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series data based on granular
computing
Yushan Yin*

School of Electro-Mechanical Engineering, Xidian University, Xi’an, China

The advent of the Big Data era and the rapid development of the Internet of

Things have led to a dramatic increase in the amount of data from various time

series. How to classify, correlation rule mining and prediction of these large-

sample time series data has a crucial role. However, due to the characteristics

of high dimensionality, large data volume and transmission lag of sensor data,

large sample time series data are affected by multiple factors and have complex

characteristics such as multi-scale, non-linearity and burstiness. Traditional time

series prediction methods are no longer applicable to the study of large sample

time series data. Granular computing has unique advantages in dealing with

continuous and complex data, and can compensate for the limitations of

traditional support vector machines in dealing with large sample data. Therefore,

this paper proposes to combine granular computing theory with support vector

machines to achieve large-sample time series data prediction. Firstly, the

definition of time series is analyzed, and the basic principles of traditional time

series forecasting methods and granular computing are investigated. Secondly,

in terms of predicting the trend of data changes, it is proposed to apply the

fuzzy granulation algorithm to first convert the sample data into coarser granules.

Then, it is combined with a support vector machine to predict the range of

change of continuous time series data over a period of time. The results of the

simulation experiments show that the proposed model is able to make accurate

predictions of the range of data changes in future time periods. Compared with

other prediction models, the proposed model reduces the complexity of the

samples and improves the prediction accuracy.

KEYWORDS

granular computing, time series, large samples, machine learning, support vector
machines

1. Introduction

With the rapid development of the Internet of Things and wearable devices, more and
more health data can be obtained from electronic medical records or wearable devices. Data
such as heartbeat, pulse and body position changes are continuously monitored by smart
wearable devices. In healthcare, much of the healthcare data is in the form of time series,
such as continuous monitoring data on blood glucose, blood pressure and lipids associated
with chronic diseases (Adamu et al., 2020; Das et al., 2020; Pakhchanian et al., 2021; Uslu and
Stausberg, 2021). The large-sample time series data collected by wearable sensors implies a
lot of very valuable human health-related information. The classification, association rule
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mining and prediction of these large samples of time series data are
of crucial importance to the medical field (Brundin-Mather et al.,
2018; Yang et al., 2018; Zhang et al., 2020).

In the medical field, there are a wide variety of sources of
healthcare data. Based on the above these health care data to
carry out various types of predictive model research is the current
research hotspot in the field of medical information data mining
(Muthee et al., 2018; Ji et al., 2019; Zhang et al., 2019; Enaizan
et al., 2020). For example, according to the trend of health insurance
consumption changes, the distribution of health care coverage
of people in various stages of life can be analyzed to provide a
theoretical basis for controlling the increase of health care costs.
The use of healthcare data can predict the probability of an
individual’s risk of illness, or the probability of re-admission after a
patient is discharged from hospital. Through scientific and efficient
analysis and mining of historical medical and health data, it can not
only provide auxiliary support for early diagnosis and prevention of
diseases, but also significantly reduce medical costs, thus improving
the quality and efficiency of public healthcare (Chiu et al., 2018;
Das et al., 2019; Ng et al., 2019; Liu et al., 2021). At this stage, more
and more hospitals are providing digital healthcare information to
patients, as shown in Figure 1. Accurate prediction of health time
series data in real-world scenarios can provide more accurate and
efficient services to a wide range of patients. Uncovering potential
trends in health time series data in advance is more conducive to
identifying potential disease risks at an early stage and intervening
in their health (Sharp et al., 2018; Ye et al., 2019; Zhou et al., 2021).

However, due to the characteristics of wearable sensor data
with high dimensionality, large data volume and transmission lag,
large-sample time series data are affected by multiple factors and
have complex characteristics such as multi-scale, non-linearity and
burstiness. Traditional time series prediction methods are no longer
suitable for the study of large-sample time series data (Fu, 2011;
Gómez et al., 2016; Shrestha and Bhatta, 2018; Wauchope et al.,
2021). Granular computing (Yao et al., 2013) has unique advantages
in dealing with continuous, complex data and can compensate for
the limitations of traditional Support Vector Machines (SVMs)
(Huang et al., 2018) in dealing with large sample data. Therefore,
this paper proposes to combine granular computing theory with
SVM to achieve large-sample time series data prediction.

2. Related work

Granular computing has distinct advantages when dealing with
multiple sources, heterogeneous and massive amounts of data.
Granular computing can be used to granulate complex problems
into a number of simple problems using the idea of “granularity”
(Fujita et al., 2018; Yao, 2018; Yang et al., 2019; Liu et al., 2020).
First, the computation is performed at a coarse level of granularity.
Then, problems of different levels and granularity are integrated to
arrive at an optimal approximate solution to the complex problem.
As a result, numerous researchers have tried to introduce granular
computing theory into the field of big data mining and have
conducted intensive research in this direction.

In the study of data mining theory based on granular
computing, Tripathy and Acharjya (2011) proposed to fuse
granular computing theory with association rules, thus opening

up new ideas for the application of granular computing theory
in practice. Yang et al. (2020) used granular computation theory
to solve the maximum flow problem in networks, which can be
solved quickly and efficiently in large-scale, complex networks.
Hassan (2018) combined granular computing theory with cellular
automaton to effectively improve the efficiency of big data mining.
The above research status shows that the theory of granular
computing has made great breakthroughs and developments in the
field of data mining in recent years, both in terms of theoretical
research and practical applications. Granular computing models
and related algorithms have also been continuously improved. How
to use theory to solve practical problems is still the mainstream
direction of the future development of granular computing.

Commonly used forecasting methods for time series data
currently include statistical-based forecasting methods, knowledge
discovery-based forecasting methods and combinatorial model-
based forecasting methods. A comparison of the advantages and
disadvantages of common forecasting models is shown in Table 1.

As can be seen, typical forecasting models all have advantages
and disadvantages. No model can achieve a completely idealized
prediction result. Statistical models are simpler and easier to
implement, but it is difficult to achieve high predictive accuracy.
In addition, the generalizability of the statistical model is not
high. Neural network models can have good prediction accuracy,
but require a large number of samples to support them and the
convergence rate is not ideal. The Auto-Regressive Moving Average
(ARMA) (Hossain et al., 2020) does not require a large number
of samples and can make real-time predictions and corrections to
the prediction results. However, ARMA has high data requirements
(Gaussian, linear). SVM is known as one of the most commonly
used and effective classifiers with global optimality. SVM can
successfully overcome the disadvantage that neural networks tend
to fall into local minima. SVM can easily find optimal solutions on
small sample training sets and has excellent generalization ability.
Chen et al. (2005) proposes a fuzzy system called fuzzy support
vector machine (FSVM) to deal with the unreliable generalization
ability of SVMs when selected randomly to classify data examples.
Margin values from three different SVMs are fuzzified, combining
with the accuracy information of each SVM. The final decision is
determined based on all of the SVMs. Experimental results show
that the proposed fuzzy SVMs are more stable and reliable than
randomly selected SVMs.

Granular computing can be divided into non-fuzzy granulation
and fuzzy granulation. In the actual situation, fuzzy granulation
cannot fully reflect the characteristics of things, so for most studies
lacking prior information, fuzzy granulation is closer to reality
than fuzzy granulation. Fuzzy granulation has the unique ability of
data compression interval, and often forms a combined prediction
model with SVM algorithm, which is widely used in wind speed
forecasting, load forecasting, stock price forecasting and urban
traffic flow forecasting. For example, Ruan et al. (2013) proposed
a fuzzy granular support vector machine (FGSVM) to predict
large-scale and nonlinear time series with noisy data. Compared
with ordinary SVM, FGSVM has faster prediction speed. Ding
et al. (2015) provides a literature survey of the hybrid models
of granular computing and support vector machine. It briefly
introduces three typical granular computing models and the basic
theory of SVM. Then, it reviews the latest progress of these hybrid
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FIGURE 1

Hospitals that can provide digital healthcare information to patients.

TABLE 1 Comparison of the advantages and disadvantages of common forecasting models.

Predictive models Typical algorithms Disadvantages Advantages

Statistical models Moving Average (MA), Auto-Regressive
(AR), Auto-Regressive Moving Average
(ARMA)

Only for forecasting relatively stationary
data

Easy to implement and fast to achieve

Knowledge discovery model Support vector machines (SVM), gray
theory, neural networks

Difficult to solve large-scale sample
classification problems

High accuracy, non-linear recognition
capability

Combination models Model selection is more difficult Outstanding overall competence

models, including fuzzy SVM, rough SVM, quotient space SVM,
rough fuzzy SVM, and fuzzy rough SVM.

In order to obtain higher prediction accuracy and at the same
time avoid a large number of calculations during the processing
of large sample time series data, this paper proposes to combine
the Fuzzy set model (Lin et al., 2021) and SVM to improve the
efficiency of processing large sample time series data. The idea
of fuzzy granulation of fuzzy sets can convert large-scale data
into coarser individuals. Solving the problem at coarse granularity
can solve the problem of low efficiency of SVM in dealing
with large-scale data. After validation by simulation experiments,
the proposed combination model obtains higher accuracy and
prediction precision.

The main innovations and contributions of this paper include.
(1) The current research status of the mainstream models used

for time series data forecasting is analyzed, and the advantages and
disadvantages of the mainstream forecasting models are analyzed.
The innovative new idea of combining granular computing with
SVM for forecasting large sample time series data is proposed.

(2) A prediction model based on fuzzy granulation and SVM
was developed. By fuzzy granulation of the sample data, the data of
a window is granulated into a fuzzy interval and SVM is applied to
predict the trend of data change in the future time.

3. Traditional time series forecasting
methods

Forecasting as a science was born in relation to weather
forecasting. With the advent of techniques such as meteorology,
mathematical statistics and machine learning, the research
direction of weather forecasting has been broadened, enabling a
new level of forecast accuracy to be stepped up. A large number
of real-life forecasting problems are similar to weather forecasting.
The data all contain a time component, making such time-series
forecasting problems even more complex. It has become a major
research direction in the field of data mining to explore the
potential patterns in time series data more precisely.

3.1. Time series definition

Time series data are a series of data values indexed in time
order (Shuai et al., 2017; Epskamp et al., 2018). The most common
case is observations sampled at successively equally spaced time
points. Time series are generally uncertain because they are subject
to intrinsic or extrinsic factors when sampled. However, there are
some potential specific relationships between data at similar points
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in time. By exploring potential patterns in the time series through
different analysis and prediction methods, future trends in the
system can be predicted. Based on the potential patterns uncovered
valuable predictions can be made about future trends in time series
data.

For some observed variable y(t), the data recorded at different
time points t is y(t) (t = 1,2,...,n). We call this set of data a
discrete time series. Before the raw time series data is analyzed,
the stationarity of the time series data is checked. In general, we
consider a sampled series of a variable to be stationary if the system
parameters and external conditions do not change. However, this is
only a qualitative analysis and some statistical characteristics of the
time series need to be tested.

The joint distribution of a strictly stationary time series is
invariant under different time shifts. For a strictly stationary time
series, there is no change in trend. The relationship between the
mean, variance and serial continuous terms of {Y} are invariant.
Due to the stringent conditions for strict stationaryness, the
majority of time series in practical scenarios are not strictly
stationary. In practical scenarios we commonly use weakly
stationary time series (Cook et al., 2019).

The expectation, variance and covariance of the weakly
stationary time series {Y} do not change over time.

E
(
yt
)
= µ, Var

(
yt
)
= σ2, Cov

(
yt, ys

)
= f (t − s) (1)

If the time series {Y} satisfies the above conditions, it is said to be a
weakly stationary time series (a broadly stationary time series).

If a time series passes the stationaryness check, it can be
modeled and predicted by a classical fitting model. However, for
unsteady time series, the original time series needs to be pre-
processed to convert the time series into a steady time series and
then re-modeled.

3.2. Time series prediction based on
machine learning

A stationary time series can be considered as a form of statistical
equilibrium. Statistical properties such as the mean and variance of
a stationary time series are not time dependent. Stationaryness is
also a prerequisite for the construction of time series forecasting
models. In addition, the use of stationary time series can reduce the
complexity of fitting models.

The models commonly used in time series forecasting are
Moving Average (MA), Auto-Regressive (AR) models, Auto-
Regressive Moving Average (ARMA) models, and Auto-Regressive
Integrated Moving Average (ARIMA) models. The predicted value
in an AR model is made up of a linear combination of p
observations, random errors, and a constant.

yt = c+ ϕ1yt−1 + ϕ2yt−2 + . . .ϕpyt−p + εt (2)

where yt and εt are the predicted value and random error at time
t, respectively,ϕi is the autoregressive coefficient and c is a constant
term. However, the constant term is usually omitted in practice for
the sake of simplicity. To estimate the parameters of an AR model
for a given time series, the Yulc-Walker equation is usually used.

The MA model uses a set of recent observations to predict the
value at a subsequent point in time. The efficient integration of AR

FIGURE 2

Flow of the ARIMA model.

and MA models can result in a general class of efficient time series
forecasting models, called ARMA.

yt = c+ εt +

p∑
i=1

ϕiyt−i +
q∑

j=1

θjεt−j (3)

A non-stationary time series can be converted into a stationary time
series after performing multiple difference operations on it. The
flow of the ARIMA model is shown in Figure 2.

The data set needs to be pre-processed with the necessary
filtering and cleaning before the experiment begins. At the same
time, in order to improve the efficiency of the operation, the
time series need to be zero-mean processed. After zero-mean
processing, the range of values of the data will be reduced, but
the original pattern of variation of the data will not be changed.
For non-stationary time series, it is necessary to consider the
periodic variation or introduce the difference operation when pre-
processing in order to reduce the impact of non-stationary on the
time series. For non-stationary time series data, a stationary time
series data is obtained by differencing operations. Commonly used
tests for stationaryness are the time series plot test, the characteristic
root test and the unit root test.

At present, in addition to statistical methods such as ARIMA,
exponential moving average model and Bayesian nonparametric
model, other prediction methods based on machine learning
have been put forward and tested in various fields, such as
neural network, deep learning, LSTM, reinforcement learning
and fuzzy system. Gallos et al. (2021) presents a study on
constructing functional connectivity networks (FCN) from resting-
state functional magnetic resonance imaging (rsfMRI) data using
manifold learning algorithms. Papaioannou et al. (2022) proposes
a three-tier numerical framework based on nonlinear manifold
learning for the forecasting of high-dimensional time series. The
framework involves embedding the high-dimensional time series
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into a reduced low-dimensional space using nonlinear manifold
learning, constructing reduced-order surrogate models on the
manifold, and solving the pre-image problem to lift the embedded
time series back to the original high-dimensional space using radial
basis function interpolation and geometric harmonics.

3.3. Fundamentals of granule
calculations

Currently, granular computing is a hot topic of research in
the field of artificial intelligence and is widely used in the solution
of complex problems. Starting from a practical problem, granular
computing can decompose a complex problem into a simple sub-
problem and replace the optimal solution with a satisfactory one.
Granular computing is a new way to simulate human thinking
and a powerful tool to deal with massive, fuzzy, uncertain and
incomplete data. The main models in the theoretical system of
granular computing are: rough sets, fuzzy sets, quotient spaces, etc.

Granular calculations consist of three main components: the
granule, the granule layer and the granule structure. The granule
is the most initial concept in the granule computing model and the
most fundamental unit in the solution of complex problems. There
are coarse and fine distinctions between granules. A granule layer
is an abstract way of describing a complex problem space. It is clear
from the concept of a granule layer that it is still not a structurally
uniform whole. Therefore, the concept of grain structure is derived
from the concept of grain layer. A granule structure is a relational
structure consisting of interconnections between granule layers.
It describes the structural relationships between the layers. The
more complex the granule structure, the more complex the problem
solving process will be. Therefore, it is important to maintain a high
degree of independence and low coupling between granules at the
same level in order to simplify the solution process.

The first problem to be solved in granular computing is
granulation. In simple terms, the problem of granulation focuses on
the selection of a suitable granulation criterion for the construction
of information granules. The most basic requirement for a
granulation criterion is that the granulated object must be able to
fully characterize the original data. Granule calculation is generally
based on a bottom-up approach. Generally, the solving process is
to divide a specific problem into several granules and solve each
granule. The solution for the corresponding granule layer is then
synthesized according to the corresponding criterion. Finally, the
final solution of the entire solution space is synthesized from the
solutions of the individual grain layers. Thus granular computing
can be used to solve complex problems scientifically. Currently,
there are a number of widely used granulation methods: relational
granules based on equivalence relations, neighborhood granules
based on neighborhood systems and fuzzy information granules
based on fuzzy sets.

3.4. Fundamentals of fuzzy sets

In the natural sciences and in the study of practical problems,
the phenomenon of “fuzziness” can be found everywhere. Fuzziness
refers to the fact that the degree of difference between objects of

study cannot be described by the exact mathematical theory of
classical sets. In order to deal with these ’fuzzy’ phenomena, the
theory of fuzzy sets has been developed, which can be used in many
areas of machine learning to give rational decisions under imprecise
circumstances. A fuzzy set is a collection of fuzzy concepts that can
be used to express fuzziness.

A = {xµA(x)} ,∀x ∈ X (4)

where X is a finite non-empty region, A is a fuzzy set on X, and
µA(x) is the membership grade of A.

If µA(x) = 1, then x is considered to belong to A completely.
If µA(x) = 0, then x is considered not to belong to A at all. If
0 < µA(x) < 1, then x is considered to belong to A to some extent
(µA(x)). From the definition of a fuzzy set, it can be seen that the
difference between an ordinary set and a fuzzy set is the range of
values of the characteristic function. The former is the set {0,1} and
the latter is the closed interval [0,1].

The fuzzy set A has different representations in different
contexts, the three most commonly used representations being.

(1) Zadeh representation.

A =
A (x1)

x1
+

A (x2)

x2
+ . . .+

A (xn)
xn

(5)

Where, A (xi) is the membership function of the fuzzy set A.
(2) Sequential couple representation.

A = {x1,A (x1) , x2,A (x2) , . . . , xn,A (xn)} (6)

(3) Vector representation.

A = (A (x1) ,A (x2) , . . .A (xn)) (7)

4. Fuzzy granulation and SVM based
prediction of large sample time
series data

4.1. Support vector regression

Support vector machines (SVMs) are generalized linear
classifiers suitable for binary classification situations. The basic
principle of SVM is to find an optimal classification hyperplane that
satisfies the classification requirements. The hyperplane maximizes
the blank area on both sides of the hyperplane while maintaining
classification accuracy. The optimal hyperplane is the most fault-
tolerant to local perturbations of the training samples and produces
the most robust classification results.

Two classification based on SVM is shown in Figure 3. The
squares and stars represent the two types of training samples,
respectively. The line that can completely separate the two types
of samples is called the classification line. But the optimal
classification line not only separates the samples exactly and
without errors, but also classifies the samples with the maximum
interval between them. It can be seen that there can be an infinite
number of classification lines, but only one optimal classification
line. If the classification line is applied to a higher dimensional
space, the classification line becomes a classification surface.

Frontiers in Computational Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1192876
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1192876 July 22, 2023 Time: 14:48 # 6

Yin 10.3389/fncom.2023.1192876

Support vector regression (SVR), developed from SVM, has
good fitting power and is superior for regression estimation, time
series prediction problems, etc. The basic principle of SVR is to map
data to a higher dimensional feature space through a non-linear
mapping. the goal of SVR is to find the optimal function from a
set of function spaces.

f (x) = wTX + b (8)

where X denotes the training set, w denotes the weight vector and
b denotes the bias.

1
2
w2
+ C

n∑
i=1

L
(
yi, f (Xi)

)
(9)

where f denotes the optimality function, C denotes the equilibrium
factor and L() denotes the loss function.

The kernel function in SVM is to map the original linear
inseparable sample features into a high-dimensional space, so that
it becomes linear separable in high-dimensional space. Kernel
function is a function used to express the similarity between two
samples, which can calculate the inner product of samples in high-
dimensional space, thus avoiding the process of directly calculating
high-dimensional space and greatly improving the efficiency of the
algorithm. The use of kernel functions allows the SVR to map
non-linear relations to higher dimensional spaces.

f (x) =
n∑

i=1

(
αi − α∗i

)
k (xi, z)+ b (10)

Both αi and α∗i
denote Lagrange multipliers and k (xi, z) denotes

kernel functions. Since radial basis kernel functions (also known
as Gaussian kernel functions) have been widely used in time series
prediction, radial basis kernel functions are also used in this paper.

k
(
xi, xj

)
= exp

{
−

∣∣xi − xj
∣∣2

2σ2

}
(11)

where σ denotes the radial base radius. The SVR can produce a
unique global minimum solution.

This study mainly focuses on the large sample time series data
from medical monitoring cases, and the corresponding constrained
optimization objective function is as follows:

Minimize ψ
(
w, b, ξ1,µ1

)
=

1
2w

Tw+ C
∑N

t=1 µtξt

Subject to ξi ≥ 0i = 1, . . . ,Nyi
(
wTϕ (xi)+ b

)
≥ 1− ξi

(12)

The objective function consists of two terms: the first term is
a regularization term that penalizes large values of the weight
vector w, and the second term is a loss term that penalizes
misclassifications. The parameter C controls the trade-off between
the two terms. The constraints in the optimization problem ensure
that the hyperplane separates the data points correctly. Non-
negative parameter ξi is the slack variables.

4.2. Information granulation algorithm
based on fuzzy sets

Support Vector Machines can easily find optimal solutions
on small sample training sets and have excellent generalization

FIGURE 3

Schematic diagram of binary classification principle based on SVM.

FIGURE 4

The rules of fuzzy granulation methods.

capabilities. However, SVM’s advantages are not as obvious when
dealing with large-scale data. When dealing with large scale data,
the performance of SVM may be outperformed by other models.
In other words, the SVM time series forecasting model is no
longer suitable for large sample time series data. Since Granular
Computing has a unique advantage in dealing with continuous,
complex classes of data, and can compensate for the limitations of
traditional SVM in dealing with large sample data. Therefore, this
paper proposes to combine Granular Computing theory with SVM
to achieve large sample time series data forecasting.

Fuzzy granulation is an information processing method derived
from fuzzy set theory. a method for describing information
granulation was proposed by Lotfi A. Zadeh in 1979.

p , (x is P) is λ (13)

Where x is a variable, P is a fuzzy subset, and λ is the probability
that an event may occur. In most cases, the range of values of the
variable is a set of real numbers. P is a convex fuzzy subset within
the range of values, and λ is a fuzzy subset within the unit interval.

There are three main ways of using fuzzy granulation
algorithms to describe information granules: time-based
algorithms, numerical axis-based algorithms and combinatorial
axis-based algorithms. The time-axis based fuzzy granulation
algorithm used in this study.
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FIGURE 5

Flow of the proposed GC-SVM combination prediction model.

First, the time series of the initial sample is divided into a
number of small and consecutive time intervals as required by the
actual problem. Each time series is the concept of a window in the
conventional sense of the fuzzy granulation algorithm. The fuzzy
granulation algorithm is then used to granulate the data from each
window to produce a number of fuzzy information granules. The
key to the fuzzy granulation process is the sample data fuzzification
process. Assume a time series is X = (x1, x2 . . . xn). The essence
of the fuzzification process is to find the fuzzy granule G on the
time series X. The main fuzzy granules G widely used at present
are triangular, trapezoidal and asymmetric Gaussian shapes. In this
paper, triangular fuzzy granules are employed.

A(x, a,m, b) =


0, x < a
x−a
m−a , a ≤ x ≤ m
b−x
b−m , m < x ≤ b
0, x > b

(14)

where A denotes the membership function.
G is a subset of fuzzy information in the domain U. Therefore,

the definition of the fuzzy particle G is as follows:

G
(
a,m, b

)
= A (x) , x ∈ X (15)

The steps of the fuzzy information granulation
algorithm are as follows.

Input: information on data based on time series.
Output: fuzzy information granules.
Step l: Solve for the parameter m of the fuzzy granules.

rearrange the input time series in ascending time order. Assume
that the rearranged order is X = (x1, x2 . . . xn);

Step 2: Solving for the fuzzy granule parameter a.

maxQ(a) =

∑
xk≤m G (xk)
m− a

(16)

Step 3: Solving for the fuzzy granule parameter b.

maxQ(b) =

∑
xk>m G (xk)
b−m

(17)

Step 4: Get the fuzzy granule G(a,m,b);
Step 5: End of the algorithm.

4.3. SVM prediction model based on
information granulation

Granular computing is a new direction emerging in the field of
artificial intelligence. The theory of granular computing proposes
new concepts and computational paradigms. In this paper, we
combine the idea of granular computing with SVM to reduce
the complexity of problem solving, thus effectively improving the
training efficiency of SVM as well as the prediction accuracy.

In the FGSVM hybrid model, in order to improve the
prediction efficiency, the large time series is refined into sub-series.
However, this method does not improve the prediction accuracy.
Different from the FGSVM hybrid model, the fuzzy theory is
improved in order to obtain better granulation effect. This process
can be divided into two parts: The first part is to divide the original
data according to certain rules and determine the best time window
size. The second part is to determine the information granulation
rules suitable for the original data, and the best membership
function can ensure the superiority of data granulation. Building a
fuzzy information granulation model based on time series data can
be divided into two steps: Determine the time window partition and
build membership function. The fuzzy granulation methods for the
values is shown in Figure 4.

For large sample time series data, the process of the SVM
prediction model based on information granulation is divided into
two steps. The first step is to apply the fuzzy set-based information
granulation algorithm to the initial sample data. The original
sample data is converted into a number of fuzzy granules, and the
data information of each granule sample G is characterized by three
parameter values (a,m,b). In the second step, the SVM model is
applied to regression prediction of the parameters associated with
the fuzzy information granules and the parameter values obtained
from the regression prediction are used to represent the interval
of change in the time series. The flow of the proposed GC-SVM
combination prediction model is shown in Figure 5.

Because time series data often have streaming characteristics
and the collection time interval is not uniform, the fuzzy
granulation algorithm based on time axis has more application
prospects. Compared with the algorithm based on combined axes,
the fuzzy granulation algorithm based on time axis can process a
large number of data more efficiently. Because the time axis has
certain regularity, the algorithm can be faster while ensuring the
processing accuracy. In addition, the fuzzy granulation algorithm
based on time axis has low requirements for data preprocessing.

5. Experiments and analysis of
results

5.1. Description of the experimental data
set

In order to verify the effectiveness of the proposed GC-SVM
combination prediction model on large sample time series data, two
typical medical monitoring cases were selected for experimental
analysis. experiment I is fetal weight prediction and experiment II
is blood pressure prediction. In obstetrics, accurate prediction of
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neonatal weight is of great importance. The change in fetal weight
is one of the most important indicators of fetal development during
pregnancy. Accurate prediction of fetal weight can reduce the risk
of labor and improve the quality of the birth of the baby.

The dataset for Experiment I was screened from a sample of
3,000 electronic medical records from the obstetrics department of
a hospital between January 1, 2016 and December 31, 2016. The
sample was screened for singleton, absence of pregnancy syndrome,
and exclusion of malformed fetuses. The age distribution of
pregnant women ranged from 22 to 43 years and had undergone
an ultrasound examination within 72 h prior to delivery. Some of
the experimental data of Experiment I are shown in Table 2.

The Experiment II dataset was drawn from 158 hypertensive
patients from the same hospitals. The data time frame ranged
from January 1, 2017 to July 31, 2017. Blood pressure data were

measured at least twice a day during this period. The blood pressure
grading used is shown in Table 3. People who are usually in Grade
1 hypertension are more concerned about their blood pressure.
By predicting trends in blood pressure, we can provide an early
warning of risk for this group of people.

5.2. Data processing and standardization

In this paper, two algorithms are used to complete the missing
values and thus perfect the sample data. The first is the most
commonly used mean-completion method (Ridenhour et al., 2017).
The reason for using mean-completion is that we assume that all
missing values are normal, and with a normal distribution, the
probability of the mean value occurring is relatively high, thus

TABLE 2 Selected experimental data of Experiment I.

Gravidity Parity Height
(cm)

Age Amniotic
fluid index

(cm)

Abdominal
circumference

(cm)

Femur length
(cm)

Head
circumference

(cm)

2 0 160 28 7 33.8 7.3 35.1

2 1 173 34 8 35 7.7 36.9

1 0 163 28 5 343 7.6 34.3

1 0 160 29 12 319 7.1 30.1

1 0 153 32 8 33.7 7.6 34.9

1 0 163 30 7 28.1 5.5 26.1

1 0 165 27 8 32.3 7.1 32.2

1 0 170 29 7 33.7 7.2 33.6

1 0 166 33 7 33.2 6.6 32.9

1 0 164 28 8 30.4 6.6 30.1

1 0 152 30 6 33 7.2 34.9

1 0 158 28 8 32 7.1 32.8

1 0 154 1 10 33.9 7.2 34.1

2 0 162 28 8 33.5 7.3 33.2

2 0 146 30 5 31.5 6.8 31.5

1 0 160 32 11 34.2 73 35.3

1 0 153 30 6 30.4 7.2 33.2

1 0 165 32 8 33.5 7.1 34.8

1 0 160 28 3 32.3 7.1 32.2

1 0 165 31 13 347 75 35.8

1 1 160 32 9 31.7 7.1 31.9

1 1 163 29 7 33.6 7.2 35.3

1 0 166 33 10 33.4 76 35.3

1 0 158 34 6 32.4 6.9 32.4

1 0 158 31 13 32.2 6.8 32.4

1 0 159 30 12 31.7 6.4 30.2

1 0 158 31 8 32.7 7.1 32.9

1 0 165 30 8 32.6 7.5 32.2

1 0 170 30 9 33.4 7.5 34.3

1 0 162 31 5 29.3 5.9 26.8
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TABLE 3 Blood pressure classification.

Category Systolic blood
pressure (mmHg)

Diastolic blood
pressure
(mmHg)

Normal 120–129 80–84

Normal high
pressure

130–139 85–89

Grade I hypertension 140–159 90–99

Grade II
hypertension

160–179 100–109

Grade III
hypertension

180 110

reducing the bias of interpolation.

xij =

∑m
i=1 x

′

mj

m
(18)

where x′ denotes the set of samples that do not contain missing
values, xij denotes the j-th feature of sample i, and m denotes the
number of samples.

The second is the nearest neighbor completion method
(Harutyunyan et al., 2019). In this paper, Euclidean distance is used
to complete the missing relevant parameter values.

dik =

√√√√ m∑
j=1

(
xij − x′kj

)2
(19)

where dik represents the Euclidean distance between xi and x′k.
In order to eliminate the influence of units and data magnitude

on the model prediction results, data normalization (also known as
normalization) is performed before the parameters are entered into
the prediction model.

x̂ =
x− µ

σ
(20)

Where µ indicates the mean of the current feature parameter values
and σ indicates the standard deviation of the current feature.

5.3. Experimental environment and
parameter settings

An IBM server with Intel i7 6700k CPU, 8 GB RAM and 300G
hard disk was used for this experiment. the system of the IBM server
was Ubuntu 14.04 version of Linux operating system. The data
cleaning during the experiment was written in Python scripting
language, language version 3.5.2. The matlab function used for the
cross-validation was crossval. A schematic diagram of the penalty
coefficient c and the parameter γ for the SVM classification in the
prediction model is shown in Figure 6. It can be seen that the
optimal penalty coefficients c and parameters γ are 0.25 and 0.1758,
respectively.

The benchmarking issues in assessing the proposed GC-SVM
combination prediction model are mainly related to accuracy
and robustness, which are measured using the Mean Absolute
Percentage Error (MAPE), Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) as metrics.

FIGURE 6

Optimal parameter settings for SVM.

TABLE 4 Comparison of fetal weight prediction models.

Predictive
models

MAPE (%) Accuracy (%)

ARMA+Mean 11.18± 0.2 52.80± 0.1

ARMA+Euclidean 10.96± 0.2 53.19± 0.1

SVM+Mean 7.69± 0.5 62.03± 0.5

SVM+Euclidean 7.32± 0.3 63.16± 0.4

ANN+Mean 6.82± 0.3 69.48+0.3

ANN+Euclidean 6.57± 0.1 69.37± 0.2

GC-SVM+Mean 6.50± 0.2 75.90± 0.2

GC-SVM+Euclidean 6.22± 0.1 77.56± 0.1

5.4. Analysis of the results of Experiment I

The proposed GC-SVM combination prediction model was
compared with ARMA, SVM and artificial neural network (ANN).
The lag of ARMA is 2, the value of AR coefficient is (0.6, −0.5),
and the value of MA coefficient is (0.3, −0.4). ANN is a simple
three-layer BP neural network model. The number of nodes in the
input layer is 3, the number of nodes in the output layer is 1 and
the number of nodes in the hidden layer is 1. The performance
of all prediction models was averaged over 10 experiments, and
the intervals of variation that occurred in the results of the 10
experiments were also recorded. The comparison of the fetal weight
prediction models is shown in Table 4. Mean and Euclidean denote
the mean-completion and nearest neighbor-completion methods,
respectively.

It can be seen that the GC-SVM prediction model reduces the
prediction error of the model and improves the stability of the
model compared to other prediction models. In order to further
compare the robustness of the GC-SVM model with that of the
ANN model, the distribution of the two types of models in each
error range is analyzed in this paper, as shown in Figure 7. It can
be seen that the ANN model is more accurate than the GC-SVM
model when the error range is less than 150 g, but the GC-SVM
model is more accurate when the error range is greater than 150 g.
This indicates that the GC-SVM model can reduce the failure rate
of prediction in a larger error range.
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FIGURE 7

Comparison of robustness between GC-SVM and ANN.

FIGURE 8

Blood pressure recordings data for 100 consecutive days.

5.5. Analysis of the results of Experiment
II

Taking the historical samples of a patient for 100 consecutive
days as an example, the original blood pressure time series
data are shown in Figure 8. The blood pressure time series
data after granulation is shown in Figure 9. To evaluate the
performance of various models on the blood pressure time
series prediction task, two metrics, RMSE and MAE, were
chosen in this paper. Both metrics are calculated such that the

smaller the result, the higher the prediction accuracy of the
model.

The characteristics of each information grain are characterized
by three parameters a, m and b. The parameter a represents
the minimum value of the change in value over the specified
time interval. The parameter m represents the average value
of the change in value over the specified time interval. The
parameter b represents the maximum value of the change in
value over the specified time interval. It can be seen that the
trend in blood pressure after granulation is consistent with the
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FIGURE 9

Blood pressure recording data after granulation.

TABLE 5 Final prediction results for the four models.

Predictive models Systolic blood pressure (mmHg) Diastolic blood pressure (mmlg)

MAE (%) RMSE (%) MAE (%) RMSE (%)

ARIMA+Mean 5.7594 7.7558 3.6197 4.9231

ARMA+Euclidean 5.7284 7.7248 3.5887 4.8921

SVM+Mean 5.6994 7.6958 3.5597 4.8631

SVM+Euclidean 5.6584 7.6548 3.5187 4.8221

ANN+Mean 5.6254 7.6218 3.4857 4.7891

ANN+Euclidean 5.5934 7.5102 3.4283 4.5568

GC-SVM+Mean 5.4276 7.3742 3.4736 4.5267

GC-SVM+Euclidean 5.2534 6.4834 3.2278 4.2832

actual trend in blood pressure, indicating that the information has
maintained the pattern of the original sample after granulation. The
experimental data after granulation can completely characterize the
characteristics of the original experimental data, which indicates
that the granulation algorithm is feasible. The final prediction
results of the four models are shown in Table 5.

It can be found that the proposed GC-SVM combination model
can make full use of the advantages of both models to capture
the trend of blood pressure time series more accurately than the
traditional single model. Compared with other prediction models,
the combination model has better performance in terms of both
prediction precision and stability.

6. Conclusion

This paper combines the emerging theory of granular
computing with the well-established SVM regression forecasting
model and applies it to the forecasting of large sample time
series data, in order to uncover potential trends in continuous

data. Because of the unique advantages of granular computing
in dealing with continuous, complex data, it can compensate
for the limitations of traditional SVM in dealing with large
sample data. Therefore, this paper proposes to combine granular
computing theory with SVM to achieve large sample time series
data prediction. First, the initial sample time series is divided
into a number of small and continuous time intervals according
to the requirements of the actual problem. Each time series
is the window concept in the conventional sense of the fuzzy
granulation algorithm. The fuzzy granulation algorithm is then
used to granulate the data from each window to produce a number
of fuzzy information granules. The key to the fuzzy granulation
process is the sample data fuzzification process, and this paper
employs triangular fuzzy granules. The results of Experiment I of
fetal weight prediction show that the GC-SVM combination model
can reduce the error rate of prediction in the range of large error.
The results of Experiment I of blood pressure time series show
that the proposed GC-SVM combination model performs better in
prediction accuracy and stability than other prediction models.
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