖2 + ‖ y ‖2. Training points are mapped to a 3-dimensional space, where a separate hyperplane can be easily found.

3.2.2. Hierarchical sparse coding
The equivalence relationship between the kernel method in a

support vector machine (SVM) (Bartlett and Shawe-Taylor, 1999)

and sparse coding (Olshausen and Field, 1997) has been well-

studied in the literature (Girosi, 1998). An important new insight

brought about by this work is the generalization of kernel trick by

hierarchical sparse coding. As advocated in DiCarlo et al. (2012),

the organized hierarchy forms a closed loop from primary visual

cortex (V1) to inferior temporal cortex (IT) and then back to

V1. The hierarchical organization is reflected by the increasing

field-of-view, as well as improved tolerance of IT population to

object recognition. An intuitive explanation for such hierarchical

organization is that it leads to a redundant but sparse representation

that promotes the selectivity of visual stimuli.

More rigorously, we consider the class of hierarchical

and redundant sparse representations [e.g., steerable pyramids

(Simoncelli and Freeman, 1995) and overcomplete dictionaries

(Olshausen and Field, 1997)] from the perspective of manifold

embedding. They map the retinal image space to a much higher

dimensional space with sparse coefficients. Unlike the non-linearity

argument supplied by Olshausen and Field (1997), we argue that

exploiting the blessing of dimensionality plays a more fundamental

role in not only V1 but also the entire processing of the ventral

stream. Note that this is consistent with H. Barlow’s redundancy

exploitation hypothesis (Barlow, 2001) because the sparse coding

strategy maximizes the capacity of associative memory (Olshausen

and Field, 2004).

Under the framework of manifold untangling, we claim that

hierarchical sparse coding increases the number of manifolds

(manifold capacity) while keeping the feature dimension (N)

constant. In view of the lack of a rigorous definition of manifold

capacity in the literature, we resort to a closely-related concept (the

capacity of associative memory) in our analysis. A mathematical

analysis of why sparse coding increases the capacity of associative

memory can be found in Okada (1996). It was shown that the

sparsely coded associative memory model achieves an extremely

large storage capacity that diverges as the mean-firing rate

decreases. Despite the increase in the total number of coefficients

in redundant sparse representation, it is easy to observe that the

ratio of significant coefficients (effective dimensionality of salient

features corresponding to the mean firing rates) does not change

due to the good localization properties of bases.

To show how improved sparsity increases the capacity of

associative memory, we consider a non-holographic associative

memory model inWillshaw et al. (1969) which consists ofNA×NB

grid points on a square lattice. Let rA =
MA
NA

and rB =
MB
NB

denote

the ratio of active grid points responsible for the associative recall

of R cross-link patterns. Then, the memory capacity of such an

associative network is given by

C = Nc · log(p) · log(1− p), (1)

where Nc = NA × NB and the collision probability p can be

calculated by

1− p = exp(−R · rA · rB), (2)

It is easy to observe that to maintain a low collision probability

p, both rA and rB need to be small, implying a small percentage

of active grid points along the horizontal and vertical directions.

The improvement in sparsity in the representation of the data

helps reduce the probability of collision (less crosstalk) (Olshausen

and Field, 2004) by promoting the selectivity of the associative

representations. Note that the above 2D toy model (square lattice)

can easily be generalized to a high-dimensional integral lattice

Zn. Sparser representations can reduce the probability of collision,
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leading to much increased capacity of associative networks. In

the literature on neurobiology, high-dimensional representations

with mixed selectivity (Fusi et al., 2016) have been shown to

allow for linear separable decision regions to support different

potential responses.

3.3. Local manifold flattening

At the local level (i.e., dealing with the local geometry of a

manifold), we can smooth either the rugged surface underlying

the data observations or the curved decision boundaries separating

different classes.

3.3.1. Identity-preserving transformations
The other important new insight deals with the discovery of

local geometry on a manifold to promote tolerance within the same

class/identity. The importance of tolerance to object recognition

can be mathematically justified by flattening the manifold with

identity-preserving transformations (see Figure 2B inDiCarlo et al.,

2012). More specifically, consider the curved surface of an object

manifold (e.g., projection onto a subspace) associated with position

or scale; achieving tolerance (i.e., translation or scale invariance)

is conceptually equivalent to unfurling the curved surface such

that the flattened manifolds can be more easily separated by

hyperplanes. Some quantitative evidence to validate the flattening

hypothesis in deep learning has been reported in Brahma et al.

(2015).

The manifold untangling framework offers a refreshing

perspective on the well-studied binding problem (Treisman, 1996).

After manifold flattening, each untangled subspace is characterized

by the neural population geometry, whose representation

simultaneously conveys explicit information about not only object

identity but also tangled subspace attributes such as position, size,

pose, and context. Even when multiple objects are present, one can

imagine that identity-preserving transformations can flatten their

corresponding manifolds to improve the manifold capacity. There

is no need to rebind those subspace attributes because they are

implicitly embedded into identity-preserving transformations.

To better illustrate the concept of manifold flattening, we can

think of the three pairs of legs in jacks as an analogy to the identity,

position, and scale subspaces. Mathematically, these jacks can be

interpreted as a 1D manifold embedded into a 3D Euclidean space.

The problem of packing object manifolds is challenging because the

legs of those jacks interfere with each other. Identity-preserving

transformations facilitate the packing task by flattening the two

subspaces of position and scale (we will discuss the biological

implementation of this strategy later). In the transformed space

after manifold untangling (i.e., conditioned on the knowledge

about the position and scale), the jacks are flattened to ellipsoids

suitable for packing or linear separation.

3.3.2. Decision boundary smoothing
An alternative approach to achieve the objective of local

manifold flattening is via smoothing the decision boundary among

different classes/identities. Along this line of reasoning, several

closely related ideas have recently been proposed such as manifold

mixing (Verma et al., 2019), manifold charting (Mangla et al.,

2020), and embedding propagation (Rodríguez et al., 2020) and

have been shown to be effective for few shot classification.

The objective of manifold flattening is to reduce the number of

directions with significant variance (refer to Figure 2B). Following

the notation in Verma et al. (2019), we useX ,H,Y to denote input

space, representation space, and output space, respectively. The

representation space can be the hidden states of DNN or support

vectors of SVM or sparse coefficients in hierarchical sparse coding.

We can obtain the following theoretical result.

Theorem 3. Manifold Flattening Theorem.

Let H be a space of dimension dim(H), and let d represent the

number of classes/identities in the dataset. If dim(H) ≥ d − 1,

then there exists a linear function/dichotomy that can separate the

d different classes.

The proof of the above result for the hidden state of the

DNN representations can be found in Verma et al. (2019).

Generally speaking, if the dimensionality of the representation

dim(H) is greater than the number of classes d, then the resulting

representations for that class will fall into a subspace of dimension

dim(H)− d + 1.

It is enlightening to compare the boundary smoothing strategy

of decision with that of identity-preserving transformations.

The former improves the performance of the classifier in the

presence of distribution shifts, outliers, and adversarial examples

with few-shot learning constraint (i.e., it does not require much

training data). The latter requires more training data to achieve

the desired objective of X-invariant recognition (X refers to

environmental uncertainty factor) by learning identity-preserving

transformations. These two approaches are complementary to each

other because they flatten the manifold from different (inter-class

vs. intra-class) perspectives.

4. Model-agnostic manifold
untangling

4.1. Multi-view visual object recognition

Visual object recognition has been extensively studied by

the computer vision community (Zhang et al., 2013; Bakry and

Elgammal, 2014). The three subspaces associated with object

category, instance, and viewpoint/pose are often tangled in the

observation of multiview image data. Conventional wisdom to

achieve an untangled representation of the view-object manifold

is to formulate a joint reconstruction problem with unknown

category/instance and viewpoint. Through parameterization of

the visual manifold by a mapping coefficient matrix and a non-

linear kernel map, one can formulate a continuous inference

problem (Zhang et al., 2013) or a discrete discrimination problem

(Bakry and Elgammal, 2014). Therefore, the objective of manifold

untangling is implicitly implemented by projecting onto the target

subspace of category, instance, and viewpoint.

A fundamental weakness of those conventional approaches is

their lack of generalization property. It is often assumed as a priori

that the topology of the viewpoint manifold of individual objects

is known. The derived manifold untangling solution easily breaks

down when such an assumption becomes invalid (e.g., due to the

tangling of other uncertainty factors such as scale, illumination, and
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clutter, Johnson and Hebert, 1999). Meanwhile, the computational

complexity of manifold reconstruction in both continuous and

discrete settings can be prohibitive because of the required Monte-

Carlo Markov-Chain (MCMC) sampling and exhaustive search

of subspace indexes (the curse of dimensionality). One cannot

help wondering if there exists an explicit solution to manifold

untangling without reconstruction.

This work offers attractive alternative solutions to multiview

visual object recognition. In several challenging datasets with the

presence of pose and expression variations, it has been shown

in Chen et al. (2013) that high-dimensional features (as large as

100K) can dramatically boost face verification performance. This

blessing of dimensionality has been empirically verified for various

local descriptions from local binary patterns (LBP) (Ahonen et al.,

2004) to Gabor filters (Liu and Wechsler, 2002). Our manifold

embedding strategy offers a plausible theoretical interpretation—

namely, as the dimensionality increases, the concatenation of

features with varying landmark numbers and sampling scales

promotes selectivity by offering complementary descriptions of the

object category.

Identity-preserving transformations are often applied

to generalize the performance of deep learning models to

previously unseen data (Connor et al., 2021). They can be either

constructed from a set of data augmentation tools (e.g., rotation,

flipping, and scaling) or learned through a set of Lie group

operators that define directions of motion on the manifold. Both

classes can be unified into motion-induced identity-preserving

transformations by generalizing the untangling factor from a

viewpoint only to motion-related variations. Broadly speaking,

based on the observation that the identity of an object is

temporally stable, identity-preserving transformations should

include both microscale (e.g., saccadic-driven image translations)

and macroscale (e.g., egomotion-driven clutter variability).

Additionally, deformable objects such as faces and bodies pose

additional challenges to invariant recognition, which calls for a

recursive application of identity-preserving transformations (e.g.,

reentrant signaling, Edelman, 1993).

A closely related idea to manifold untangling is the learning

of disentangled representations. For example, the GAN for

disentangled representation learning (DR-GAN) (Tran et al., 2017)

can take one or multiple images as input and explicitly output the

pose code along with an arbitrary number of synthetic images. Such

a GAN-based deep-generative model cleverly combines the pose

code in the generator and the pose estimation in the discriminator

into a closed loop. It can be interpreted as achieving tolerance by

simultaneously resolving the uncertainty of identity and pose. It

is mathematically equivalent to the maximum a posterior (MAP)

estimation in the joint space of object identity and identity-

preserving transformations (refer to Figure 4D in DiCarlo et al.,

2012).

4.2. Invariant speech and language
recognition

Unlike image data, speech signals are characterized by dynamic

patterns in the temporal domain. Since language is unique to

humans, language models serve as a strong supervisor in speech

recognition. From words and phrases to paragraphs and part-of-

speech, the principle of hierarchical organization has been widely

studied in natural language processing. Computational maps in the

auditory cortex share an organizational principle similar to that in

the visual cortex (Krumhansl, 2001). Therefore, it is enlightening

to understand invariant speech and language recognition from a

manifold untangling perspective.

Compared to images, speech and language data are arguably

less tangled due to the varying physical origin. From a manifold

untangling perspective, embedding plays a more important role

than flattening for speech and language data than for images.

This difference is supported by the popularity of word embedding

models [e.g., word2vec (Goldberg and Levy, 2014) and GloVE

(Pennington et al., 2014)]. Even without any flattening, it is

relatively easy to untangle the word manifold by embedding alone,

as shown in recent work using two models of automatic speech

recognition (ASR) models (Stephenson et al., 2019): convolutional

neural network (CNN)-based (Kell et al., 2018) and Deep Speech 2

(DS2) (Amodei et al., 2016). The untangling of the word manifold

has been clearly demonstrated by the increase in manifold capacity

of both the ASR and DS2 models in later layers. A similar

observation has been made for the popular language model (BERT)

which is transformer-based (Mamou et al., 2020).

4.3. Perceptual straightening of video data

By contrast, video data has been much less studied than

image or speech. Depending on the definition of object category,

we can revisit several classical video processing tasks from

a manifold untangling perspective. First, the class of natural

video defines a manifold that is related to visual quality. The

amount of perturbation (e.g., jittering artifacts) from the manifold

of natural video is often correlated with the degradation of

visual quality. One of recent works (Hénaff et al., 2019) has

proposed a predictive coding hypothesis (Rao and Ballard,

1999)—that is, the temporal trajectories of visual input are

perceptually straightened to make them more predictable. This

hypothesis is consistent with the theory of manifold untangling

because temporal straightening can be interpreted as a strategy

of flattening the object manifold associated with the subspace

of viewpoint. A key experimental finding from Hénaff et al.

(2019) is that natural motion in video sequences corresponds

to a flat trajectory in the perceptual space. Such a manifold

flattening viewpoint seems to offer a quantitative framework

for evaluating the performance of video stabilization techniques

(Roberto e Souza et al., 2022).

Second, the concept of probabilistic appearance manifold has

been introduced for video-based face recognition (FR) (Lee et al.,

2003). In Lee et al. (2003), the local geometry of the non-

linear appearance manifold (associated with varying poses) is

approximated by standard PCA-based hyperplanes. Such a linear

approximation of the pose manifold is conceptually simple, but its

optimality is often questionable. The theory of manifold untangling

offers a refreshing new perspective toward video-based FR—that

is, one can flatten the pose manifold in the latent space (e.g.,
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W+ in StyleGAN, Shen et al., 2020). After straightening the

video of a given identity, one can interpret the warped video as

augmented image observation by pose normalization. It follows

that even simple fusion strategy, such as sum-rule, can be applied

to the untangled video data. Note that such an idea of untangling

manifolds can be easily generalized from the pose manifold to other

facial attributes (e.g., age and expression).

Third, a dual problem with image-based object recognition

is dynamic scene classification (Theriault et al., 2013) where the

object category is semantically defined by the scene of video data.

Learning the slowest feature with slow feature analysis (SFA)

(Wiskott and Sejnowski, 2002), one can untangle the classes for

different semantic categories. The key idea behind SFA is to learn

invariant representations from transformation sequences, which

is closely related to Laplacian eigenmaps (Sprekeler, 2011). From

the perspective of manifold untangling, SFA can be interpreted as

an alternative to selectivity and tolerance to learning invariance

(Franzius et al., 2008). A similar idea has also found a successful

application in the untangling of the manifold of motion for the

recognition of human action (Zhang and Tao, 2012). One possible

extension of SFA inspired by manifold embedding is to concatenate

the learned SFA features frommultiple modalities (e.g., color, SIFT,

HOG); whenmotion information is represented by gait or skeleton,

manifold flattening can be easily implemented by deformable

shapes, Palafox et al., 2021).

5. Biological connections with sensory
processing, motor control, and
binding problem

5.1. Cortically local subspace untangling in
ventral stream

How is manifold untangling achieved by the ventral stream

of the visual cortex? In DiCarlo et al. (2012), it was hypothesized

that the task is implemented recursively using a meta-job

description at different layers. At each layer, the objective of a

local group of neuronal population is to ensure that the output

representation becomes less tangled than the input one, which

gives the term “cortically local subspace untangling”. Two general

classes of mechanisms are conceived to be relevant to the task of

flatteningmanifolds: non-linear network architecture (Riesenhuber

and Poggio, 1999; Serre et al., 2007) and identity-preserving

transformations (Pagan et al., 2013; Mocz et al., 2021), which we

will briefly review here.

In the hierarchical HMAX model for object recognition

(Riesenhuber and Poggio, 1999), two classes of cells (simple vs.

complex) are responsible for selectivity and tolerance operations,

respectively. There exists a canonical circuit to model simple and

complex cells in V1 (Kouh and Poggio, 2008) based on non-

linear divisive normalization. Generally speaking, simple cells are

modeled by AND-like or summation operators, which constructs

some selective tuning for combinations of visual features; complex

cells are modeled by OR-like or max-pooling operators, which

achieve invariance/tore lance to variations in the visual stimuli

(e.g., pose, location, and scale). HMAX model and convolutional

neural networks (CNN) consist of several layers of alternating

simple and complex cells, which can be interpreted as gradually

untangling object manifolds (Brahma et al., 2015). However, unlike

the convergent architecture in HMAX or CNN, the visual cortex is

known for its divergent topology (Barlow, 2001) (consistent with

the blessing of dimensionality).

The temporal continuity hypothesis states that “input patterns

that occur close together in time tend to lead to similar output

responses” (DiCarlo et al., 2012). Since an object’s identity is

temporally stable/continuous, retinal images of the same object

naturally serve as training data for learning identity-preserving

transformations. For example, it is well-known that inferotemporal

cortex (IT) neurons are capable of responding similarly to the

same object regardless of its retinal positions. This tolerance

of spatial location can be explained away from the perspective

of getting bootstrapped by the large number of saccadic-driven

translation experiences of retinal images. Similar observations can

be made with respect to the tolerance of the object’s rotation but

up to a certain angle. Meanwhile, the perirhinal cortex (PRH)

is responsible for item memory, especially when representing

familiar items; such familiarity with items can be interpreted as

finer-grained untangling than position and rotation. In fact, the

experimental results have confirmed that along with the flow of

information from IT to PRH, the representation of the visual object

becomes more untangled (Pagan et al., 2013).

5.2. Trajectory untangling in motor control

J. Gibson says that “we move because we see; we see because

we move.” The dual view toward perception and motion inspires

us to consider the problem of manifold untangling for the

motor cortex as the dual for the visual cortex. In Russo et al.

(2018) it has been observed that, unlike muscle activity, neural

activity is structured in such a way as to avoid tangling, that is,

similar neural activity patterns lead to dissimilar action patterns

in the future (an object action-related counterpart of object

recognition). How does the motor cortex encode muscle-like

commands? Hypothesis about encoding of movement velocity

or direction exists in the literature (e.g., Gallego et al., 2017);

however, sophisticated tasks such as reaching and cycling (or

more extended movements) suggest that neural activities are

dominated by signals that are not muscle-like (therefore cannot

be explained by velocity/direction coding) at the population level

(Russo et al., 2018).

Based on the premise that the present network state strongly

influences the future state, we conjecture that the objective of

trajectory untangling is also recursively (although via hierarchical

timescale instead of spatial scales) achieved by the motor cortex.

Conceptually similar to the tangling in object recognition, the

principle of trajectory untangling implies that two similar patterns

of neural activity, observed as different moments, should not

produce highly dissimilar action patterns in the near future.

Violation of such principle often leads to trajectory tangling, a

potential instability in the network dynamics of motor control.

A key finding from the cycling experiment from Russo et al.

(2018) is that “muscle-like signals are present, but are relatively
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modest ‘ripples that ride on top of larger signals that confer

minimal tangling.”

The perspective of trajectory untangling is consistent with

the closed-loop theory of motor learning (Adams, 1971). For

closed-loop optimization, error feedback that plays a role in the

reinforcement learning of simple movements can be interpreted

as manifold projection. Trajectory untangling facilitates the task

of closed-loop optimization by decomposing the movement into

the knowledge of the result (trends) and the withdrawal of

reinforcement (ripples). The learning procedure of motor skills is

then abstracted as gradual untangling of trajectories in the latent

space of motor control (Langdon et al., 2023). More recently, the

problem of motor control has been studied more rigorously using

the theory of dynamical systems. Motor learning on the neuronal

population dynamics scale was shown to involve multiple learning

mechanisms operating on different timescales (Vyas et al., 2020).

Studies on motor learning have shown the benefit of forming

motion memory from action observation (Mattar and Gribble,

2005; Stefan et al., 2005). More recently, it has been reported that

(1) smooth mappings of experimental parameters onto flat neural

manifolds can increase demixability (Kobak et al., 2016); and (2)

neural networks with low-rank connectivities can produce demixed

manifolds (Keemink and Machens, 2019).

5.3. From perceptual untangling to internal
representation

According to Helmholtz (Lee, 2015), the fundamental role

of the neocortex is to construct an internal representation

of the external environment. Mirroring of the physical world

in the primate brain is achieved by the constant interaction

between the sensory and motor cortex. It has been suggested

that the organizational principle of the cortex, regardless of

object recognition or motor control, shares a similar association

mechanism at the cellular level (Larkum, 2013). As shown in

Figure 4, pyramidal neurons play the role of coupling feed-forward

with feedback streams that are driven by external stimuli and

internal representation, respectively. This association mechanism

at the cellular level succinctly explains the advantage of the cortical

hierarchy, with its structured terminations at different layers. It

also offers a plausible explanation for how neuronal populations

in various areas can be “bound” instantaneously to represent

tangled features.

Thalamo-cortical interaction must occur simultaneously in

both feed-forward and feedback streams to support the predictive

coding hypothesis in the visual cortex (Rao and Ballard, 1999). A

feedforward visual stream transmits external stimuli information

to higher cortical areas through manifold untangling; pyramidal

neurons act as associative elements that detect coincidences

between present stimuli and experience (internal representation).

Then, the feedback stream serves as the prediction coding scheme

(Rao and Ballard, 1999) of the cortex that determines the firing

of pyramidal neurons. Given that 90% of the synaptic input

to layer-1 (L1) are from long-range feedback connections, the

backpropagation-activated coupling (BAC) (Larkum, 2013) firing

mechanism of pyramidal neurons has been shown to bridge

the feedforward (manifold untangling) and feedback (manifold

projection) streams.

The bridging of feed-forward and feedback streams is

consistent with the new perspective of how the binding problem

was solved by base grouping (feed-forward processing) and

incremental grouping (feedback connection) (Roelfsema, 2023).

FIGURE 4

Long-range architecture of the cortex (cited from Larkum, 2013). The feed-forward stream (marked by the color blue) is driven by external

information that influences the sensory apparatus. The feedback stream (marked by the color red) is driven by an internal representation built from

previous experiences. We conjecture that the feedforward and feedback streams can be geometrically interpreted as manifold embedding and

projection, respectively.
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It was argued that the distribution of visual attention is largely

determined by motor control or action planning. More specifically,

the process of selecting objects for perceptual processing and object

recognition is coupled with that of providing the information

necessary for motor action through a single attentional mechanism

(Deubel and Schneider, 1996). From the manifold untangling

perspective, feedforward processing is responsible for the tuning

of neurons to features and base groupings; while feedback

connections enhance the firing rates of to-be-grouped features

through manifold projection. Manifold untangling facilitates the

solution to the binding problem by re-representing different

sensory stimuli into groupable features (e.g., position, size, and

pose). Along this line of reasoning, enhancing firing rates alone

(no need for neural oscillation and synchrony, Von Der Malsburg,

1994) is sufficient for the binding or integration of groupable

features from different modalities.

Finally, hippocampus, seated on the top of neocortical pyramid,

is responsible for storing memories of specific events and places.

It plays a key role in constructing an internal representation of

the external world, which involves integrating information from

different sensory modalities and binding them into a coherent

memory. The dentate gyrus (DG), a subregion of the hippocampus,

interacts with the other subregions of the hippocampus (e.g.,

including the CA1 and CA3 regions) to form a functional network

that is critical for memory processing and retrieval. In feed-forward

processing, the entorhinal cortex sends sensory information from

the neocortex to the dentate gyrus, which then processes and

integrates the information with other sensory inputs in the

hippocampus. Manifold unfolding is implemented by DG which

performs the decorrelation and sparsification of input signals by

projecting to higher-dimensional space. In feedback processing,

manifold projection simply projects the stored information back to

the neocortical regions, which is consistent with hippcampal index

theory (Teyler and DiScenna, 1986).

6. Conclusions

It has been hypothesized that through neuronal population

dynamics, the neocortex solves the problem of object recognition

via perceptual untangling. We formulate the problem of

manifold untangling as an abstraction of object recognition

in this paper. Two complementary approaches to untangle

an object manifold are presented: embedding (selectivity-

promoting) and flattening (tolerance-promoting). We have

discussed two classes of embedding strategies (generalized kernel

method and hierarchical sparse coding) as well as flattening

strategies (identity-preserving transformation and decision

boundary smoothing). Under the framework of manifold

unfolding, we present a unified interpretation of multiview

image recognition, invariant audio/language recognition, and

perceptual straightening of video. Finally, the theory of manifold

unfolding is connected with the literature of neuroscience,

which demonstrates the biologically plausible implementation of

perceptual untangling.

Future works require the development of experimentally

or computationally testable hypotheses or models built upon

the theory of manifold untangling. Deep neural networks have

shown to demonstrate some interesting manifold disentangling

properties in Brahma et al. (2015) and Horan et al. (2021).

However, existing neural architectures such as convolutional

neural networks do not exactly match the divergent topology of

neocortex—namely, there are a lot more neurons and synapses

in the higher levels than those in the lower levels. The class

of over-parameterized neural networks (Du et al., 2019) and

over-complete representations (Chen et al., 2013) arguably better

reflects the organizational principles of ventral stream processing.

Therefore, we believe that the theory of manifold untangling

can be more easily falsified from the class of over-parameterized

models. For example, recently developed large vision models (e.g.,

scaling vision transformers, Zhai et al., 2022) might serve as

a promising proxy for studying object recognition by ventral

stream processing.
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