
TYPE Original Research

PUBLISHED 15 June 2023

DOI 10.3389/fncom.2023.1189949

OPEN ACCESS

EDITED BY

Fabio Anselmi,

Baylor College of Medicine, United States

REVIEWED BY

Xavier Boix,

Fujitsu Research of America, Inc., United States

Bruno Olshausen,

University of California, Berkeley, United States

*CORRESPONDENCE

Tony Lindeberg

tony@kth.se

RECEIVED 20 March 2023

ACCEPTED 23 May 2023

PUBLISHED 15 June 2023

CITATION

Lindeberg T (2023) Covariance properties

under natural image transformations for the

generalised Gaussian derivative model for visual

receptive fields.

Front. Comput. Neurosci. 17:1189949.

doi: 10.3389/fncom.2023.1189949

COPYRIGHT

© 2023 Lindeberg. This is an open-access

article distributed under the terms of the

Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in this

journal is cited, in accordance with accepted

academic practice. No use, distribution or

reproduction is permitted which does not

comply with these terms.

Covariance properties under
natural image transformations for
the generalised Gaussian
derivative model for visual
receptive fields

Tony Lindeberg*

Computational Brain Science Lab, Division of Computational Science and Technology, KTH Royal

Institute of Technology, Stockholm, Sweden

The property of covariance, also referred to as equivariance, means that an

image operator is well-behaved under image transformations, in the sense

that the result of applying the image operator to a transformed input image

gives essentially a similar result as applying the same image transformation to

the output of applying the image operator to the original image. This paper

presents a theory of geometric covariance properties in vision, developed for a

generalised Gaussian derivative model of receptive fields in the primary visual

cortex and the lateral geniculate nucleus, which, in turn, enable geometric

invariance properties at higher levels in the visual hierarchy. It is shown how the

studied generalised Gaussian derivative model for visual receptive fields obeys

true covariance properties under spatial scaling transformations, spatial a�ne

transformations, Galilean transformations and temporal scaling transformations.

These covariance properties imply that a vision system, based on image and

video measurements in terms of the receptive fields according to the generalised

Gaussian derivative model, can, to first order of approximation, handle the image

and video deformations between multiple views of objects delimited by smooth

surfaces, as well as between multiple views of spatio-temporal events, under

varying relative motions between the objects and events in the world and the

observer. We conclude by describing implications of the presented theory for

biological vision, regarding connections between the variabilities of the shapes of

biological visual receptive fields and the variabilities of spatial and spatio-temporal

image structures under natural image transformations. Specifically, we formulate

experimentally testable biological hypotheses as well as needs for measuring

population statistics of receptive field characteristics, originating from predictions

from the presented theory, concerning the extent to which the shapes of the

biological receptive fields in the primary visual cortex span the variabilities of spatial

and spatio-temporal image structures induced by natural image transformations,

based on geometric covariance properties.

KEYWORDS

receptive field, Image transformations, scale covariance, a�ne covariance, Galilean

covariance, primary visual cortex, vision, theoretical neuroscience
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1. Introduction

The image and video data, that a vision system is exposed to,

is subject to geometric image transformations, due to variations in

the viewing distance, the viewing direction and the relative motion

of objects in the world relative to the observer. These natural image

transformations do, in turn, cause a substantial variability, by which

an object or event in the world may appear in different ways to a

visual observer:

• Variations in the distance between objects in the world and the

observer lead to variations in scale, often up to over several

orders of magnitude, which, to first order of approximation of

the perspective mapping, can be modelled as (uniform) spatial

scaling transformations (see Figure 1 top row).

• Variations in the viewing direction between the object and the

observer will lead to a wider class of local image deformations,

with different amount of foreshortening in different spatial

directions, which, to first order of approximation, can be

modelled as local spatial affine transformations, where the

monocular foreshortening will depend upon the slant angle of

a surface patch, and correspond to different amount of scaling

in different directions, also complemented by a skewing

transformations (see Figure 1 middle row).

• Variations in the relative motion between objects in the world

and the viewing direction will additionally transform the

joint spatio-temporal video domain in a way that, to first

order of approximation, can be modelled as local Galilean

transformations. (see Figure 1 bottom row).

In this paper, we will study the transformation properties of

receptive field1 responses in the primary visual cortex (V1) under

these classes of geometric image transformations, as well as for

temporal scaling transformations that correspond to objects in

the world that move as well as spatio-temporal events that occur

faster or slower. We will also study the transformation properties

of neurons in the lateral geniculate nucleus (LGN) under a lower

variability over spatial scaling transformations, spatial rotations,

temporal scaling transformations and Galilean transformations. An

overall message that we will propose is that if the family of visual

receptive fields is covariant (or equivariant2) under these classes

of natural image transformations, as the family of generalised

1 Whereas the notion of a visual receptive field traditionally refers to the

region in the visual field over which a neuron responds to visual stimuli

(Hartline, 1938), we here complement that definition to also comprise the

computational function of the neuron over the part in the visual field in which

it reacts to visual patterns.

2 In the deep learning literature, the property that we refer to as

“covariance” is often referred to as “equivariance.” In this paper, we use

the term “covariance” because of the traditional use of this terminology in

physics, and to maintain consistency with the previous work in scale-space

theory that this paper builds upon. An operator O is said to be covariant

under a transformation group Tp with parameter p, if the operator essentially

commutes with the transformation group, in the sense that O′(Tp(f)) =
Tp(Of) for some possibly transformed operator O′ within the same family of

operators as O.

Gaussian derivative based receptive fields that we will study is, then

these covariance properties make it possible for the vision system

to, up to first order of approximation, match the receptive field

responses under the huge variability caused by these geometric

image transformations, which, in turn, will make it possible for

the vision system to infer more accurate cues to the structure of

the environment.

We will then use these theoretical results to express predictions

concerning biological receptive fields in the primary visual cortex

and the lateral geniculate nucleus, to characterize to what extent

the variability of receptive field shapes, in terms of receptive fields

tuned to different orientations, motion directions as well as spatial

and temporal scales, as has been found by neurophysiological cell

recordings of biological neurons (DeAngelis et al., 1995; Ringach,

2002, 2004; DeAngelis and Anzai, 2004; Conway and Livingstone,

2006; Johnson et al., 2008; De and Horwitz, 2021), could be

explained by the primary visual cortex computing a covariant

image representation over the basic classes of natural geometric

image transformations.

1.1. The importance of covariant receptive
fields to handle the influence of natural
image transformations

For spatial receptive fields, that integrate spatial information

over non-infinitesimal regions over image space, the specific way

that the receptive fields accumulate evidence over these non-

infinitesimal support regions will crucially determine how well they

are able to handle the huge variability of visual stimuli caused by

geometric image transformations.

To illustrate the importance of natural image transformations

with respect to image measurements in terms of receptive fields,

consider a visual observer that views a 3-D scene from two different

viewing directions as shown in Figure 2.

Let us initially assume that the receptive fields for the two

different viewing conditions are based on image measurements

over rotationally symmetric support regions in the two image

domains only. (More precisely, with respect to the theory that is to

be developed next, concerning receptive fields that are defined from

spatial derivatives of spatial smoothing kernels, the first crucial

factor in this model concerns the support regions of the underlying

spatial smoothing kernels of the spatial receptive fields in the two

image domains).

If we backproject these rotationally symmetric support regions

in the two image domains to the tangent plane of the surface

in the world, then these backprojections will, to first order

of approximation, be ellipses. Those ellipses will, however, not

coincide in the tangent plane of the surface, implying that if we try

tomake use of the difference between the imagemeasurements over

the two spatial image domains, then there will be an unavoidable

source of error, caused by the difference between the backprojected

receptive fields, which will substantially affect the accuracy when

computing cues to the structure of the world.

If we instead allow ourselves to consider different shapes

of the support regions in the two image domains, and also

match the parameters that determine their shapes such that
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FIGURE 1

Due to the e�ects of natural image transformations, the perspective projections of spatial objects and spatio-temporal events in the world may

appear in substantially di�erent ways depending on the viewing conditions. This figure shows images from natural scenes under variations in (top

row) the viewing distance, (middle row) the viewing direction and (bottom row) the relative motion between objects in the world and the observer.

By approximating the non-linear perspective mapping by a local linearization (the derivative), these geometric image transformations can, to first

order of approximation, be modelled by spatial scaling transformations, spatial a�ne transformations and Galilean transformations.

FIGURE 2

Illustration of backprojected receptive fields for a visual observer that observes a smooth surface from two di�erent viewing directions in the cases of

(Left) non-covariant receptive fields and (Right) covariant receptive fields. When using non-covariant receptive fields, the backprojected receptive

fields will not match, which may cause problems for higher level visual processes that aim at computing estimates of local surface orientation,

whereas when using covariant receptive fields, the backprojected receptive fields can be adjusted to match, which in turn enable more accurate

estimates of local surface orientation (See the text in Section 1.1. for a more detailed explanation.).

they coincide in the tangent plane of the surface, then we can,

on the other hand, to first order of approximation, reduce the

mismatch source to the error. For the affine Gaussian derivative

model for spatial receptive fields developed in this article, that

matching property is achieved by matching the spatial covariance

matrices of the affine Gaussian kernels, in such a way that the

support regions of the affine Gaussian kernels may be ellipses

in the respective image domains, and may, for example, in the
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most simple case correspond to circles in the tangent plane of

the surface.

Of course, a complementary problems then concerns how

to match the actual values of the receptive field parameters in

a particular viewing situation. That problem can, however, be

seen as a complementary more algorithmic task, in contrast to

the fundamental problem of eliminating an otherwise inescapable

geometric source of error. In Lindeberg and Gårding (1997) one

example of such a computational algorithm was developed for the

task of estimating local surface orientation from either monocular

or binocular cues. It was demonstrated that it was possible to design

an iterative procedure for successively adapting the shapes of the

receptive fields, in such a way that it reduced the reconstruction

error by about an order of magnitude after a few (2–3) iterations.

While this specific example for illustrating the influence of the

backprojected support regions of the receptive fields, when deriving

cues to the structure of the world from local image measurements,

is developed for the case of spatial affine transformations under

a binocular or multi-view viewing situation, a similar geometric

problem regarding the backprojected support regions of the

receptive fields arises also under monocular projection, as well

as for spatio-temporal processing under variations in the relative

motion between objects or events in the world and the observer,

then concerning the backprojections of the spatio-temporal

receptive fields in the 2+1-D video domain to the surfaces of the

objects embedded in the 3+1-D world.

A main subject of this paper is to describe a theory for

covariant receptive fields under natural image transformations,

which makes it possible to perfectly match the backprojected

receptive field responses under natural image transformations,

approximated by spatial scaling transformations, spatial affine

transformations, Galilean transformations and temporal scaling

transformations. Since these image transformations may be present

in essentially every natural imaging situation, they constitute

essential components to include in models of visual perception.

1.2. Theory of covariant visual receptive
fields

The receptive fields of the neurons in the visual pathway

constitute the main computational primitives in the early

stages of the visual sensory system. These visual receptive

fields integrate and process visual information over local

regions over space and time, which is then passed on to

higher layers. Capturing the functional properties of visual

receptive fields, as well as trying to explain what determines

their computational function, constitute key ingredients in

understanding vision.

In this work, we will for our theoretical studies build

upon the Gaussian derivative model for visual receptive fields,

which was initially theoretically proposed by Koenderink

(1984), Koenderink and van Doorn (1987, 1992), used for

modelling biological receptive fields by Young (1987), Young

and Lesperance (2001), Young et al. (2001) and then generalized

by Lindeberg (2013, 2021). With regard to the topic of the

thematic collection on “Symmetry as a Guiding Principle in

Artificial and Brain Neural Networks”, the subject of this article

is to describe how symmetry properties in terms of covariance

properties under natural image transformations constitute

an essential component in that normative theory of visual

receptive fields, as well as how such covariance properties may

be important with regard to biological vision, specifically to

understand the organization of the receptive fields in the primary

visual cortex.

It will be shown that a purely spatial version of the studied

generalised Gaussian derivative model for visual receptive fields

allows for spatial scale covariance and spatial affine covariance,

implying that it can, to first order of approximation, handle

variations in the distance between objects in the world and the

observer, as well as first-order approximations of the geometric

transformations induced by viewing the surface of a smooth 3-

D object from different viewing distances and viewing directions

in the world. It will also be shown that for a more general

spatio-temporal version of the resulting generalised Gaussian

derivative model, the covariance properties do, in addition,

extend to local Galilean transformations, which makes it possible

to perfectly handle first-order approximations of the geometric

transformations induced by viewing objects in the world under

different relative motions between the object and the observer. The

spatio-temporal receptive fields in this model do also obey temporal

scale covariance, which makes it possible to handle objects that

move as well as spatio-temporal events that occur faster or slower

in the world. In these ways, the resulting model for visual receptive

fields respects the main classes of geometric image transformations

in vision.

We argue that if the goal is to build realistic computational

models of biological receptive fields, or more generally

a computational model of a visual system that should

be able to handle general classes of natural image or

video data in a robust and stable manner, it is essential

that the internal visual representations obey sufficient

covariance properties under these classes of geometric image

transformations, to, in turn, make it possible to achieve

geometric invariance properties at the systems level of the

visual system.

We conclude by using predictions from the presented theory

to describe implications for biological vision. Specifically, we

state experimentally testable hypotheses to explore to what extent

the variabilities of receptive field shapes in the primary visual

cortex span corresponding variabilities as described by the basic

classes of natural image transformations, in terms of spatial

scaling transformations, spatial affine transformations, Galilean

transformations and temporal scaling transformations. These

hypotheses are, in turn, intended for experimentalists to explore

and characterize to what extent the primary visual cortex computes

a covariant representation of receptive field responses over those

classes of natural image transformations.

In this context, we do also describe theoretically how receptive

field responses at coarser levels of spatial and temporal scales can

be computed from finer scales using cascade smoothing properties

over spatial and temporal scales, meaning that it could be sufficient

for the visual receptive fields in the first layers to only implement
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the receptive fields at the finest level of spatial and temporal scales,

from which coarser scale representations could then be inferred at

higher levels in the visual hierarchy.

2. Methods

2.1. The generalised Gaussian derivative
model for spatial and spatio-temporal
receptive fields

In this section, we will describe the generalised Gaussian

derivative model for linear receptive fields, in the cases of either

(i) image data defined over a purely spatial domain, or (ii) video

data defined over a joint spatio-temporal domain, including brief

conceptual overviews of how this model can be derived in a

principled axiomatic manner, from symmetry properties in relation

to the first layers of the visual hierarchy. We do also give pointers to

previously established results that demonstrate how these models

do qualitatively very well model biological receptive fields in the

lateral geniculate nucleus (LGN) and the primary visual cortex

(V1), as established by comparisons to results of neurophysiological

recordings of visual neurons. This theoretical background will then

constitute the theoretical background for the material in Section 3,

concerning covariance properties of the visual receptive fields

according to the Gaussian derivative model, and the implications

of such covariance properties for modelling and explaining the

families of receptive field shapes found in biological vision.

2.1.1. Purely spatial models for linear receptive
fields

For image data defined over a 2-D spatial domain with image

coordinates x = (x1, x2)
T ∈ R

2, an axiomatic derivation

in Lindeberg (2011); Theorem 5, based on the assumptions of

linearity, translational covariance, semi-group3 structure over scale

and non-creation of new structures from finer to coarser levels of

scales in terms of non-enhancement of local extrema4, combined

with certain regularity assumptions, shows that under evolution

of a spatial scale parameter s, that reflects the spatial size of

the receptive fields, the spatially smoothed image representations

L(x1, x2; s) that underlie the output from the receptive fields must

satisfy a spatial diffusion equation of the form

∂sL = 1

2
∇T
(x1 ,x2)

(

6(x1 ,x2) ∇(x1 ,x2)L
)

− δT(x1 ,x2)∇(x1 ,x2)L (1)

3 A semi-group structure over convolutions with a family of kernels

T(x1 , x2; s), where s is the parameter of the semi-group, means that the result

of convolving two kernels with each other will be a kernel of the same family

under addition of the parameters, i.e., T(·, ·; s1) ∗ T(·, ·; s2) = T(·, ·; s1 + s2).

Note that a convolution structure is implied from the previous assumptions

of linearity and translation covariance.

4 Non-enhancement of local extrema means that the value of the image

representation at any local maximum over the image domain must not

increase from finer to coarser levels of scales, and that the value of the

image representation at any local minimum over the image domain must

not decrease.

with initial condition L(x1, x2; 0) = f (x1, x2), where f (x1, x2)

is the input image, ∇(x1 ,x2) = (∂x1 , ∂x2 )
T is the spatial gradient

vector, 6(x1 ,x2) is a spatial covariance matrix and δ(x1 ,x2) is a spatial

drift vector.

The physical interpretation of this equation is that if we think of

the intensity distribution L in the image plane as a heat distribution,

then this equation describes how the heat distribution will evolve

over the virtual time variable s, where hot spots will get successively

cooler and cold spots will get successively warmer. The evolution

will in this sense serve as a spatial smoothing process over the

variable s, which we henceforth will refer to as a spatial scale

parameter of the receptive fields.

The spatial covariance matrix 6(x1 ,x2) in this equation

determines how much spatial smoothing is performed in different

directions in the spatial domain, whereas the spatial drift vector

δ(x1 ,x2) implies that the smoothed image structures may move

spatially over the image domain during the smoothing process.

The latter property can, for example, be used for aligning image

structures under variations in the disparity field for a binocular

visual observer. For the rest of the present treatment, we will,

however, focus on monocular viewing conditions and disregard

that term in the case of purely spatial image data. For the case of

spatio-temporal data, to be considered later, a correspondence to

this drift term will on the other hand be used for handling motion,

to perform spatial smoothing of objects that change the positions

of their projections in the image plane over time, without causing

excessive amounts of motion blur, if desirable, as it will be for a

receptive field tuned to a particular motion direction.

In terms of the spatial smoothing kernels that underlie the

definition of a family of spatial receptive fields, that integrate

information over a spatial support region in the image domain, this

smoothing process corresponds to smoothing with spatially shifted

affine Gaussian kernels of the form

g(x; 6s, δs) =
1

2π
√
det6s

e−(x−δs)T6−1
s (x−δs)/2, (2)

for a scale dependent spatial covariance matrix 6s and a scale-

dependent spatial drift vector δs of the form 6s = s6(x1 ,x2)

and δs = s δ(x1 ,x2). Requiring these spatial smoothing kernels to

additionally be mirror symmetric around the origin, and removing

the parameter s from the notation, does, in turn, lead to the regular

family of affine Gaussian kernels of the form

g(x; 6) = 1

2π
√
det6

e−xT6−1x/2. (3)

Considering that spatial derivatives of the output of affine

Gaussian convolution also satisfy the diffusion equation (1), and

incorporating scale-normalised derivatives of the form (Lindeberg,

1998)

∂ξα = s(α1+α2)/m ∂α1x1 ∂
α2
x2
, (4)

where α = (α1,α2) denotes the order of differentiation, as well as

combining multiple partial derivatives into directional derivative

operators according to

∂mϕ = (cosα ∂x1 + sinα ∂x2 )
m, (5)
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where we choose the directions ϕ for computing the directional

derivative to be aligned with the directions of the eigenvectors of

the spatial covariance matrix 6, we obtain the following canonical

model5 for oriented spatial receptive fields of the form [Lindeberg,

2021; Equation (23)]

Tsimple(x1, x2; s,ϕ,6,m) = Tϕm ,norm(x1, x2; s,6)

= sm/2 ∂mϕ
(

g(x1, x2; s6)
)

. (6)

Figure 3 shows examples of such affine Gaussian kernels

with their directional derivatives up to order two, for different

orientations in the image domain, expressed for one specific choice

of the ratio between the eigenvalues of the spatial covariance

matrix 6. More generally, this model also comprises variations

of the ratio between the eigenvalues, as illustrated in Figure 4

Left, which visualizes a uniform distribution of zero-order affine

Gaussian kernels on a hemisphere. The receptive fields in the

latter illustration should then, in turn, be complemented by

directional derivatives of such kernels up to a given order of

spatial differentiation, see Figure 4 Right for an illustration of such

directional derivative receptive fields of order one. In the most

idealised version of the theory, one could think of all these receptive

fields, with their directional derivatives up to a certain order, as

being present at every point in the visual field (if we disregard

the linear increase in minimal receptive field size from the fovea

towards the periphery in a foveal vision system). With respect to a

specific implementation of this model in a specific vision system,

it then constitutes a complementary design choice, to sample the

variability of that parameter space in an efficient manner.

For rotationally symmetric receptive fields over the spatial

domain, a corresponding model can instead be expressed of the

form [Lindeberg, 2021; Equation (39)]

TLGN(x1, x2 s) = ±s (∂x1x1 + ∂x2x2 ) g(x1, x2; s). (7)

In Lindeberg (2013) it is proposed that the purely spatial

component of simple cells in the primary visual cortex can be

modelled by directional derivatives of affine Gaussian kernels of the

form (6); see Figures 16 and 17 in Lindeberg (2021) for illustrations.

It is also proposed that the purely spatial component of LGN

neurons can be modelled by Laplacians of Gaussians of the form

(7); see Figure 13 in Lindeberg (2021).

The affine Gaussian derivative model of simple cells in (6)

goes beyond the previous theoretical studies by Koenderink and

van Doorn (1987, 1992) and as well as the previous biological

5 In themodel below, the parameters s and6 are not independent, implying

that we could multiply the spatial scale parameter s with some constant

C, while dividing the spatial covariance matrix 6 with the same constant,

and still get the same spatial receptive field. To handle this problem, we

can introduce a convention to normalize 6 in some way, for example, by

choosing a normalization such that the maximum eigenvalue of6 is equal to

1. For a monocular view of smooth surface under orthographic projection,

such a normalization is closely related to the foreshortening transformation

from the tangent plane of the surface to the image plane. If the slant angle of

the surface is σ relative to the viewing direction, then a rotationally symmetric

receptive field, when backprojected to the tangent plane of the surface,

would correspond to the minimum eigenvalue of 6 being cos2 σ .

modelling work by Young (1987), in that the underlying spatial

smoothing kernels in our model are anisotropic, as opposed to

isotropic in Young’s and Koenderink and van Doorn’s models.

This anisotropy leads to better approximation of the biological

receptive fields, which are more elongated (anisotropic) over the

spatial image domain than can be accurately captured based

on derivatives of rotationally symmetric Gaussian kernels. The

generalised Gaussian derivative model based on affine Gaussian

kernels does also enable affine covariance, as opposed to mere

scale and rotational covariance for the regular Gaussian derivative

model, based on derivatives of the rotationally symmetric Gaussian

kernel.

2.1.2. Joint spatio-temporal models for linear
receptive fields

For video data defined over a 2+1-D non-causal spatio-

temporal domain with coordinates p = (x1, x2, t)
T ∈ R

3, a

corresponding axiomatic derivation, also based on Theorem 5

in Lindeberg (2011), while now formulated over a joint spatio-

temporal domain, shows that under evolution over a joint spatio-

temporal scale parameter u, the spatio-temporally smoothed video

representations L(x1, x2, t; s, τ , v,6), that underlie the output

from the receptive fields, must satisfy a spatio-temporal diffusion

equation of the form

∂uL = 1

2
∇T
(x1 ,x2 ,t)

(

6(x1 ,x2 ,t) ∇(x1 ,x2 ,t)L
)

− δT(x1 ,x2 ,t)∇(x1 ,x2 ,t)L (8)

for u being some convex combination of the spatial scale parameter

s and the temporal scale parameter τ , and with initial condition

L(x1, x2, t; 0, 0, v,6) = f (x1, x2, t), where f (x1, x2, t) is the input

video, ∇(x1 ,x2 ,t) = (∂x1 , ∂x2 , ∂t)
T is the spatio-temporal gradient,

6(x1 ,x2 ,t) is a spatio-temporal covariance matrix and δ(x1 ,x2 ,t) is a

spatio-temporal drift vector.

If we think of the intensity distribution L over joint space-time

as a heat distribution, then this equation describes how the heat

distribution will evolve over an additional virtual time variable u

(operating at a higher meta level than the physical time variable

t), with the spatio-temporal covariance matrix 6(x1 ,x2 ,t) describing

how much smoothing of the virtual heat distribution will be

performed in different directions in joint (real) space-time, whereas

the spatio-temporal drift vector δ(x1 ,x2 ,t) describes how the image

structures may move in joint (real) space-time as function of the

virtual variable u, which is important for handling the perspective

projections of objects that move in the real world.

In Lindeberg (2021); Appendix B.1 it is shown that the solution

of this equation can be expressed as the convolution with spatio-

temporal kernels of the form

T(x1, x2, t; s, τ , v,6) = g(x1 − v1t, x2 − v2t; s6) h(t; τ ), (9)

where 6 is a spatial covariance matrix, v = (v1, v2) is a velocity

vector and h(t; τ ) is a 1-D temporal Gaussian kernel. Combining

this model with spatial directional derivatives in a similar way as

for the spatial model, and introducing scale-normalised temporal

derivatives (Lindeberg, 2016) of the form

∂nζ = τn/2 ∂nt (10)
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FIGURE 3

Illustration of the variability of receptive field shapes over spatial rotations and the order of spatial di�erentiation. This figure shows a�ne Gaussian

kernels g(x1, x2; 6) with their directional derivatives ∂ϕg(x1, x2; 6) and ∂ϕϕg(x1, x2; 6) up to order two, here with the eigenvalues of 6 being λ1 = 64,

λ2 = 16 and for the image orientations ϕ = 0,π/6,π/3,π/2, 2π/3, 5π/6. With regard to the classes of image transformations considered in this paper,

this figure shows an expansion over the rotation group. In addition, the family of a�ne Gaussian kernels also comprises an expansion over a

variability over the ratio between the eigenvalues of the spatial covariance matrix 6, that determines the shape of the a�ne Gaussian kernels, see

Figure 4 for complementary illustrations (Horizontal dimension: x ∈ [−24, 24]. Vertical dimension: y ∈ [−24, 24].).

FIGURE 4

Illustration of the variability of receptive field shapes over spatial a�ne transformations that also involve a variability of the eccentricity of the

receptive fields. (Left) Zero-order a�ne Gaussian kernels for di�erent orientations ϕ in the image domain as well as for di�erent ratios between the

eigenvalues λ1 and λ2 of the spatial covariance matrix 6, here illustrated in terms of a uniform distribution of isotropic receptive field shapes on a

hemisphere, which will correspond to anisotropic a�ne Gaussian receptive fields when mapping rotationally symmetric Gaussian receptive fields

from the tangent planes of the sphere to the image domain by orthographic projection. (Right) First-order directional derivatives of the zero-order

a�ne Gaussian kernels according to that distribution, with the spatial direction for computing the directional derivatives aligned with the orientation

of one of the eigenvectors of the spatial covariance matrix 6 that determines the shape of the a�ne Gaussian kernel. When going from the center of

each of these images to the boundaries, the eccentricity, defined as the ratio ǫ = √
λmin/λmax between the square roots of the smaller and larger

eigenvalues λmin and λmax of 6 varies from 1 to 0, where the receptive fields at the center are maximally isotropic, whereas the receptive fields at the

boundaries are maximally anisotropic.
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as well as corresponding velocity-adapted temporal derivatives

according to

∂t̄ = v1 ∂x1 + v2 ∂x2 + ∂t , (11)

then leads to a non-causal spatio-temporal receptive field model of

the form [Lindeberg, 2021; Equation (32)]

Tϕm ,t̄n ,norm(x1, x2, t; s, τ , v,6)

= ∂mϕ ∂
n
t̄

(

g(x1 − v1t, x2 − v2t; s6) h(t; τ )
)

. (12)

Regarding the more realistic case of video data defined over a

2+1-D time-causal spatio-temporal domain, in which the future

cannot be accessed, theoretical arguments in Lindeberg (2016,

2021); [Appendix B.2; see Equation (33)] lead to spatio-temporal

smoothing kernels of a similar form as in (12),

Tsimple(x1, x2, t; s, τ ,ϕ, v,6,m, n) = Tϕm ,t̄n ,norm(x1, x2, t; s, τ , v,6)

= sm/2ϕ τn/2 ∂mϕ ∂
n
t̄

(

g(x1 − v1t, x2 − v2t; s6)ψ(t; τ , c)
)

, (13)

but now with the non-causal temporal Gaussian kernel replaced

by a time-causal temporal kernel referred to as the time-causal

limit kernel

h(t; τ ) = ψ(t; τ , c), (14)

defined by having a Fourier transform of the form

9̂(ω; τ , c) =
∞
∏

k=1

1

1+ i c−k
√
c2 − 1

√
τ ω

, (15)

and corresponding the an infinite set of truncated exponential

kernels coupled in cascade, with specifically chosen time constants

to obtain temporal scale covariance (Lindeberg, 2016, Section 5;

Lindeberg, 2023b, Section 3.1).

Figures 5, 6 show examples of such spatio-temporal receptive

fields up to order two, for the case of a 1+1-D spatio-temporal

domain. In Figure 5, where the image velocity v is zero, the

receptive fields are space-time separable, whereas in Figure 6,

where the image velocity is non-zero, the receptive fields are

not separable over space-time. In the most idealised version of

the theory, we could think of these velocity-adapted receptive

fields, for all velocity values within some range, as being

present at every point in the image domain, see Figure 7 for

an illustration.

In this way, the receptive field family will be

Galilean covariant, which makes it possible for the vision

system to handle observations of moving objects and

events in the world, irrespective of the relative motion

between the object or the event in the world and the

viewing direction.

For rotationally symmetric receptive fields over the spatial

domain, a corresponding model can instead be expressed of the

form [Lindeberg, 2021; Equation (39)]

TLGN(x1, x2, t; s, τ )

= ±s τn/2 (∂x1x1 + ∂x2x2 ) g(x1, x2; s) ∂tnψ(t; τ , c). (16)

In Lindeberg (2016) it is proposed that simple cells in the primary

visual cortex can be modelled by spatio-temporal kernels of the

FIGURE 5

Space-time separable kernels according to the time-causal

spatio-temporal receptive field model in (13) up to order two over a

1+1-D spatio-temporal domain for image velocity v = 0, using the

time-causal limit kernel (14) with distribution parameter c =
√
2 for

smoothing over the temporal domain, at spatial scale s = 1 and

temporal scale τ = 1. (Horizontal dimension: space x ∈ [−3.5, 3.5].

Vertical dimension: time t ∈ [0, 5].)

form (13) for h(t; τ ) = ψ(t; t) according to (15); see

Figure 18 in Lindeberg (2021) for illustrations. It is also proposed

that lagged and non-lagged LGN neurons can be modelled by

temporal derivatives of Laplacians of Gaussians of the form (16);

see Figure 12 in Lindeberg (2021).

These models go beyond the previous modelling work by

Young and Lesperance (2001), Young et al. (2001) in that our

models are truly time-causal, as opposed to Young’s non-causal

model, and also that the parameterization of the filter shapes in

our model is different, more in line with the geometry of the

spatio-temporal image transformations.

2.1.3. Spatio-chromatic and
spatio-chrom-temporal receptive field models

Both of the above spatial and spatio-temporal models can be

extended from operating on pure grey-level image information to

operating on colour image data, by instead applying these models

to each channel of a colour-opponent colour space; see Lindeberg

(2013, 2021) for further details as well as modelling results. Since

the geometric image transformations have the same effect on

colour-opponent channels as on grey-level information, we do

here in this article, without loss of generality, develop the theory

for the case of grey-level images only, while noting that similar

algebraic transformation properties will hold for all the channels

in a colour-opponent representation of the image or video data.
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3. Results

3.1. Covariance properties under geometric
image transformations

In this section, we will describe covariance properties of the

above described generalised Gaussian derivative model, in the

cases of either (i) spatial receptive fields over a purely spatial

domain, or (ii) spatio-temporal receptive fields over a joint

spatio-temporal domain.

FIGURE 6

Non-separable spatio-temporal kernels according to the

time-causal spatio-temporal receptive field model in (13) up to

order two over a 1+1-D spatio-temporal domain for image velocity

v = 1/2, using the time-causal limit kernel (14) with distribution

parameter c =
√
2 for smoothing over the temporal domain, at

spatial scale s = 1 and temporal scale τ = 1 (Horizontal dimension:

space x ∈ [−3.5, 3.5]. Vertical dimension: time t ∈ [0, 5].).

An initial treatment of this topic, in less developed form,

was given in the supplementary material of Lindeberg (2021),

however, on a format that may not be easy to digest for a

reader with neuroscientific background. In the present treatment,

we develop the covariance properties of the spatial and spatio-

temporal receptive field models in an extended as well as more

explicit manner, that should be more easy to access. Specifically,

we incorporate the transformation properties of the full derivative-

based receptive field models as opposed to only the transformation

properties of the spatial or spatio-temporal smoothing processes

in the previous treatment, and also comprising more developed

interpretations of these covariance properties with regard to the

associated variabilities in image and video data under natural image

transformations. Then, in Section 3.2. we will use these theoretical

results to formulate predictions with regard to implications for

biological vision, including the formulation of a set of testable

biological hypotheses as well as needs for characterising the

distributions of biological receptive field shapes.

It will be shown that the purely spatial model for simple cells in

(16) is covariant under affine image transformations of the form

xR =
(

xR,1
xR,2

)

=
(

a11 a12
a21 a22

)(

xL,1
xL,2

)

= AxL, (17)

which includes the special cases of covariance under spatial scaling

transformations with

A = Sx I =
(

Sx 0

0 Sx

)

(18)

and spatial rotations with

A = R =
(

cos θ − sin θ

sin θ cos θ

)

. (19)

For the spatial model of LGN neurons (7), affine covariance cannot

be achieved, because the underlying spatial smoothing kernels are

rotationally symmetric. That model does instead obey covariance

under spatial scaling transformations and spatial rotations.

FIGURE 7

Illustration of the variability of receptive field shapes over Galilean motions. This figure shows zero-order spatio-temporal receptive fields of the form

(13), for a self-similar distribution of the velocity values v, using Gaussian smoothing over the spatial domain and smoothing with the time-causal limit

kernel (14) with distribution parameter c =
√
2 over the temporal domain, in the case of a 1+1-D time-causal spatio-temporal domain, for spatial

scale parameter s = 1 and temporal scale parameter τ = 4. These primitive spatio-temporal smoothing operations should, in turn, be complemented

by spatial di�erentiation ∂mx and velocity-adapted temporal di�erentiation operators according to ∂n
t̄
= (v ∂x + ∂t)n for di�erent orders m and n of

spatial and temporal di�erentiation, respectively, to generate the corresponding family of spatio-temporal receptive fields of the form (13). The

central receptive field in this illustration, for zero image velocity is space-time separable, whereas the other receptive fields, for velocity values

v = −0.4,−0.2,−0.1, 0.1, 0.2 and 0.4 from left to right, are not separable (Horizontal dimension: space x ∈ [−4, 4]. Vertical dimension: time t ∈ [0, 8].).
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It will also be shown that the joint spatio-temporal model of

simple cells in (13) is, in addition to affine covariant, also covariant

under Galilean transformations of the form

p′ =







x′1
x′2
t′






=







1 0 u1
0 1 u2
0 0 1













x1
x2
t






=







x1 + u1t

x2 + u2t

t






= Gp (20)

as well as covariant under temporal scaling transformations

t′ = St t. (21)

For the joint spatio-temporal model of LGN neurons (16),

the covariance properties are, however, restricted to spatial

scaling transformations, spatial rotations and temporal

scaling transformations.6

The real-world significance of these covariance properties

is that:

• If we linearize the perspective mapping from a local surface

patch on a smooth surface in the world to the image plane,

then the deformation of a pattern on the surface to the image

plane can, to first order of approximation, be modelled as a

local affine transformation of the form (17).

• If we linearize the projective mapping between two views of

a surface patch from different viewing directions, then the

projections of a pattern on the surface to the two images

can, to first order of approximation, be related by an affine

transformation of the form (17).

• If we view an object or a spatio-temporal event in the world in

two situations, that correspond to different relative velocities

in relation to the viewing direction, then the two spatio-

temporal image patterns can, to first order of approximation,

be related by local Galilean transformations of the form (20).

• If an object moves or an event in the world occurs faster or

slower, then the spatio-temporal image patterns arising from

that moving object or event are related by a temporal scaling

transformation of the form (21).

By the family of receptive fields being covariant under these image

transformation implies that the vision systemwill have the potential

ability to perfectly match the output from the receptive field

families, given two or more views of the same object or event in

the world. In this way, the vision system will have the potential

of substantially reducing the measurement errors, when inferring

cues about properties in the world from image measurements in

terms of receptive fields. For example, in an early work on affine

covariant and affine invariant receptive field representations based

on affine Gaussian kernels, it was demonstrated that it is possible

to design algorithms that reduce the error in estimating local

surface orientation from monocular or binocular cues by an order

6 It is, however, possible to complement the spatio-temporal LGN model

(16) by velocity-adaptation, leading to a receptive field model of the form

hLGN (x1 , x2 , t; s, τ , v) = ±s τ n/2 (∂x1x1 + ∂x2x2 ) ∂t̄n (g(x− v1t, y− v2t; s) ψ(t; τ , c)), to
also obtain Galilean covariance. Notably, there are neurophysiological results

indicating that there also exist neurons in the LGN that are sensitive tomotion

directions (Ghodrati et al., 2017, Section 1.4.2).

of magnitude, compared to using receptive fields based on the

rotationally symmetric Gaussian kernel (Lindeberg and Gårding,

1997; see the experimental results in Tables 1–3).

Based on this theoretical reasoning, in combination with

previous experimental support, we argue that it is essential for an

artificial or biological vision system to obey sufficient covariance

properties, or sufficient approximations thereof, in order to

robustly handle the variabilities in image and video data caused by

the natural image transformations that arise when viewing objects

and events in a complex natural environment.

3.1.1. Formalism to be used
When applying an image transformation between two

image domains, not only the spatial or the spatio-temporal

representations of the receptive field output need to be

transformed, but also the parameters for the receptive field

models need to be appropriately matched. In other words, it is

necessary to also derive the transformation properties of the spatial

scale parameter s and the spatial covariance matrix 6 for the

spatial model, and additionally the transformation properties of

the temporal scale parameter τ and the image velocity v for the

spatio-temporal model.

In the following subsections, we will derive the covariance

properties of the receptive field models under the respective classes

of image transformations. To highlight how the parameters are

also affected by the image transformations, we will therefore

express these covariance properties in terms of explicit image

transformations regarding the output from the receptive field

models, complemented by explicit commutative diagrams. To

reduce the complexity of the expressions, we will focus on the

transformation properties of the output from the underlying spatial

and spatio-temporal smoothing kernels only.

The output from the actual derivative-based receptive fields

can then be obtained by also complementing the transformation

properties of the output from the spatial and spatio-temporal

smoothing operations with the transformation properties of the

respective spatial and temporal derivative operators, where spatial

derivatives transform according to

(∇(xL,1 ,xL,2)LL)(xL) = AT(∇(xR,1 ,xR,2)LR)(xR) (22)

under an affine transformation (17) of the form

LL(xL) = LR(xR) for xR = AxL, (23)

whereas spatio-temporal derivatives transform according to

(∇(x1 ,y1 ,t)L)(p) = GT(∇(x′1 ,x
′
2 ,t

′)L
′)(p′) (24)

under a Galilean transformation (20) of the form

L(p) = L′(p′) for p′ = Gp (25)

with p = (x1, x2, t)
T and p′ = (x′1, x

′
2, t

′)T .
By necessity, the treatment that follows next in this

section will be somewhat technical. The hasty reader may

skip the mathematical derivations in the following text

and instead focus on the resulting commutative diagrams in
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FIGURE 8

Commutative diagram for the spatial smoothing component in the

purely spatial receptive field model (16) under spatial a�ne

transformations of the image domain. This commutative diagram,

which should be read from the lower left corner to the upper right

corner, means that irrespective of the input image fL(xL) is first

subject to a spatial a�ne transformation xR = AxL and then

smoothed with an a�ne Gaussian kernel g(xR; s,6R), or instead

directly convolved with an a�ne Gaussian kernel g(xL; s,6L) and

then subject to a similar a�ne transformation, we do then get the

same result, provided that the spatial covariance matrices are

related according to 6R = A6AT (and assuming that the spatial scale

parameters for the two domain sR = sL = s are the same).

FIGURE 9

Commutative diagram for the spatial smoothing component in the

purely spatial receptive field model (16) under spatial scaling

transformations of the image domain. This commutative diagram,

which should be read from the lower left corner to the upper right

corner, means that irrespective of the input image fL(xL) is first

subject to spatial scaling transformation xR = SxxL and then

smoothed with an a�ne Gaussian kernel g(xR; sR,6), or instead

directly convolved with an a�ne Gaussian kernel g(xL; sL ,6) and

then subject to a similar a�ne transformation, we do then get the

same result, provided that the spatial scale parameters are related

according to sR = S2xsL (and assuming that the spatial covariance

matrices for the two image domains are the same 6R = 6L = 6).

Figures 8–13, which describe the essence of the transformation

properties of the receptive fields in the generalised Gaussian

derivative model.

3.1.2. Covariance properties for the purely spatial
receptive fields
3.1.2.1. Transformation property under spatial a�ne

transformations

To model the essential effect of the receptive field output in

terms of the spatial smoothing transformations applied to two

spatial image patterns fL(xL) and fR(xR), that are related according

to a spatial affine transformation (17) of the form

xR = AxL, (26)

FIGURE 10

Commutative diagram for the spatio-temporal smoothing

component in the joint spatio-temporal receptive field model (13)

under Galilean transformations over a spatio-temporal video

domain. This commutative diagram, which should be read from the

lower left corner to the upper right corner, means that irrespective

of the input video f(x, t) is first subject to Galilean transformation

x′ = x′ + u and then smoothed with a spatio-temporal kernel kernel

T(x′, t; s, τ , v′,6), or instead directly convolved with the

spatio-temporal smoothing kernel T(x, t; s, τ , v,6) and then subject

to a similar Galilean transformation, we do then get the same result,

provided that the velocity parameters of the spatio-temporal

smoothing kernels are related according to v′ = v+ u (and assuming

that the other parameters in the spatio-temporal receptive field

models are the same).

FIGURE 11

Commutative diagram for the spatio-temporal smoothing

component in the joint spatio-temporal receptive field model (13)

under temporal scaling transformations over a spatio-temporal

video domain. This commutative diagram, which should be read

from the lower left corner to the upper right corner, means that

irrespective of the input video f(x, t) is first subject to a temporal

scaling transformation t′ = Stt and then smoothed with a

spatio-temporal kernel kernel T(x, t′; s, τ ′, v′,6), or instead directly

convolved with the spatio-temporal smoothing kernel

T(x, t; s, τ , v,6) and then subject to a similar temporal scaling

transformation, we do then get the same result, provided that the

temporal scale parameters as well as the velocity parameters of the

spatio-temporal smoothing kernels are matched according to

τ ′ = S2t t and v′ = v/St (and assuming that the other parameters in

the spatio-temporal receptive field models are the same).

let us define the corresponding spatially smoothed representations

LL(xL; s,6L) and LR(xL; s,6R) obtained by convolving fL(xL) and

fR(xR) with affine Gaussian kernels of the form (3), using spatial

scale parameters sL and sR as well as spatial covariance matrices6L

and6R, respectively.

Then, according to Lindeberg and Gårding (1997); Section 4.1,

these spatially smoothed representations7 are related according to

LL(xL; s,6L) = LR(xR; s,6R) (27)

7 In the area of scale-space theory, these spatially smoothed

image representations are referred to as (here a�ne) spatial

scale-space representations.
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FIGURE 12

Commutative diagram for the spatio-temporal smoothing

component in the joint spatio-temporal receptive field model (13)

under spatial a�ne transformations over a spatio-temporal video

domain. This commutative diagram, which should be read from the

lower left corner to the upper right corner, means that irrespective

of the input video f(xL, t) is first subject to a spatial a�ne

transformation xR = AxL and then smoothed with a spatio-temporal

kernel kernel T(xR, t; s, τ , vR,6R), or instead directly convolved with

the spatio-temporal smoothing kernel T(xL, t; s, τ , vL,6L) and then

subject to a similar temporal scaling transformation, we do then get

the same result, provided that the spatial covariance matrices as

well as the velocity parameters of the spatio-temporal smoothing

kernels are matched according to 6R = A6LA
T and vR = AvL (and

assuming that the other parameters in the spatio-temporal

receptive field models are the same).

FIGURE 13

Commutative diagram for the spatio-temporal smoothing

component in the joint spatio-temporal receptive field model (13)

under spatial scaling transformations over a spatio-temporal video

domain. This commutative diagram, which should be read from the

lower left corner to the upper right corner, means that irrespective

of the input video f(xL, t) is first subject to a spatial scaling

transformation xR = SxxL and then smoothed with a

spatio-temporal kernel kernel T(xR, t; sR, τ , vR,6), or instead directly

convolved with the spatio-temporal smoothing kernel

T(xL, t; sL, τ , vL,6) and then subject to a similar temporal scaling

transformation, we do then get the same result, provided that the

spatial scale parameters as well as the velocity parameters of the

spatio-temporal smoothing kernels are matched according to

sR = S2xsL and vR = SxvL (and assuming that the other parameters in

the spatio-temporal receptive field models are the same).

for

6R = A6LA
T , (28)

which constitutes an affine covariant transformation property, as

illustrated in the commutative diagram in Figure 8. Specifically,

the affine covariance property implies that for every receptive field

output from the image fL(xL) computed with spatial covariance

matrix 6L, there exists a corresponding spatial covariance matrix

6R, such that the receptive field output from the image fR(xR)

using that covariance matrix can be perfectly matched to the

receptive field output from image fL(xL) using the spatial covariance

matrix6L.

This property thus means that the family of spatial receptive

fields will, up to first order of approximation, have the ability to

handle the image deformations induced between the perspective

projections of multiple views of a smooth local surface patch in

the world.

For the spatial LGN model in (7), a weaker rotational

covariance property holds, implying that under a spatial rotation

xR = R xL, (29)

where R is a 2-D rotation matrix, the corresponding spatially

smoothed representations are related according to

LL(xL; s) = LR(xR; s). (30)

This property implies that image structures arising from

projections of objects that rotate around an axis aligned with the

viewing direction are handled in a structurally similar manner.

3.1.2.2. Transformation property under spatial scaling

transformations

In the special case when the spatial affine transformation

represented by the affine matrix A reduces to a scaling

transformation, having scaling matrix S with scaling factor Sx
according to (18)

xR = Sx xL, (31)

the above affine covariance relation reduces to the form

LR(xR; sR,6) = LL(xL; sL,6), (32)

provided that the spatial scale parameters are related according to

sR = S2x sL (33)

and assuming that the spatial covariance matrices are the same

6R = 6L = 6. (34)

With regard to the previous treatment in Section 2.1.1, this

reflects the scale covariance property of the spatial smoothing

transformation underlying the simple cell model in (6), as

illustrated in the commutative diagram in Figure 9.

A corresponding spatial scale covariance property does also

hold for the spatial smoothing component in the spatial LGNmodel

in (7), and is of the form

LR(xR; sR) = LL(xL; sL), (35)

provided that the spatial scale parameters are related according to

sR = S2x sL. (36)

This scale covariance property implies that the spatial receptive

field family will, up to first order of approximation, have the ability

to handle the image deformations induced by viewing an object

from different distances relative to the observer, as well as handling

objects in the world that have similar spatial appearance, while

being of different physical size.
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3.1.3. Covariance properties for the joint
spatio-temporal receptive fields
3.1.3.1. Transformation property under Galilean

transformations

To model the essential effect of the receptive field output in

terms of the spatio-temporal smoothing transformation applied to

two spatio-temporal video patterns f (p) and f ′(p′), that are related
according to a Galilean transformation (20) according to

f ′(x′, t′) = f (x, t) (37)

for t′ = t′ and

x′ = x+ ut, (38)

let us define the corresponding spatio-temporally smoothed video

representations8 L(x, t; s, τ , v,6) and L′(x′, t′; s′, τ ′, v′,6′)
obtained by convolving f (p) and f ′(p) with spatio-temporal

smoothing kernels of the form (9) using spatial scale parameters

s and s′, temporal scale parameters τ and τ ′, velocity vectors v and
v′, and spatial covariance matrices6 and6′, respectively:

L(x, t; s, τ , v,6) = T(x, t; s, τ , v,6) ∗ f (x, t), (39)

L′(x′, t′; s′, τ ′, v′,6′) = T(x′, t′; s′, τ ′, v′,6′) ∗ f (x′, t′). (40)

By relating these two representations to each other, according to

a change of variables, it then follows that the spatio-temporally

smoothed video representations are related according to the

Galilean covariance property

L′(x′, t′; s′, τ ′, v′,6′) = L(x, t; s, τ , v,6), (41)

provided that the velocity parameters for the two different receptive

field models are related according to

v′ = v+ u (42)

and assuming that the other receptive field parameters are the same,

i.e., that s′ = s, 6′ = 6 and τ ′ = τ , see the commutative diagram

in Figure 10 for an illustration.

The regular LGN model (7), based on space-time separable

receptive fields, is not covariant under Galilean transformations.

Motivated by the fact that there are neurophysiological results

showing that that there also exist neurons in the LGN that are

sensitive to motion directions (Ghodrati et al., 2017, Section 1.4.2),

we could, however, also formulate a tentative Galilean covariant

receptive field model for LGN neurons, having rotationally

symmetric receptive fields over the spatial domain, according to

hLGN(x1, x2, t; s, τ , v) =
±s τn/2 (∂x1x1 + ∂x2x2 ) ∂t̄n (g(x− v1t, y− v2t; s) ψ(t; τ , c)). (43)

Then, the underlying purely spatio-temporally smoothed

representations, disregarding the Laplacian operator

8 In the area of scale-space theory, these spatio-temporally

smoothed video representations are referred to as spatio-temporal

scale-space representations.

∇2
x1 ,x2)

= ∂x1x1 + ∂x2x2 and the temporal derivative operator ∂t̄n ,

will under a Galilean transformation (38) be related according to

L′(x′, t′; s′, τ ′, v′) = L(x, t; s, τ , v), (44)

provided that the velocity parameters for the two different receptive

field models are related according to

v′ = v+ u, (45)

and assuming that the other receptive field parameters are the same,

i.e., that s′ = s and τ ′ = τ .

These two Galilean covariance properties mean that the

corresponding families of spatio-temporal receptive fields will, up

to first order of approximation, have the ability to handle the

image deformations induced between objects that move, as well as

spatio-temporal events that occur, with different relative velocities

between the object/event and the observer.

3.1.3.2. Transformation property under temporal scaling

transformations

To model the essential effect of the receptive field output in

terms of the spatio-temporal smoothing transformations applied to

two spatio-temporal video patterns f (p) and f ′(p′), that are related
according to a temporal scaling transformation (21) according to

f ′(x′, t′) = f (x, t) (46)

for x′ = x and

t′ = S2t t, (47)

with the temporal scaling factor St restricted
9 to being an integer10

power of the distribution parameter c > 1 of the time-causal

limit kernel ψ(t; τ , c) in the time-causal spatio-temporal receptive

field model

St = ci, (48)

let us analogously to above define the corresponding spatio-

temporally smoothed video representations L(x, t; s, τ , v,6) and

L′(x′, t′; s′, τ ′, v′,6′, v′) of f (p) and f ′(p′), respectively, according
to (39) and (40).

9 The reason why the temporal scaling factor is here restricted to being

an integer power of the distribution parameter of the time-causal limit

kernel, is that the temporal scale levels resulting from convolution with this

temporal smoothing kernel are genuinely discrete. Thereby, exact temporal

scale covariance can only be obtained for temporal scaling factors that

perfectly match the available ratios between the temporal scale levels in

the corresponding temporal multi-scale representation. For other scaling

factors, the results will instead only be numerical approximations, whose

accuracy depends on the density of the discrete temporal scale levels, as

determined by the distribution parameter c > 1of the time-causal limit kernel.

10 If the time-causal limit kernel in the general form (9) of spatio-

temporal smoothing kernels, that this treatment is based on, is replaced

by a non-causal temporal Gaussian kernel, then a corresponding temporal

scale covariance will also hold, however then instead over a continuum

of temporal scaling factors St . as opposed to a discrete subset as for the

time-causal model.
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Then, due to the scale-covariant property of the time-

causal limit kernel [Lindeberg, 2016, Equation (47); Lindeberg,

2023b, Equation (34)], these spatio-temporally smoothed video

representations are related according to the temporal scale

covariance property

L′(x′, t′; s′, τ ′, v′,6′) = L(x, t; s, τ , v,6), (49)

provided that the temporal scale parameters and the velocity

parameters for the two receptive field models are matched

according to

τ ′ = S2t τ and v′ = v/S, (50)

and assuming that the other receptive field parameters are the same,

i.e., that s′ = s and 6′ = 6, see the commutative diagram in

Figure 11 for an illustration.

A corresponding temporal covariance property does also hold

for the space-time separable spatio-temporal LGNmodel in (16), of

the form

L′(x, t′; s, τ ′) = LL(x, t; s, τ ), (51)

provided that the temporal scale parameters are related

according to

τ ′ = S2t τ . (52)

These temporal scaling covariance properties mean that the

families of spatio-temporal receptive fields will be able to handle

objects that move and events that occur faster or slower in

the world.

3.1.3.3. Transformation property under spatial a�ne

transformations

To model the essential effect of the receptive field output in

terms of the spatio-temporal smoothing transformation applied to

two spatio-temporal video patterns f (pL) and f (pR), that are related

according to a spatial affine transformation (17) according to

xR = AxL, (53)

let us analogously to in Section 3.1.3.1. define the

corresponding spatio-temporally smoothed video representations

LL(xL, tL; sL, τL, vL,6L) and LR(xR, tR; sR, τT , vR,6R) of

f (pL) = f (p) and f (pR) = f ′(p), respectively, according to (39)

and (40).

Then, based on similar transformation properties as are used

for deriving the affine covariance property of the purely spatial

receptive field model in Section 3.1.2.1., it follows that these spatio-

temporally smoothed video representations are related according

to the spatial affine covariant transformation property

LR(xR, tR; sR, τR, vR,6R) = LL(xL, tL; sL, τL, vL,6L) (54)

for

6R = A6L A
T and vR = A vL, (55)

provided that the other receptive field parameters are the same, i.e.,

that sR = sL, τR = τL and vR = vL.

With regard to the previous treatment in Section 2.1.1, this

property reflects the spatial affine covariance property of the

spatio-temporal smoothing transformation underlying the simple

cell model in (13), as illustrated in the commutative diagram in

Figure 12.

This affine covariance property implies that, also under non-

zero relative motion between an object or event in the world and

the observer, the family of spatio-temporal receptive fields will have

the ability to, up to first order of approximation, handle the image

deformations caused by viewing the surface pattern of a smooth

surface in the world under variations in the viewing direction

relative to the observer.

For the spatio-temporal LGNmodel with velocity adaptation in

(43), a weaker rotational covariance property holds, implying that

under a spatial rotation

xR = R xL, (56)

where R is a 2-D rotation matrix, the corresponding spatially

smoothed representations are related according to

LL(xL, t; s, τ , vL) = LR(xR, t; s, τ , vR), (57)

provided that

vR = R vL. (58)

For the spatio-temporal LGN model without velocity adaptation

in (16), a similar result holds, with the conceptual difference

that vR = vL = 0.

As for the previously studied purely spatial case, these

rotational covariance properties imply that image structures arising

from projections of objects that rotate around an axis aligned with

the viewing direction are handled in a structurally similar manner.

3.1.3.4. Transformation property under spatial scaling

transformations

In the special case when the spatial affine transformation

represented the affine matrix A reduces to a scaling transformation

with a spatial scaling matrix S, with spatial scaling factor Sx
according to (18)

xR = Sx xL, (59)

the above spatial affine covariance relation reduces to the form

LR(xR, t; sR, τ , vR,6) = LL(xL, t; sL, τ , vL,6), (60)

provided that the spatial scale parameters and the velocity vectors

are related according to

xR = S2x xL and vR = Sx v, (61)

and assuming that the other receptive field parameters are the same,

i.e., that τR = τL = τ ,6R = 6L = 6 and vR = vL.

With regard to the previous treatment in Section 2.1.1, this

instead reflects the scale covariance property of the spatio-temporal

smoothing transformation underlying the simple cell model in (6),

as illustrated in the commutative diagram in Figure 13.
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A corresponding spatial scale covariance property does also

hold for the space-time separable spatio-temporal LGN model in

(16), of the form

LR(xR, t; sR, τ ) = LL(xL, t; sL, τ ), (62)

provided that the spatial scale parameters are related according to

xR = S2x xL. (63)

Similar to the previous spatial scale covariance property

for purely spatial receptive fields in Section 3.1.2.2, this spatial

covariance property means that the spatio-temporal receptive field

family will, up to first order of approximation, have the ability

to handle the image deformations induced by viewing an object

from different distances relative to the observer, as well as handling

objects in the world that have similar spatial appearance, while

being of different physical size.

3.2. Implications of the theory for
biological vision

Concerning biological implications of the presented theory, it

is sometimes argued that the oriented simple cells in the primary

visual cortex serve as mere edge detectors. In view of the presented

theory, the oriented receptive fields of the simple cells can, on the

other hand, also be viewed as populations of receptive fields, that

together make it possible to capture local image deformations in

the image domain, to, in turn, serve as a cue for deriving cues to

surface orientation and surface shape in the world. In addition, the

spatio-temporal dependencies of the simple cells are also essential

to handle objects that move as well as spatio-temporal events

that occur, with possibly different relative motions in relation to

the observer.

According to the presented theory, the spatial and spatio-

temporal receptive fields are expanded over their associated filter

parameters, whereby the population of receptive fields becomes

able to handle the different classes of locally linearised image and

video deformations. This is done in such a way that the output from

the receptive fields can be perfectly matched under these image and

video transformations, provided that the receptive field parameters

are properly matched to the actual transformations that occur in

a particular imaging situation. Specifically, an interesting follow-

up question of this work to biological vision research concerns

howwell biological vision spans corresponding families of receptive

fields, as predicted by the presented theory.

In the study of orientation maps of receptive field families

around pinwheels (Bonhoeffer and Grinvald, 1991), it has been

found that for higher mammals, oriented receptive fields in the

primary visual cortex are laid out with a specific organization

regarding their directional distribution, in that neurons with

preference for a similar orientation over the spatial domain are

grouped together, and in such a way that the preferred orientation

varies continuously around the singularities in the orientation

maps known as pinwheels (see Figure 14). First of all, such an

organization shows that biological vision performs an explicit

FIGURE 14

Orientation map in the primary visual cortex (in cat area 17), as

recorded by Koch et al. (2016) (OpenAccess), which by a colour

coding shows how the preferred spatial orientations for the visual

neurons vary spatially over the cortex. In terms of the theory

presented in this article, regarding connections between the

influence of natural image transformation on image data and the

shapes of the visual receptive fields of the neurons that process the

visual information, these results can be taken as support that the

population of visual receptive fields in the visual cortex perform an

expansion over the group of spatial rotations. Let us take into further

account that the receptive fields of the neurons near the pinwheels

are reported to be comparably isotropic, whereas the receptive

fields of the neurons further away from the pinwheels are more

anisotropic. Then, we can, from the prediction of an expansion over

a�ne covariance matrices of directional derivatives of a�ne

Gaussian kernels, proposed as a model for the spatial component of

simple cells, raise the question if the population of receptive fields

can also be regarded as spanning some larger subset of the a�ne

group than mere rotations. If the receptive fields of the neurons

span a larger part of the a�ne group, involving non-uniform scaling

transformations that would correspond to spatial receptive fields

with di�erent ratios between the characteristic lengths of the

receptive fields in the directions of the orientation of the receptive

field and its orthogonal direction, then they would have better ability

to derive properties, such as the surface orientation and the surface

shape of objects in the world, compared to a population of

receptive fields that does not perform such an expansion.

expansion over the group of spatial rotations, which is a subgroup

of the affine group.

Beyond variations in mere orientation selectivity of neurons,

neurophysiological investigations by Blasdel (1992) have, however,

also shown that the degree of orientation selectivity varies regularly

over the cortex, and is different near vs. further away from the

center of a pinwheel; see also Nauhaus et al. (2008) and Koch et al.

(2016). Specifically, the orientation selectivity is lowest near the

positions of the centers of the pinwheels, and then increases with

the distance from the pinwheel. In view of the spatial model for

simple cells (6), such a behaviour would be a characteristic property,

if the spatial receptive fields would be laid out over the cortex

according to a distribution over the spatial covariance matrices

of the affine Gaussian kernels, which determine the purely spatial

smoothing component in the spatial receptive field model.

For the closest to isotropic affine Gaussian kernels, a small

perturbation of the spatial covariance matrix of the spatial

smoothing kernel could cause a larger shift in the preferred

orientation than for a highly anisotropic Gaussian kernel. The

singularity (the pinwheel) in such a model would therefore
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correspond to the limit case of a rotationally symmetric Gaussian

kernel, alternatively an affine Gaussian kernel as near as possible

to a rotationally symmetric Gaussian kernel, within some

complementary constraint not modelled here, if the parameter

variation in the biological system does not reach the same limits

as in our idealised theoretical model.

Compare with the orientation maps that would be generated

from the distribution of spatial receptive fields shown in Figure 4,

although do note that in that illustration, the same spatial

orientation is represented at two opposite spatial positions in

relation to the origin, whereas the biological orientation maps

around the pinwheels only represent a spatial orientation once.

That minor technical problem can, however, be easily fixed,

by mapping the angular representation in Figure 4 to a double

angle representation, which would then identify the directional

derivatives of affine Gaussian kernels with opposite polarity, in

other words kernels that correspond to flipping the sign of the affine

Gaussian derivatives.

An interesting follow-up question for biological vision research

does thus concern if it can be neurophysiologically established if

the distribution of the spatial shapes of the the spatial smoothing

component of the simple cells spans a larger part of the affine

group than a mere expansion over spatial rotations?11 What would

then the distribution be over different eccentricities, i.e, different

ratios12 between the eigenvalues of the spatial covariance matrix

6, if the spatial component of each simple cells is modelled as a

directional derivative (of a suitable order) of an affine Gaussian

kernel? Note, in relation to the neurophysiological measurements

by Nauhaus et al. (2008), which show a lower orientation selectivity

at the pinwheels and increasing directional selectivity whenmoving

further away from the pinwheel, that the spatial receptive fields

based on the maximally isotropic affine Gaussian kernels in the

centers of Figure 4 (for eccentricity ǫ = 1) would have the lowest

degree of orientation selectivity, whereas the spatial receptive fields

towards the periphery (for ǫ decreasing towards 0) would have the

highest degree of orientation selectivity, see Lindeberg (2023a)13 for

an in-depth treatment of this topic.

11 The view followed in this treatment, that the primary visual cortex

performs a substantial expansion of the image and video data over the

parameters of the geometric image and video transformations, is consistent

with the substantial expansion of measurement data that is performed from

the LGN, with about 1 M neurons and 1 M output channels, to V1, with 190 M

neurons and 37 M output channels, see DiCarlo et al. (2012) (Figure 3).

12 And taking the square root of the ratio between the eigenvalues of

the spatial covariance matrix 6, to base the eccentricity measurement

on measurements in unit of [length], as opposed to units of [length2].

Geometrically, variations in this ratio between the square root of the

ratio between the eigenvalue does, for example, make it possible to

handle variations in the slant angle of a local surface patch viewed under

monocular projection.

13 In relation to the fact that the measurements of orientation selectivity

by Nauhaus et al. (2008) may most likely involve complex cells, whereas the

predictions in this theory are based on the response properties of simple cells,

it can be noted that that this qualitative result concerning the orientation

selectivity of simple cells, based on the a�ne Gaussian derivative model,

will also extend to complex cells, if the complex cells can be modelled as

If an expansion over eccentricities for simple cells could be

established over the spatial domain, it would additionally be

interesting to investigate if such an expansion would be coupled

also to the expansion over image velocities v in space-time14

for joint spatio-temporal receptive fields, or if a potential spatial

expansion over eccentricities in the affine group (alternatively over

some other subset of the affine group) is decoupled from the

image velocities in the Galilean group. If those expansions are

coupled, then the dimensionality of the parameter space would

be substantially larger, while the dimensionality over two separate

expansions over eccentricities vs. motion directions would be

substantially lower. Is it feasible for the earliest layers of receptive

field to efficiently represent those dimensions of the parameter

space jointly, which would then enable higher potential accuracy

in the derivation of cues to local surface orientation and surface

shape from moving objects that are not fixated by the observer,

and thus moving with non-zero image velocity relative to the

viewing direction. Or do efficiency arguments call for a separation

of those dimensions of the parameter space, into separate spatial

and motion pathways, so that accurate surface orientation and

shape estimation can only be performed with respect to viewing

directions that are fixated by the observer in relation to a

moving object?

It would additionally be highly interesting to characterize to

what extent the early stages in the visual system perform expansions

of receptive fields over multiple spatial and temporal scales. In the

retina, the spatial receptive fields mainly capture a lowest spatial

scale level, which increases linearily with the distance from the

fovea (see Lindeberg, 2013, Section 7). Experimental evidence do

on the other hand demonstrate that biological vision achieves

scale invariance over wide ranges of scale (Biederman and Cooper,

1992; Ito et al., 1995; Logothetis et al., 1995; Furmanski and

Engel, 2000; Hung et al., 2005; Isik et al., 2013). Using the semi-

group properties of the rotationally symmetric as well as the

affine Gaussian kernels,15 it is in principle possible to compute

operating on the output of simple cells as done in Lindeberg (2020), Section 5,

see Lindeberg (2023a) for a detailed analysis of this subject.

14 We implicitly regard variability over image velocities as established,

since velocity-tuned receptive fields have been recorded for di�erent

image velocities.

15 The semi-group property over spatial scales s of the rotationally

symmetric Gaussian kernel g(x; s) implies that the convolution of two

rotationally symmetric Gaussian kernels with each other is also a rotationally

symmetric Gaussian kernel, and with added scale parameters g(x; s1) ∗
g(x; s2) = g(x; s1 + s2), whereas the semi-group property over the

spatial covariance matrices 6 of the a�ne Gaussian kernel means that

the convolution of two a�ne Gaussian kernels is also an a�ne Gaussian

kernel, and with added spatial covariance matrices g(x; 61) ∗ g(x; 62) =
g(x; 61 + 62). These semi-group properties do, in turn, mean that spatial

smoothed representations with the rotationally symmetric Gaussian kernel

are related according to the spatial cascade smoothing property L(x; s2) =
g(x; s2 − s1) ∗ L(x; s1), provided that s2 > s1, whereas spatially smoothed

representations with the a�ne Gaussian kernel are related according to

spatial cascade smoothing property L(x; 62) = g(x; 62 − 61) ∗ L(x; 61),

provided that 62 − 61 is a symmetric positive definite matrix. With regard

to the spatial component of the model for the receptive fields of LGN
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coarser scale representations from finer scale levels by adding

complementary spatial smoothing stages in cascade. The time-

causal limit kernel (14) used for temporal smoothing in our spatio-

temporal receptive field model does also obey a cascade smoothing

property over temporal scales, which makes it possible to compute

representations at coarser temporal scales from representations

at finer spatial scales, by complementary (time-causal) temporal

filtering, in terms of first-order temporal integrators coupled in

cascade16 (Lindeberg, 2023b). Do the earliest layers in a biological

visual system explicitly represent the image and video data by

expansions of receptive fields over multiple spatial and temporal

scales, or do the earliest stages in the vision system instead

only represent a lowest range of spatial and temporal scales

explicitly, to then handle coarser spatial and temporal scales by

other mechanisms?

The generalised Gaussian derivative model for visual receptive

fields can finally be seen as biologically plausible, in the respect

that the computations needed to perform the underlying spatial

smoothing operations and spatial derivative computations can be

performed by local spatial computations. The spatial smoothing is

modelled by diffusion equations (1), which can be implemented

by local computations based on connections between neighbours,

and thus be performed by groups of neurons that interact with

each other spatially by local connections. Spatial derivatives can

also be approximated by local nearest neighbour computations.

The temporal smoothing operation in the time-causal model based

on smoothing with the time-causal limit kernel corresponds to

first-order temporal integrators coupled in cascade, with very

close relations to our understanding of temporal processing

in neurons. Temporal derivatives can, in turn, be computed

from linear combinations of temporally smoothed scale channels

over multiple temporal scales, based on a similar recurrence

relation over increasing orders of temporal differentiation as in

Lindeberg and Fagerström (1996) [Equation (18)]. Thus, all the

individual computational primitives needed to implement the

spatial as well as the spatio-temporal receptive fields according

to the generalised Gaussian derivative model can, in principle, be

neurons (7), the spatial cascade smoothing property originating from the

semi-group property of the rotationally symmetric Gaussian kernel implies

that the output from the spatial LGN model (7) at spatial scale s2 is related

to the corresponding output at spatial scale s1 according to LLGN (x; s2) =
ss2−s1 g(x; s2 − s1) ∗ LLGN (x; s1), provided that s2 > s1, whereas the output

from the spatial model of the receptive fields of simple cells (6) at spatial

scale s2 is related to the corresponding output at spatial scale s1 according to

Lsimple(x; s2 ,6) = s(s2−s1)m/2g(x; (s2−s1)6)∗Lsimple(x; s1 ,6), provided that s2 > s1

and that the direction of the directional derivative operator in this model for

simple cells is aligned to the eigenvectors of the spatial covariance matrix 6.

16 Due to the cascade smoothing property of the time-causal limit kernel

over temporal scales, the time-causal limit kernels 9(t; τ , c) at adjacent

temporal scales are related according to 9(t; τ , c) = hexp(t;
√
c2−1
c

√
τ ) ∗

9(t; τ

c2
, c), with hexp(t; µ) denoting a truncated exponential kernel with time

constant µ according to hexp(t; µ) = 1
µk

e−t/µk and c being the distribution

parameter of the time-causal limit kernel [Lindeberg, 2023b, Equation (28)].

This does, in turn, mean that temporal derivatives of purely temporally

smoothed representations at adjacent temporal scales are related according

to Ltn (t; τ , c) = hexp(t;
√
c2−1
c

√
τ ) ∗ Ltn (t; τ

c2
, c).

performed by computational mechanisms available to a network of

biological neurons.

3.2.1. Testable hypotheses from the theoretical
predictions

For a visual neuron in the primary visual cortex that can be well

modelled as a simple cell, let us assume that the spatio-temporal

dependency of its receptive field can be modelled as a combination

of a dependency on a spatial function hspace(x1, x2) and a

dependency on a temporal function htime(t) of the joint form
17

hsimple(x1, x2, t) = hspace(x1 − v1t, x2 − v2t) htime(t) (64)

for some value of a velocity vector v = (v1, v2), where we here

in this model assume that both the spatial and the temporal

dependency functions hspace(x1, x2) and htime(t) as well as the

velocity vector v are individual for each visual neuron. Then, we can

formulate testable hypotheses for the above theoretical predictions

in the following ways:

Hypothesis 1 (Expansion of spatial receptive field shapes over a

larger part of the affine group than mere rotations or uniform scale

changes): Define characteristic lengths σϕ and σ⊥ϕ that measure the

spatial extent of the spatial component hspace(x1, x2) of the receptive

field in the direction ϕ representing the orientation of the oriented

simple cell as well as in its orthogonal direction ⊥ϕ, respectively.
Then, if the hypothesis about an expansion over a larger part of the

affine group thanmere rotations is true, there should be a variability

in the ratio of these characteristic lengths between different neurons

ǫ = σϕ

σ⊥ϕ
. (65)

If the spatial component of the receptive field hspace(x1, x2) can

additionally be well modelled as a directional derivative of an affine

Gaussian kernel for some order of spatial differentiation, then this

ratio between the characteristic lengths can be taken as the ratio

between the effective scale parameters18 of the affine Gaussian

kernel in the directions of the orientation of the receptive field and

its orthogonal direction

ǫ =
√

sϕ

s⊥ϕ
. (66)

Hypothesis 2 (Joint expansion over image velocities and spatial

eccentricities of the spatio-temporal receptive fields): Assuming

17 This model is inspired by the theoretically derived spatio-temporal

receptive fieldmodel (13), however, generalised tomore spatial and temporal

dependency functions than directional derivatives of a�ne Gaussian kernels

or temporal derivatives of the time-causal limit kernel, and with the explicit

dependencies on the transformation parameters now included in the

separate spatial and temporal dependency functions for an individual neuron.

The model is also inspired by biological results concerning a preference of

biological receptive fields to specific motion directions space-time.

18 Note that the directional derivative of an a�ne Gaussian kernel will be

separable in a coordinate system aligned to the orientation of the receptive

field, provided that the direction for computing the directional derivative is

alignedwith one of the eigendirections of the covariancematrix6 associated

with the a�ne Gaussian kernel.

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2023.1189949
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lindeberg 10.3389/fncom.2023.1189949

that there is a variability in the ratio ǫ between the orthogonal

characteristic lengths of the spatial components of the receptive

fields between different neurons, as well as also a variability of the

absolute velocity values

vspeed =
√

v21 + v22, (67)

between different neurons, then these variabilities should together

span a 2-D region in the composed 2-D parameter space, and not

be restricted to only a set of 1-D subspaces, which could then

be seen as different populations in a joint scatter diagram or a

histogram over the characteristic length ratio ǫ and the absolute

velocity value vspeed.

Hypothesis 3 (Separate expansions over image velocities and

spatial eccentricities of the spatio-temporal receptive fields): The

neurons that show a variability over the velocity values vspeed all

have a ratio ǫ of the characteristic lengths in two orthogonal spatial

directions for the purely spatial component of the receptive field

that is close to constant, or confined within a narrow range.

Note that Hypotheses 2 and 3 are mutually exclusive.

3.2.2. Quantitative characterizations of
distributions of receptive field parameters

In addition to investigating if the above working hypotheses

hold, which would then give more detailed insights into how

the spatial and spatio-temporal receptive field shapes of simple

cells are expanded over the degrees of freedom of the geometric

image transformations, it would additionally be highly interesting

to characterize the distributions of the corresponding receptive field

parameters, in other words, the distributions of

• the spatial characteristic length ratio ǫ,

• the image velocity vspeed,

• a typical spatial size parameter σspace, which for a spatial

dependency function hspace(x1, x2) in (13) corresponding to

a directional derivative of an affine Gaussian kernel for a

specific normalization of the spatial covariance matrix 6

would correspond to the square root of the spatial scale

parameter, i.e., σspace =
√
s, and

• a typical temporal duration parameter σtime, which for the

temporal dependency function htime(t) in (13) corresponding

to a temporal derivative of the time-causal limit kernel would

correspond to the square root of the temporal scale parameter,

i.e., σtime =
√
τ .

Characterising the distributions of these receptive field parameters,

would give quantitative measures on how well the variabilities

of the receptive field shapes of biological simple cells span the

studied classes of natural image transformations, in terms of spatial

scaling transformations, spatial affine transformations, Galilean

transformations and temporal scaling transformations.

When performing a characterization of these distributions,

as well as investigations of the above testable hypotheses, it

should, however, be noted that special care may be needed, to

only pool statistics over biological receptive fields that have a

similar qualitative shape, in terms of the number of dominant

positive and negative lobes over space and time. For the spatial

and spatio-temporal receptive fields according to the studied

generalised Gaussian derivative model, this would imply initially

only collecting statistics for receptive fields that correspond to the

same orders of spatial and temporal differentiation. Alternatively,

if a unified model can be expressed for receptive fields of differing

qualitative shape, as it would be possible if the biological receptive

fields can be well modelled by the generalised Gaussian derivative

model, statistics could also be pooled over different orders of spatial

and/or temporal differentiation, by defining the characteristic

spatial lengths from the spatial scale parameter s according to

σspace = √
s, and the characteristic temporal durations from the

temporal scale parameter τ according to σtime =
√
τ .

4. Summary and discussion

We have presented a generalised Gaussian derivative model for

modelling visual receptive fields that can be modelled as linear,

and which can be derived in an axiomatic principled manner from

symmetry properties of the environment, in combination with

structural constraints on the first stages of the visual system, to

guarantee internally consistent visual representations over multiple

spatial and temporal scales.

In a companion work (Lindeberg, 2021), it has been

demonstrated that specific instances of receptive field models

obtained within this general family of visual receptive fields do

very well model properties of LGN neurons and simple cells in

the primary visual cortex, as established in neurophysiological

cell recordings by DeAngelis et al. (1995), DeAngelis and Anzai

(2004), Conway and Livingstone (2006), Johnson et al. (2008).

Indeed, based on the generalised Gaussian derivative model for

visual receptive fields, it is possible to reproduce the qualitative

shape of all the main types of receptive fields reported in these

neurophysiological studies, including space-time separable neurons

in the LGN, and simple cells in the primary visual cortex with

oriented receptive fields having strong orientation preference over

the spatial domain, as well as being either space-time separable over

the joint spatio-temporal domain, or with preference to specific

motion directions in space-time.

Specifically, we have in this paper focused on the

transformation properties of the receptive fields in the generalised

Gaussian derivativemodel under geometric image transformations,

asmodelled by local linearizations of the geometric transformations

between single or multiple views of (possibly moving) objects or

events in the world, expressed in terms of spatial scaling

transformations, spatial affine transformations and Galilean

transformations, as well as temporal scaling transformations. We

have shown that the receptive fields in the generalised Gaussian

derivative model possess true covariance properties under these

classes of natural image transformations. The covariance properties

do, in turn, imply that a vision system, based on populations of

these receptive fields, will have the ability to, up to first order of

approximation, handle: (i) the perspective mapping from objects

or events in the world to the image or video domain, (ii) handle the

image deformations induced by viewing image patterns of smooth

surfaces in the world from multiple views, as well as (iii) the video

patterns arising from viewing objects and events in the world,
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that move with different velocities relative to the observer, or

(iv) spatio-temporal events that occur faster or slower in the world.

We argue that it is essential for a vision system to

obey, alternatively sufficiently well approximate such covariance

properties, in order to robustly be able to handle the huge

variability of image of video data generated under the influence

of natural image transformations. Based on covariant image and

videomeasurements at early stages in the visual hierarchy, invariant

representations can, in turn, be computed at higher levels. If the

early stages in the visual system would not respect such basic

covariance properties, or sufficiently good approximations thereof,

the subsequent visual computations at higher levels would suffer

from inherent measurement errors, caused by the non-infinitesimal

extent and duration of the receptive fields over space and time,

that may be otherwise hard to recover from. We do therefore argue

that the covariance properties treated in this article are essential for

both (i) the study and modelling of biological vision and (ii) the

construction of artificial computer vision systems. Specifically, we

argue that the influence of natural image transformations on the

measurements of local image and video information based on visual

receptive fields, is essential for understanding both the possibilities

for and the computational functions in visual perception.

4.1. Relations to other sources of variability
in image and video data

Beyond the variability due to natural geometric image

transformations, which are handled by expanding the receptive

field shapes over the degrees of freedom of the corresponding

image transformations, it should be remarked that the presented

model for visual receptive fields, does additionally have the ability

to handle also other sources of variability in image and video data.

Concerning illumination variations, it can be shown that if

receptive fields according to the generalised Gaussian derivative

model for visual receptive fields, based on spatial and temporal

derivatives of spatial and temporal smoothing kernels, are applied

to image intensities expressed on a logarithmic brightness scale,

then the receptive field responses will be automatically invariant

to multiplicative intensity transformations, and thus be able to

handle both (i) multiplicative changes in the illumination and

(ii) multiplicative changes in exposure control mechanisms. In this

way, a large source of variability regarding illumination changes

is implicitly handled by the presented theory (Lindeberg, 2013,

Section 2.3; Lindeberg, 2021, Section 3.4).

Concerning image and video noise, very fine scale receptive

fields will have the property that they may respond primarily to

fine scale surface textures and noise, whereas the noise and the fine

scale textures will become effectively suppressed in coarser scale

receptive fields. In this way, the coarser scale receptive fields will

be more robust to image noise as well as the influence of very fine

scale surface textures.

Concerning transparencies, an interesting property of a multi-

parameter model for receptive fields, as considered here, is also that

it can respond to qualitatively different types of image structures

for different values of the receptive field parameters. Beyond

different types of responses at different scales, which as previously

considered can handle spatial structures at different scales, by

varying the velocity parameter v in the spatio-temporal receptive

field model in Equation (9), such a model will have the ability

to handle aspects of transparent motion, in the sense that by

considering the receptive field responses for the parameters of

Galilean motion that describe the motion of foreground image

structures vs. the background image structure in a two-layer

transparent motion. By extending the receptive field model to

binocular receptive fields over a disparity parameter, obtained by

varying the parameter δ(x1 ,x2) in Equation (1), such an extended

model of visual receptive fields would also have the ability to handle

static transparencies.

In these ways, the multi-parameter model of receptive

fields considered here can also serve other purposes, beyond

handling geometric image transformations, as a basis for early

vision. If aiming at extending the model to other sources of

variability, such as handling occlusions, then a natural starting

point to use is to start from the generalised diffusion equations

(1) and (8) that generate the corresponding visual receptive

fields, and then complement with explicit learning mechanisms

over the corresponding parameters in the receptive fields, and

also to, for example, complement with explicit end-stopping

mechanisms to prevent the smoothing process from extending over

object boundaries.

4.2. Relations to previous work

In their ground-breaking work, (Hubel and Wiesel, 1959,

1962, 1968, 2005) characterised properties of the receptive fields

for simple and complex cells in the primary visual cortex

(V1). In their experimental methodology, they used moving

light bars that made it possible to capture qualitative properties

of receptive fields, such as the orientation selectivity in V1.

Later studies based on more refined stimuli, such as white-

noise-patterns, have then made it possible to reconstruct more

detailed characterizations of biological visual receptive fields from

multiple measurements of the same cell (DeAngelis et al., 1995;

Ringach, 2002, 2004; DeAngelis and Anzai, 2004; Conway and

Livingstone, 2006; Johnson et al., 2008; Ghodrati et al., 2017; De

and Horwitz, 2021). Summarising these results in a qualitative

manner, it has been found that a majority of the receptive

fields in the retina and the LGN are rotationally symmetric

over the spatial domain and space-time separable over the

spatio-temporal domain, whereas simple cells in V1 have strong

orientation preference over the spatial domain, as well as that

the simple cells are either space-time separable over the spatio-

temporal domain or tuned to particular motion directions in

joint space-time.

Learning-based schemes, which learn receptive fields from

collections of training data, have been formulated, trying to

explain those types of receptive fields found in biologically vision.

Rao and Ballard (1998) demonstrated how localised oriented

receptive fields could be obtained by learning a translation-

invariant code for natural images. Olshausen and Field (1996,

1997) proposed that properties of receptive fields similar to

biological receptive fields could be obtained by learning a sparse

Frontiers inComputationalNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fncom.2023.1189949
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lindeberg 10.3389/fncom.2023.1189949

code for natural images. Simoncelli and Olshausen (2001), Geisler

(2008), Hyvärinen et al. (2009) argued that the properties of

neural representations are determined by natural image statistics.

Lörincz et al. (2012) proposed that early sensory processing can be

modelled by sparse coding. Poggio and Anselmi (2016) proposed

to model learning of invariant receptive fields by using group

theory. Singer et al. (2018) used the proxy task of predicting

the relative future in pre-recorded video sequences for training

a deep network, and demonstrated how that approach lead

to receptive field shapes with good qualitative similarities to

biological receptive fields. Deep neural network approaches for

analysing and modelling non-linear receptive fields of sensory

neural responses have also been developed (Keshishian et al.,

2020); see also the more general discussions concerning such

methodologies in Bae et al. (2021), Bowers et al. (2022),

Heinke et al. (2022), Wichmann and Geirhos (2023) and the

references therein.

Mathematically based computational models have also been

formulated to reflect the shapes of receptive fields found in

biological vision. Rodieck (1965) proposed to model circularly

symmetric receptive fields in the retina and the lateral geniculate

nucleus (LGN) by differences-of-Gaussians. Marcelja (1980) as well

as Jones and Palmer (1987a,b) proposed to model simple cells

by Gabor functions, motivated by their property of minimising

the uncertainty relation; see also Porat and Zeevi (1988) for a

more general proposal of using the Gabor filter model for visual

operations. Riesenhuber and Poggio (1999) built on these ideas, and

used Gabor functions in a hierarchical model of object recognition.

Young (1987), Young and Lesperance (2001), Young et al. (2001)

proposed to instead model simple cells by Gaussian derivatives,

with close relations to theoretical arguments in support for the

(regular) Gaussian derivative model stated by Koenderink (1984),

Koenderink and van Doorn (1987, 1992). More detailed models

of biological receptive fields based on the associated (regular)

Gaussian derivative framework have, in turn, been presented by

Lowe (2000), Hesse and Georgeson (2005), Georgeson et al. (2007),

May and Georgeson (2007), Hansen and Neumann (2008), Wallis

and Georgeson (2009), Pei et al. (2016), Wang and Spratling

(2016).

The generalised Gaussian derivative theory for visual receptive

fields, that we have built upon in this work, can mathematically

derive receptive field shapes directly from symmetry properties

of the environment in an axiomatic manner (Lindeberg, 2011,

2013, 2016, 2021) regarding a first layer of linear receptive fields,

and can well model biological receptive fields in the retina,

the lateral geniculate nucleus and the primary visual cortex. A

conceptual similarity between this theoretical approach and the

above learning-based approaches is that the structural properties

of the environment will imply strong constraints on the statistics

of natural images, and thus the properties of the training data

that the receptive field shapes are learned from. Starting directly

from the symmetry properties of the world, thereby shortcircuits

the need for learning receptive field shapes from collections

of training data, provided that the mathematical analysis from

the structural assumptions to the receptive field shapes can

be tractable.

4.3. Extensions to non-linear visual
receptive fields and artificial deep networks

While the presented theory can be seen as theoretically rather

complete, as a model for the earliest layers of linear receptive

fields in an artificial vision system, or for the biological receptive

fields in the retina, the lateral geniculate nucleus and the primary

visual cortex, including their relations to the influence of geometric

image transformations, an interesting problem concerns how to

extend the theory to higher layers in the visual hierarchy, as well

as to non-linear image and video operations. Regarding the specific

problem of achieving spatial scale covariance in a non-linear

hierarchy of visual receptive fields, a general theoretical sufficiency

result was presented in Lindeberg (2020), which guarantees spatial

scale covariance for a hierarchical vision model based on a set

of homogeneous non-linear polynomial or rational combinations

of scale-normalised Gaussian derivatives coupled in cascade,

including pointwise self-similar transformations thereof. For a

specific biomimetic implementation of this general idea, in terms

of an oriented quasi quadrature model that reproduces some

of the known qualitative properties of complex cells, a scale-

covariant hierarchical network architecture was formulated, with

close conceptual similarities to the scattering network formulation

of deep networks proposed by Mallat (2016). Specifically, it was

demonstrated that, due to the scale invariant properties that arise

from the resulting provably scale-covariant network, it was possible

to perform predictions over spatial scales, to perform training at

one scale and testing at other scales, not spanned by the training

data (see Figures 15 and 16 in Lindeberg, 2020).

More developed approaches to such scale generalization based

on scale-covariant and scale-invariant deep networks were then

presented in Jansson and Lindeberg (2022), Lindeberg (2022).

The approach in Lindeberg (2022) is based on coupling linear

combinations of scale-normalised Gaussian derivatives in cascade,

with pointwise non-linearities between, with close similarity to the

previous work on using Gaussian derivative kernels as structured

receptive field models in deep networks by Jacobsen et al. (2016);

see also Pintea et al. (2021), Penaud et al. (2022) for parallel work

on using Gaussian derivatives as primitive filters in deep networks.

The approach in Jansson and Lindeberg (2022) is instead based

on building a deep network with multiple spatial scale channels,

defined by applying the same discrete deep network to multiple

rescaled copies of the input image, thus achieving scale-covariant

and scale-invariant properties in a dual manner, by performing

multiple rescalings of the input image, as opposed to applying

multiple spatially rescaled spatial receptive fields to the same input

image, and leading to very good scale generalization properties

in experiments. It was also demonstrated how the resulting scale-

invariant multi-scale network was able to learn more efficiently

from sparse training data, compared to a single-scale network, in

that the multiple spatial scale channels could support each other

in the training phase, and make more efficient use of multi-scale

training data than a regular single-scale network. Sangalli et al.

(2022), Yang et al. (2023) have performed closely related work on

scale generalization based on scale-covariant U-Nets.

More generally, Worrall and Welling (2019), Bekkers (2020),

Sosnovik et al. (2020, 2021a,b), Zhu et al. (2022) have developed
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scale-covariant or scale-equivariant deep network architectures,

and demonstrated that these lead to more robust results under

variations in the scale of image structures, compared to non-

covariant or non-equivariant counterparts. (Barisin et al., 2023)

have developed related methods for handling multi-scale image

structures and performing scale generalization based on scale-

invariant Riesz networks.

Currently, there is an active area of research to develop

covariant or equivariant deep networks, where we propose that

it should be natural to consider generalizations of the covariance

properties under natural image transformations treated for the

receptive field models in this article. We do also more generally

propose to include more explicit treatments of the influence of

natural image transformations, such as covariance and invariance

properties under the classes of geometric image and video

transformations studied in this article, in both the study as well as

the computational modelling of biological vision.
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