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An epileptic seizure is the external manifestation of abnormal neuronal

discharges, which seriously affecting physical health. The pathogenesis of

epilepsy is complex, and the types of epileptic seizures are diverse, resulting

in significant variation in epileptic seizure data between subjects. If we feed

epilepsy data from multiple patients directly into the model for training, it will

lead to underfitting of the model. To overcome this problem, we propose a

robust epileptic seizure detection model that effectively learns from multiple

patients while eliminating the negative impact of the data distribution shift

between patients. The model adopts a multi-level temporal-spectral feature

extraction network to achieve feature extraction, a feature separation network

to separate features into category-related and patient-related components, and

an invariant feature extraction network to extract essential feature information

related to categories. The proposed model is evaluated on the TUH dataset

using leave-one-out cross-validation and achieves an average accuracy of 85.7%.

The experimental results show that the proposed model is superior to the

related literature and provides a valuable reference for the clinical application of

epilepsy detection.

KEYWORDS

epileptic seizure detection, EEG, feature separation, adversarial training, patient-
independent

1. Introduction

Epilepsy is a chronic disorder caused by the sudden abnormal discharge of nerve cells
in the brain, resulting in temporary brain dysfunction. Epilepsy is the second most common
neurological disorder after headache, affecting approximately 70 million people worldwide.
The clinical manifestations of epileptic seizures are complex, and the types of epileptic
seizures are varied. The clinical manifestations may include impaired consciousness, limb
spasms, urinary incontinence, frothing, and other symptoms. Although epileptic seizures
have little impact on patients in the short term, long-term frequent seizures have a severe
impact on the physical, mental, intellectual health of patients (Rakhade and Jensen, 2009;
Rasheed et al., 2021). Most people with epilepsy can control their condition with medication
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and surgery, still, about 30% of people with intractable epilepsy
cannot be adequately controlled with medication (Kwan and
Brodie, 2000), posing a severe threat to the life and health of
patients and a heavy burden to their families and society.

The pathogenesis of epilepsy is complex, and the types
of epileptic seizures are varied. The characteristics of EEG
(electroencephalogram) data during the epileptic seizure period
are related to the original location and cause of epilepsy. Different
diseases of the nervous system or various conditions of the brain
can cause different epileptic seizures, and the same condition of
the nervous system can cause more than one type of epileptic
seizure. Previous studies have pointed out that about 7% of the
neurons ignited in patients with subclinical seizure, about 14% of
the neurons ignited in patients when omen appeared. About 36%
of the neurons ignited in patients with clinical seizure. Therefore,
in the same patient, the intensity, type, location, duration of each
seizure may be the same or different. In multiple patients, the
differences are more marked (Babb et al., 1987; Fisher et al., 2017).

Most of the existing epileptic seizure detection methods focus
on the patient-dependent scenario, which refers to detecting a
patient’s epileptic seizure by learning from his own historical
records; this method is easy to implement and has high detection
accuracy. In contrast, patient-independent methods advance in
alerting potential patients but are easily corrupted by inter-
patient noises. Most existing studies fail to eliminate significant
differences between patients (mainly caused by multiple factors
such as physical condition, pathogenesis, seizure intensity, seizure
type, etc.). When the model is trained directly on data from
multiple patients, it will easily lead to underfitting, and detection
performance will drop sharply on new patients. For these reasons,
we propose a new method, which uses a feature extraction network
and feature separation network to improve the discriminability of
features, and which uses the marginal distribution and conditional
distribution alignment technology of features to enhance the ability
to extract patient invariant features.

The main contributions of our study can be summarized as
follows:

(1) We propose a novel domain generalization model based
on feature disentanglement and adversarial training to
enhance the ability of extracting patient invariant features,
so the generalization ability of the model is improved.

(2) We verify the proposed model through extensive
experimental evaluations. The experimental results show
that our proposed approach has significant potential to
provide an optimal epileptic seizure detection method, and
it also provides a valuable reference for clinical application.

The remainder of this paper is organized as follows. In the
section “2. Related work,” reviews the related work of epileptic
seizure detection. In the section “3. Methodology,” a patient-
independent epileptic seizure detection model is proposed. In the
section “4. Experiments,” we present experiments and results on a
benchmark dataset. In the section “5. Discussion,” we analyze the
effectiveness of the proposed method. Finally, some conclusions are
given in the section “6. Conclusion.”

2. Related work

As a subclass of machine learning, deep neural networks have
made remarkable progress in computer vision, natural language
processing, and other fields, and researchers have proposed a
variety of network models and methods for specific application
scenarios. In the research of domain generalization methods, the
following two approaches are usually adopted: (1) The method
based on experience and knowledge is designed to extract universal
features that can perform good detection on new patients. (2) The
domain adaptive technology is used to extract invariant features of
multiple patients to improve the generalization ability of the model.

For the first approach, Ansari et al. (2021) proposed an
automated seizure onset detection system, which used power
spectrum features and some statistical features to detect seizure
onset, achieving a mean latency of 0.9 s and 1.02 false detections
per hour. Liu et al. (2022) proposed a novel patient-independent
approach; this method used wavelet decomposition, Convolutional
Neural Network (CNN), Bidirectional Long Short-Term Memory
(Bi-LSTM) network and a novel channel perturbation technique,
achieved mean accuracies of 97.51 and 93.70%. Sridevi et al.
(2019) proposed a patient-independent approach; this method
used spectral entropy, spectral energy and signal energy as useful
features, achieved a better classification effect.

For the second approach, Zhao et al. (2021) proposed a domain
adaptive method, domain shift can be eliminated from the source
domain to the target domain, and achieved better performance. Li
et al. (2021) proposed a bi-hemisphere domain adversarial neural
network, that achieved good recognition performance in EEG
emotion recognition. Tang and Zhang (2020) applied conditional
adversarial domain adaptation neural network to motor image EEG
decoding, and achieved a better classification effect.

In epilepsy detection, Zhang et al. (2020) used feature
separation and adversarial representation learning methods to
decompose the data into categories (seizure and normal) related
features and patient-related features, achieving an average accuracy
rate of 80.5% on the TUH EEG dataset. Dissanayake et al. (2021)
used the CNN network structure and Siamese network structure,
and achieved an accuracy of 88.81% on the CHB-MIT dataset.

To the best of our knowledge, the above methods do not
completely eliminate the effects of the data distribution shift
between patients, so in this study, we propose a robust approach
to address this problem.

3. Methodology

3.1. The proposed network

The proposed patient-independent epileptic seizures detection
model is illustrated in Figure 1, which includes three subnets.
(1) Multi-level temporal-spectral feature extraction network, (2)
feature separation network, and (3) invariant feature extraction
network. The feature extraction network extracts temporal feature
information and frequency domain feature information from EEG
data (Li et al., 2020), and performs enhanced characterization by
the Squeeze-and-Extraction Network (Hu et al., 2018), so that
the extracted features are discriminable; the feature extraction
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FIGURE 1

The architecture of the proposed network.

FIGURE 2

The architecture of multi-level temporal-spectral feature extract network.

network is illustrated in Figure 2. The feature separation network
disentangles the features into category-related features and patient-
related features. Finally, the invariant feature extraction network
extracts the invariant patient-independent features by aligning
the marginal distribution and the conditional distribution; so the
generalization ability of the model is improved.

3.2. Multi-level temporal-spectral feature
extract network

Electroencephalogram data is two-dimensional data similar
to images, which has uncertainties and incidences; therefore, it

is necessary to preprocess the original data; we use min-max
regulation technology to regulate the data. You can also refer
to Rahim et al. (2016) and Versaci and Morabito (2021) for
preprocessing.

As convolution operators are essentially equivalent to a
low-pass filter (Azimi et al., 2019), the embedding block, the
embedding block, that is, successive temporal convolution and
batch normalization (BN) operations, is first adopted to infer an
optimal filter-band for the subsequent analysis. As a result, after
stacking original data and output embeddings with a channel-wise
concatenation function, the embedding block obtains a sub-band
matrix, which provides a subsequent network with adaptive sub-
band responses and also original data. Finally, the data is fed into
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the multi-level spectral feature extraction module and the multi-
level temporary feature extraction module for feature extraction.

In the multi-level temporal-spectral feature extraction network,
in order to prevent the deformation of the boundary data caused by
zero padding in the convolution operation, the head and tail of the
data are filled according to formula (1):

xp = x(N−
R
2
+1), ...,x(N−1)|x(0), ...,x(N−1)|x(0), ...,x(

R
2
−2)

(1)
Where, | is a concatenating operator, x(i) is the i-th element
of input x, R representing the parameter kernel size in the
convolution operation.

In order to reduce the time of data computation, the proposed
method adopts convolution operation to perform multi-level
wavelet decomposition, which is defined as follows:

yA(i) = (xp ⊗ g)(i) =
R∑

r=0

xp(s× i− r)× g(r) (2)

yD(i) = (xp ⊗ h)(i) =
R∑

r=0

xp(s× i− r)× h(r) (3)

Where, ⊗ is the convolution operation,gand h represent a pair
of scaling and wavelet filter, s represents the parameter stride in
the convolution operation, yA(i) is the approximation (low pass)
coefficients, and yD(i) is the detail (high pass) coefficients.

In the multi-level spectral feature extraction module, to
extract the corresponding wavelet coefficients under standard
physiological sub-bands δ(0∼4 Hz), θ(4∼8 Hz), α(8∼16 Hz),
β(16∼32 Hz), and γ(32∼64Hz), we select Daubechies order-4
(Db4) wavelet, since previous studies reported that Db4 mother
wavelet is useful for epileptiform transient detection due to its high
correlation coefficients with the epileptic spike signal (Indiradevi
et al., 2008). Finally, the frequency features (fδ, fθ, fα, fβ, fγ) are
obtained.

In the multi-level temporal feature extraction module,
considering the data distribution shift between subjects, we use
five independent convolution, batch normalization and empirical
linear unit (ELU) operations to capture multi-level temporal feature
information with different receptive fields. The convolution kernel
size is set to [S, 1], the value of S is {k, k, k/2, k/4, k/8}, k= 25, and
finally, the temporary features (ft1,ft2,ft3,ft4,ft5) are obtained.

To further extract discriminative feature information, the
features extracted by the multi-level spectral feature extraction
module and the multi-level temporal feature extraction module are
combined according to the feature dimensions:

fall =
{
[fδ|ft1], [fθ|ft2], [fα|ft3], [fβ|ft4], [fγ|ft5]

}
(4)

The combined features fall are fed into Squeeze-and-Excitation
Network to enhance feature discrimination.

3.3. Feature separation network

The feature information (category information, patient
information, etc.) is contained in each dimension and intertwined.
If the features can be disentangled by the feature separation
network, the separability and discriminability of the features

will be improved. Therefore, according to the prior knowledge,
we separate the features which are obtained from the feature
extraction network into two parts, the first half of the features is the
category-related component, which is recorded as Fcategory_related,
the second half of the features is the patient-related component,
which is recorded as Fpatient_related. In addition, to ensure the
first half of the features are the category-related component, the
category classifier and cross-entropy loss function are used, to
ensure the second half of the features are the patient-related
component, the patient classifier and cross-entropy loss function
are used, to ensure better separation of the features of the two
parts, the maximum divergence loss function is used to ensure the
maximum separation of the category-related component and the
patient-related component (Bui et al., 2021).

The loss function of the category classifier and the patient
classifier is:

Lcls_1 =
1
N

∑
xi∈Ds

L(Gc1(Gf (xi)), yi) (5)

Lp =
1
N

∑
xi∈Ds

L(Gp(Gf (xi)), di) (6)

Where, N is the number of samples, xi is the data sample,
Gf is the feature extraction network, Gc1 is the category
classifier, Gp is the patient classifier, L is the cross-entropy loss
function, yi is the category label (seizure or normal), di is the
patient label, Ds ∈ D1 ∪ D2... ∪ Dn (D1,D2,. . .. . ., Dn are the data
of each patient).

To separate category-related component (Fcategory_related) and
patient-related component (Fpatient_related), we use the maximum
divergence loss function:

Lmax_divergence = −

N∑
i=1

(Fcategory_related − Fpatient_related)
2 (7)

Then combine the separated features to create new features:

F
′

all = [Fcategory_related|Fpatient_related] (8)

3.4. Invariant feature extraction network

The feature separation network effectively disentangles the
features and improves the discrimination of the features, but the
current features are not the invariant features of each patient.
To improve the generalization ability of the model, the proposed
method is based on the methods of DANN (Domain-adversarial
training of neural networks) (Ganin et al., 2016; Yu et al., 2019)
and MADA (Multi-adversarial domain adaptation) (Pei et al., 2018)
to achieve better invariant feature learning. The global patient
discriminator aligns the features of each patient according to the
marginal distribution. The local patient discriminator aligns the
features of each category according to the conditional distribution.
The global adversarial loss function and the local adversarial
training loss function are as follows:

Lglobal =
1
N

∑
xi∈Ds

L(Gg(Gf (xi)), di) (9)
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Llocal =
1
N

K∑
k=1

∑
xi∈Ds

L(Gk
l (yk

i Gf (xi)), di) (10)

Where, L is the cross entropy loss function, Gf is the feature
extraction network, Gg and Gk

l (k = 1,2) are the patient
discrimination network, di is the patient label, yk

i (k = 1,2)is the
first and second dimensional data of the original label after one-hot
encoder, Ds ∈ D1 ∪ D2... ∪ Dn is the patient sample set.

In category classifier, to centralize the character of data, the
central loss function is adopted. The loss function is (Wen et al.,
2016):

Lcent =
1
2

M∑
i=1

∣∣∣∣xi − cyi

∣∣∣∣2
2 (11)

Where, cyi is the category center.
Through the above operations, the marginal distribution and

conditional distribution of features are aligned, and the features
are gathered to the central point of each category, so the invariant
features are obtained. The loss function of the category classifier
(Rahim et al., 2015; White et al., 2020; Versaci et al., 2022; Waheed
et al., 2023) is:

Lcls_2 =
1
N

∑
xi∈Ds

L(Gc2(Gf (xi)), yi) (12)

Where, Gc2 is the category classifier, yi is the category label.

3.5. Training details

We propose an adversarial training strategy to train all the loss
functions jointly (Matsuura and Harada, 2020):

Lsum = Lcls2 + λ× (Lcent + Lcls1 + Lsubject + Lmax_divergence)

−λ× (Lglobal + Llocal) (13)

Where, λ = 0.1. θg, θ
1
l , θ

2
l are trained by a special layer called

Gradient Reversal Layer (GRL), this GRL is omitted during forward
propagation, and the gradient is reversed in backpropagation.

Finally, we search for the optimal parameters
∧

θf ,
∧

θc2,
∧

θg,
∧

θ1
l ,
∧

θ2
l to

meet the following requirements:

(
∧

θf
∧

θc2) = arg min Lsum
θf ,θc2

(θf , θc1, θp, θc2, θg, θ
1
l , θ

2
l ) (14)

(
∧

θg,
∧

θ1
l ,
∧

θ2
l ) = arg max Lsum

θg ,θ
1
l ,θ

2
l

(θf , θc1, θp, θc2, θg, θ
1
l , θ

2
l ) (15)

Where, θf are the parameters of multi-level temporal-spectral
feature extract network, θc1 are the parameters of category classifier
in feature separation network, θp are the parameters of patient
classifier in feature separation network, θc2 are the parameters
of category classifier in invariant feature extraction network, θg
are the parameters of global patient discriminator in invariant
feature extraction network, θ1

l , θ
2
l are the parameters of local patient

discriminator in invariant feature extraction network.
During training, if the training samples are trained by

minibatch, the features of all the training samples cannot be T
A
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obtained in time, so we feed all the training samples into the
network as a batch for training. The Adam optimizer is used
for the model; the learning rate is set to 0.005; the center loss
function is optimized using the Stochastic Gradient Descent (SGD)
optimizer, and the learning rate is set to 0.05; the training rounds
are 200. We use the grid search method to set the hyperparameters
in the experiment.

4. Experiments

4.1. Dataset

The proposed approach is evaluated on a benchmark dataset,
the TUH corpus (Obeid and Picone, 2016), which is a neurological
seizure dataset of clinical EEG recordings associated with 22
channels according to the international 10/20 system. We form a
subset of the TUH with 14 subjects by selecting the subject with
more than 250 s of seizure state. For each subject, we use 500 s
(half normal and half seizure) of EEG signals with a sampling rate
of 250 Hz. Each EEG fragment has 250 sample points (lasting 1 s)
and adjacent fragments with 50% overlap. For each EEG fragment,
those belonging to the epileptic seizure state are labeled as 1, while
those belonging to the normal state are labeled as 0. Then the
sample set is divided into a training set and a test set.

4.2. Evaluate metrics

The experiment used accuracy (ACC), sensitivity (SN), and
specificity (SP) to quantify the performance of the algorithm (Yang
et al., 2023).

ACC =
TP + TN

TP + TN + FP + FN
(16)

SN =
TP

TP + FN
(17)

SP =
TN

TN + FP
(18)

Where, TP (True Positive): The sample which is positive is
judged to be positive, TN (True Negative): The sample which is
negative is judged to be negative, FP (False Positive): The sample
which is negative is judged to be positive, FN (False Negative): The
sample which is positive is judged to be negative.

4.3. Baselines

The adopted baseline models include:
• Zabihi et al. (2013) applied Discrete Wavelet Transform

(DWT) and calculated metrics such as relative scale energy and
Shannon entropy as features; SVM is used for data classification.
• Fergus et al. (2015) applied Power Spectral Density (PSD) and

calculated metrics such as peak frequency and max frequency as
features; KNN is used for data classification.
• Schirrmeister et al. (2017) applied convolutional neural

networks to distinguish seizure segments by decoding task-related
information from EEG signals.
• Kiral et al. (2018) designed a deep neural network for seizure

diagnosis and further developed a prediction system on a wearable
device.
• Zhang et al. (2020) proposed an adversarial representation

learning strategy, which achieves robust and explainable epileptic
seizure detection.
• Dissanayake et al. (2021) used the CNN network structure

and Siamese network structure to improve the generalization ability
of the model.

The six comparison methods and my experiment used the same
data segment length on the TUH dataset, using leave-one-out cross-
validation, and obtained the comparison results in Table 1.

TABLE 2 The result after feature separation network is removed.

Methods ACC (%) SN (%) SP (%)

Ours (feature separation
network is removed)

81.6(±2.9) 80.5(±3.8) 82.8(±2.5)

Ours 85.7(±4.6) 83.1(±3.3) 87.2(±4.9)

FIGURE 3

(A,B) Confusion matrix and ROC curves.
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FIGURE 4

The t-SNE visualization of network feature. (A) Only DANN, (B) only MADA, and (C) ours.

TABLE 3 Comparison of results with DANN and MADA methods.

Methods ACC (%) SN (%) SP (%)

Only DANN (Ganin et al.,
2016)

74.8(±5.3) 78.2(±6.6) 72.8(±4.1)

Only MADA (Pei et al., 2018) 79.6(±6.5) 81.5(±5.4) 77.3(±6.9)

Ours 85.7(±4.6) 83.1(±3.3) 87.2(±4.9)

Through comparative analysis, the methods in literature
(Schirrmeister et al., 2017; Kiral et al., 2018) only used a deep neural
network to train a model with the data of multiple patients together,
without considering the negative impact of inter-patient differences
on the training model, resulting in poor detection accuracy when
applied to new patients. In literature (Zabihi et al., 2013), relative
scale energy and Shannon entropy, etc., were used as features, in
literature (Fergus et al., 2015), peak frequency and max frequency,
etc., were used as features, these methods were able to extract the
obvious common features, but were unable to extract the deeper
common features, so the detection accuracy of the methods was
higher than the results in Schirrmeister et al. (2017) and Kiral
et al. (2018) and lower than the results in Zhang et al. (2020)
and Dissanayake et al. (2021). For the methods mentioned in the
literature (Zhang et al., 2020; Dissanayake et al., 2021), which
applied a neural network to eliminate the negative impact of the
data distribution shift between patients, the results were higher
than those without considering the elimination of the negative
impact of the data distribution shift between patients. For the
method proposed in this paper, which uses feature separation and
adversarial training to disentangle features in the latent space while
learning domain-invariant features to achieve the goal of mitigating
the influence of inter-patient differences, its experimental results
are the best, with an average detection accuracy of 85.7% by leave-
one-out cross-validation.

In addition, the confusion matrix and the receiver operating
characteristic (ROC) curve with the area under the curve (AUC)
value are shown for a closer look at the detection results. The results
of one of the best-performing subjects (patient 6) are illustrated in
Figure 3. From the confusion matrix we can see that our approach
achieves a sensitivity of 98.4% and a specificity of 100%.

5. Discussion

To analyze the effectiveness of the proposed method, first, we
removed the feature separation network while leaving the other
settings unchanged. Then we tested on the TUH dataset using
leave-one-out cross-validation. The results of the tests are shown
in Table 2:

By comparison, the average accuracy of the comparison method
in which the feature separation network is removed is 81.6%. The
proposed method ensures feature separability and improves feature
discrimination, thus improving detection performance.

Second, for the invariant feature extraction network, since
DANN only aligns the marginal distribution features of multi-
patients, and MADA only aligns the conditional distribution
features of multi-patients, we propose the method which aligns the
marginal distribution and conditional distribution of each patient’s
features at the same time. As the label of each training set, yk

i
(k = 1,2)in the MADA method is modified with the value of the
original label by the one-hot encoder. Then, the model is trained in
the adversarial network, respectively, so that the invariant features
of each category can be obtained.

To compare the advantages of the proposed method, this paper
trains and tests networks that only use DANN and only use MADA.
By comparing with the proposed method, the proposed method has
the best performance. The results of performance comparison are
shown in Table 3.

For a clear illustration, we further use the t-SNE method
(Maaten and Hinton, 2008) to visualize the feature distribution
of the comparison methods, the feature distribution is illustrated
in Figure 4. It can be seen that DANN only tries to align the
marginal distribution. Still, due to the shift in data distribution
between patients, it is difficult to align the marginal distribution,
resulting in features in a decentralized state. MADA uses the
aligned conditional distribution and different features are mixed
together. In the proposed method, the features are clustered by
category and can be discriminated. It is shown that the proposed
method has advantages in learning invariant features.

The reasons are as follows: first, DANN, which uses global
domain adversarial method aligns the marginal distribution of
features not according to the data category; second, the MADA,
which uses local domain adversarial method aligns the conditional
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distribution of features according to the data category;
but yk

i (k = 1,2)in the MADA method are not the true
category information, which is the output of the classification
network; therefore, the features of each category cannot
be aligned accurately. The proposed method uses the
marginal distribution and conditional distribution alignment
simultaneously, and uses the accurate label of the training
set as yk

i (k = 1,2), which improves the performance of data
feature alignment. Therefore, the proposed method has the
best performance.

For future work, I suggest the following three points:
First, in the proposed method, the data features are

divided into category-related features and patient-related
features. In future work, the features can be divided into
more detailed features, and new network structures and loss
functions can be used for feature extraction to improve the
algorithm’s performance.

Second, the proposed method uses adversarial training to learn
the invariant features, but the results of adversarial training are not
stable; there are significant differences between each training epoch;
therefore, new invariant feature learning methods can be studied in
the future to improve the stability of training.

Thirdly, the experiments of the proposed method are all
conducted on the existing public dataset and not verified on the
real clinical dataset, therefore, we need to cooperate with the
clinical hospital to obtain the clinical data of epilepsy and verify
the actual effect.

6. Conclusion

In the proposed method, a domain generalization model
based on feature separation and adversarial training is proposed
for the case where there is a significant shift in the data
distribution between patients in the epilepsy dataset. The model
includes a feature extraction network, a feature separation network,
and an invariant feature extraction network. The multi-level
temporal-spectral feature extraction network extracts valuable
features using a convolutional operation and attention mechanism.
The feature separation network is used to improve feature
discrimination. The invariant feature extraction network is used
to align the marginal distribution and conditional distribution of
features to make the features more discriminable and general.
We use the TUH dataset of 14 patients and leave-one-out
cross-validation, and compared with the related literature, the
proposed method achieves the best result; therefore, the proposed
method can provide some reference for the clinical application of
epilepsy detection.
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