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An understanding of deep neural network decisions is based on the interpretability

of model, which provides explanations that are understandable to human beings

and helps avoid biases in model predictions. This study investigates and interprets

the model output based on images from the training dataset, i.e., to debug the

results of a network model in relation to the training dataset. Our objective

was to understand the behavior (specifically, class prediction) of deep learning

models through the analysis of perturbations of the loss functions. We calculated

influence scores for the VGG16 network at different hidden layers across three

types of disturbances in the original images of the ImageNet dataset: texture,

style, and background elimination. The global and layer-wise influence scores

allowed the identification of the most influential training images for the given

testing set. We illustrated our findings using influence scores by highlighting

the types of disturbances that bias predictions of the network. According to

our results, layer-wise influence analysis pairs well with local interpretability

methods such as Shapley values to demonstrate significant differences between

disturbed image subgroups. Particularly in an image classification task, our layer-

wise interpretability approach plays a pivotal role to identify the classification bias

in pre-trained convolutional neural networks, thus, providing useful insights to

retrain specific hidden layers.
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1. Introduction

Machine learning algorithms based on deep networks have outperformed humans in
solving tasks in various fields, not only in the computer vision domain but also in the
industrial and medical fields (Chmiela et al., 2018). Furthermore, they exhibit exceptional
abilities when it comes to making predictions, analyzing data, and presenting visualizations
(Thomas et al., 2019; Wu et al., 2019). The success of deep networks is due to the availability
of high-end computing devices (Lindholm et al., 2008), large datasets for learning (Deng
et al., 2009; Karpathy et al., 2014), and improved deep learning techniques (LeCun et al.,
2012, 2015). Despite their success in many domains, these complex structures suffer from a
lack of interpretability and transparency of their learned representations. The main reason
for this may be attributed to their "black-box" nature and the distributed encoding of
the data on which they generalize and learn representations (Samek et al., 2017). For
understanding the input-output relationship of these complex models (Fernandez et al.,
2019), it is necessary to probe the individual or cluster of neurons to visualize and encode the
acquired concepts (Li et al., 2016; Bau et al., 2017). It is possible to construct prototypes of
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learned representations in an abstract manner using certain
approaches. For example, these methods learn representations of
classes of interest by creating prototype images (Simonyan et al.,
2014; Yosinski et al., 2015; Nguyen et al., 2016, 2019). In general,
these types of learned representations are based on activation
maximization and have proved to be effective tools for providing
a more transparent and visual understanding of CNNs. It is also
possible to make CNN decision-making transparent by considering
individual predictions, i.e., by highlighting the most relevant pixels
on a heatmap (Simonyan et al., 2014; Montavon et al., 2018). The
authors of Bach et al. (2015) and Montavon et al. (2019) used
layer-wise relevance propagation to explain predictions applicable
to CNNs, LSTMs (Arras et al., 2017), and support vector machines
(Kauffmann et al., 2018). A spectral relevance analysis is presented
by Lapuschkin et al. (2019) to understand predictions based on
model behavior. This analysis identifies individual heatmaps and
clusters the learned concepts for classification.

There is a long history of influence functions in statistics, but in
the literature, there is little information regarding their application
in deep learning. In statistics, influence functions measure the
change in a parametric observation and its effect on an estimator,
making them useful for comparing the robustness and bias of an
estimator (Fisher and Kennedy, 2018). It is possible to use this
notion in the domain of deep learning to debug the results of
a network model in relation to the training dataset. This can be
simplified by determining if the network has a loss function that is
twice differentiable with respect to its parameters. In such a case,
we can approximate the influence of any instance on the model
parameters. Additionally, influence functions have not been widely
used in machine learning models due to the high computational
cost of determining whether a model’s loss function is twice
differentiable. In spite of this, there are methods for approximating
influence functions in an efficient and accurate manner using
second-order optimization techniques (Martens, 2010; Agarwal
et al., 2017). Furthermore, Koh and Liang (2017) and Khanna
et al. (2018) use influence functions to provide example-based
explanations by identifying the most influential training images. As
a result, these methods are useful for identifying model errors and
biases, identifying mislabeled datasets, and debugging models, but
they lack interpretability when it comes to identifying the learned
representations. A second-order optimization technique is also
used by Koh and Liang (2017) to approximate Influence functions
in order to represent the behavior of the model based on training
data.

Since, CNNs are black boxes there is no transparent way to
identify how these complex models make classification decisions.
Therefore, in this paper we tried to explore and interpret the
individual layers and provide this way an extension to the work
by Koh and Liang (2017) which had previously only explored
global parameters to identify influential training images. The
work we present goes beyond the previous work in sense that
we now give a better in depth understanding of the relevance
of the individual layers of this network. Layer-wise analysis is
more efficient in identifying biases in the network decisions for
which we gave examples through our texture, styled analysis
and background elimination experiments. Our approach helps
making the behavior of individual layers more transparent and
identifies which layers can be retrained to overcome biases in
decisions. Interpreting individual layers of the network and making

transparent representations via influential images has not been
performed previously. In this study, we investigate and interpret
model output based on images in the training dataset, i.e.,
what characteristics of the training images influence the class
predictability of the network. To do this, we calculate layer-wise
influence scores for each training image in relation to each test
image, to determine which features of the training image are most
influential at each layer. We add three types of disturbance to the
input images: texture, style, and background removal in order to
determine to what degree these disturbances contribute to class
prediction. The following are our main contributions in this paper:

• An approach based on layer-wise analysis is proposed to
determine influence scores and influential training images that
contribute to class prediction.
• Through our layer-wise interpretability, we can gain a deeper

understanding of the black box model’s hidden layers.
• To interpret network predictions, we provide a bi-directional

interpretability approach, which includes training images
(using influence scores) and testing images (using Shapley
values).

Layer-wise influence analysis of the disturbed images
subgroups can be an effective method of studying and
providing transparent solutions to the abstract representations of
a network model.

2. Related work

There are several challenges associated with the choice of
an appropriate method which yields insights into deep network
performance, but one needs to be sure that the description of
these methods reflects the internal functionality of the models
(Goodman and Flaxman, 2017). A more transparent explanation
is needed for the predictions of even the highest performing deep
learning models in various computer vision domains. The impact
of perturbing data points on interpretability has been extensively
examined by Adler et al. (2016), Datta et al. (2016), Li et al. (2016),
Koh and Liang (2017), Lundberg and Lee (2017) and Kindermans
et al. (2018) and they evaluated the effect on model outcomes either
globally or locally. Furthermore, perturbation-based methods are
often inconsistent in their explanations, which could be true for
one data point but not for its neighboring points, or for similar data
points within the same class.

The saliency-based method is mostly used to interpret local
features in image classification tasks (Erhan et al., 2009; Selvaraju
et al., 2016; Dabkowski and Gal, 2017). These methods emphasize
the importance of individual pixels in image classification tasks;
however, conclusions drawn from one image cannot be applied to
another image. Hence, these local explanations do not adequately
reflect model decisions. We should instead develop methods that
address the distributed encoding of a neural network in a systematic
manner. In this regard, influence functions are a technique that
originated in statistics and has been used in machine learning tasks
in order to track predictions back to training data (Koh and Liang,
2017) and to investigate robustness and cross-validation within a
model (Christmann and Steinwart, 2004; Debruyne et al., 2008;
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Liu et al., 2014). The Cook’s distance is estimated using a similar
method for prioritizing the training points (Wojnowicz et al., 2016),
whereas an influence-based distance metric is used to configure
classifiers (Kabra et al., 2015). There are also other methods that
utilize influence functions in which adversarial examples are used
to interpret the decisions of the model (Goodfellow et al., 2014).
Another work in this regard, performed by Moosavi-Dezfooli et al.
(2016), also deals with training examples with adversarial attacks.
Furthermore, changing the labels of the classes in the subset of the
training set improves the performance of the network for incorrect
test inputs (Cadamuro et al., 2016). Although much work has been
done using adversarial perturbation as given in the work of Gu
and Rigazio (2014), Szegedy et al. (2014), and Nguyen et al. (2015)
to trick the convolutional neural networks in various classification
tasks, still there are many aspects unexplored. In different machine
learning models, these methods performed well and they are now
being used in deep learning as robust statistical approaches for
post hoc interpretation. Here, we are using influence functions
to determine which apparent disturbances in images are most
sensitive to the network, and we examine how the hidden layers
differ in terms of their influence scores in the presence of different
types of disturbances.

3. Materials and methods

3.1. Influence score and data set

Let us assume that the CNN is pre-trained for the task of image
classification, and we want to find out the importance of different
hidden layers. The non-linear nature of CNNs gradually untangles
the semantic information as the activation moves toward the deeper
layers (Alain and Bengio, 2016; Bau et al., 2017; Raghu et al., 2017).
Specifically in this scenario, we will use Influence functions (Koh
and Liang, 2017) to analyze network decisions in case of regular test
set images as well as when disturbances have been added to those
images.

To accomplish this, we first define a training dataset for a
neural network as Rt = {x1, x2, ..., xn}, where n is the number of
training samples; xi = (ai, bi) where ai are class images of the size
224 × 224 provided to the input of the neural network, and bi is
the true class label of the network, defined as one-hot encoding in c
output lines, where c is the number of classes. We then define a loss
function given as:

L(θ) =
1
n

n∑
i=1

L (xi , θ) (1)

Where L is the categorical-cross entropy loss with which the
network was pre-trained, i.e., a softmax followed by cross entropy

loss written as: L = −
c∑

i=1
bilog(f (a)i) where f (a)i is the probability

of each class and bi encodes the true class through one-
hot encoding.

Let us say that all learning samples in the beginning are
contributing to the loss equally with coefficients 1/n as defined in
eq. (1) above. We will probe the loss function L(θ) by decreasing
contributions of individual learning samples. Specifically, we will
investigate the perturbation of the loss with respect to the training

samples. Our aim is to calculate how the network parameters θ

would change in the case of changing the contribution of a specific
sample xj ∈ (j = 1, 2, . . . n) to a loss by a small quantity ε. For
that, first we need to evaluate optimal network parameters for the
loss function with the perturbation:

θ̂ε,xj
def
= argminθ∈2

1
n

n∑
i = 1

L (xi, θ)+ εL(xj, θ) (2)

In the work of Koh and Liang (2017), it was shown that the rate
of change in optimum network weights θ̂ with respect to ε the way
the latter quantity is defined in eq. (2), under the assumption of
quadratic approximation of the loss function, can be expressed as
follows:

Imod,params
(
xj
)
=

dθ̂ε,xj
dε
|ε=0

= −H−1
θ̂
∇θL(xj, θ̂) (3)

Where, Imod,params
(
xj
)

is image with modified parameters,
∇θL(xj, θ̂) is the perturbation of approximated loss gradient with
respect to the training sample at the point (xj, θ̂) and H

θ̂
is defined

as follows:

H
θ̂
=

1
n

n∑
i=0

∇
2
θ L(xi, θ̂) (4)

Let us now define the test set (including both original test images
and images with disturbances) as Rc =

{
x̂1, x̂2 , . . . , x̂m

}
. We will

calculate the influence of the training image xj on the loss at the
test image x̂k following the approximation given in Koh and Liang
(2017):

Imod,loss
(
xj, x̂k

)
=

dL
(
x̂k , θ̂ε,xj

)
dε

|ε=0

= ∇θL(x̂k, θ̂)T
dθ̂ε,xj
dε
|ε=0

= −∇θL
(
x̂k, θ̂

)T
H−1

θ ∇θ L(xj, θ̂) (5)

Since directly computing the Hessian matrix H
θ̂

and its inverse as
given in Eqs. (3–5) is computationally expensive, we used stochastic
gradient to obtain Hessian Vector Products (HVP’s) and their
inverse on mini batch of training images. Specifically, we calculate
HVP’s for each layer, which is the product between the Hessian
matrix H

θ̂
and gradient vector of loss.

In the work of Koh and Liang (2017) the gradients in Eq. (3)
and influential image in Eq. (5) were calculated based on the entire
parameter set θ of the neural network. We expand this approach, by
performing the analysis layer-wise, by separately finding gradients
and HVPs for each layer l in the network, thus obtaining layer-wise
influence scores as given below:

Iscr_l
(
xj, x̂k

)
= Ilmod,loss

(
xj, x̂k

)
=

dL
(
x̂k, θ̂lε,xj

)
dε

|ε=0

=

(
−∇θL

(
x̂k, θ̂

)T
H−1

θ̂
∇

θli
L
(
xj, θ̂lε,xj

))
(6)

In the above expression, θ̂l represents the parameters for the lth

layer of the network, θli is the ith parameter for a specific layer
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for which the inverse hessian is being calculated and Iscr_l is the
influence score for a specific layer. The computation for Eq. (6) can
be efficiently obtained via TensorFlow expressions given later in
the text that will return the layer-wise gradients of the loss L

(
θ̂i

)
for an image xj, which we denote as ∇

θli
L
(
xj, θ̂lε,xj

)
. By varying

the parameter indices of ∇
θli
L
(
xj, θ̂lε,xj

)
in the above equation

we can extract the influence scores for each individual layer. To
calculate the layer-wise score, we will be evaluating expression
(6) for each possible triplet of a training set image, network
layer, and test set image

(
xj, x̂k

)
, j = 1, 2, ...n and k = 1, 2, ...m

and will call it influence score. The image in the training set
xj with the highest influence score for the test set image x̂k
will be called the (most) influential image in layer l and can be
formally defined as: Iinf

(
l, x̂k

)
= argmaxj =1,2..n Ilmod,loss

(
xj, x̂k

)
.

An overall layer-independent (most) influential image
can also be obtained using the expression in Eq. (5) as
Iinf

(
x̂k
)
= argmaxj =1,2..n Imod,loss

(
xj, x̂k

)
.

We also analyze the compound influence based on layer-wise
influence scores:

Itotal
(
xj, x̂k

)
=

m∑
l =1

Iscr_l (xj, x̂k) (7)

It is known that computing a second order derivative of a hessian
matrix and its inverse, especially when the matrix constitutes of
optimizing the parameters as in case of deep neural network,
becomes very expensive in terms of space and time.

We use the TensorFlow implementation of get_Hv_op()
defined in pyhessian as: (Hv = flatten ( tf . gradients ( tf . math .

multiply ( flatten ( tf . gradients (L , θ̂i ) ), tf .stopgradient ( v ) ) ,
params ) )) to efficiently calculate the HVP’s similar to the one

used by Koh and Liang (2017). This efficiently reduced the
computational cost and made this approach feasible. We save the
influence score of each layer into associated arrays or dictionaries
and extract the influential image based on the highest influence
score for the purpose of analysis. In addition, we take the inter
and intra-class mean of layer-wise influence score for each test
set image with disturbance and save the score in the dictionaries.
Whereas, the total influence for a particular image x̂k is the sum
of all layer-wise influences calculated in Eq. (7) as the compound
influence score. Later, we show a comparison and establish a
relationship of the intra-class mean influence score calculated for
a particular test image with disturbances, using Itotal from Eq. (7),
and the corresponding non-disturbed image as a control group.
In this study, we have taken an average of the intra-class and
inter-class influence score over the samples within each class given
as: Iavg =

∑
Itotal(for each image per class)
No of images per class to identify an influence

based trend between the image disturbance and their controlled
groups.

In order to test our methodology, we used the VGG16
network architecture, and defined the cues we wanted to
quantify. We evaluated our method on the ImageNet dataset
with 10 classes (chair, cat, elephant, zebra, screwdriver, bird,
cup, toaster, bus and bicycle) using three types of disturbances:
(1) foreground placed on a white-background, (2) texture added
(Textured) and (3) style added (Styled), where original images
were used as controls (Figure 1). We simplified the class
labeling and do not categorize with a separate class label,

FIGURE 1

Exemplary styled and textured images used in the dataset for adding disturbances. Styled images are taken from the work of famous artists (left to
right: The Muse by Pablo Picasso, 1935; The Great Wave off Kanagawa, 1831; Woman with a Hat (Femme au chapeau) by Henri Matisse, 1905; The
Starry Night by Vincent van Gogh, 1889). As an example of the dataset used in the analysis, an original image of elephant class is shown with added
disturbances.

Frontiers in Computational Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1172883
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1172883 July 20, 2023 Time: 15:17 # 5

Aamir et al. 10.3389/fncom.2023.1172883

i.e., ImageNet’s Tabby cat/Persian cat is labeled as "cat" and
humming bird/Goldfinch as "bird," etc. All original images are
from the ImageNet dataset, and we used a subset of approximately
30,000 images (30 × 1000) as our training set and 200 images
as a testing dataset, where the latter contains disturbances
(200 = 5 images × 10 classes × (1 original + 3 disturbance
types)).

For white-background images (five per class) we eliminated
the background and replaced it with white color, whereas, for
styled and textured images we adopted the method from Gatys
et al. (2015) and Johnson et al. (2016), respectively. We transferred
different styles and texture to 50 images (5 per class) added to the
white-background images.

3.2. Clustering and cluster variables

We used hierarchical clustering as a statistical method to
determine the similarity among the various images based on
the observed disturbances. We started by considering the images
with added disturbances and the inter/intra-class control images
of the VGG16 as separate clusters, i.e., a cluster of singletons.
We took an average of the individual layers from (Il_avg =
l1_avg, . . . , l16_avg) for all the class images in the testing dataset
(i.e., 5 images × 4 cases × 10 classes) as feature vectors. The
clustering was based on 4 cases: original image, image with white
background, textured and styled images. At each iteration step,
we selected two singletons (i.e., images with disturbances and
original images) and measured the similarity Sij (%) between
cluster-singletons "i" and "j.′′ We used average linkage to calculate
Euclidean distance dij between singletons from cluster-variables
(i.e., original, styled, textured and white background) and merged
the pair with the least distance. We then calculated a correlation
distance matrix using Pearson’s correlation ρij (Marti et al., 2017)
to identify the common characteristics based on the image feature
vectors.

4. Results

Our experiments were conducted on the VGG16 architecture
using the ImageNet dataset, with our training set consisting
of 30,000 images. To show results for the network model’s
transparency in decisions, we calculated layer-wise influence scores
for 200 test set images. Some exemplary images used in the analysis
can be found in the Supplementary material.

4.1. Image classification with input image
disturbances

In an initial experiment, we examined the classification
response to all types of disturbances. Almost all images from the
original and white-background categories were correctly classified
by the network (Table 1). The accuracy values of the images shown
in Table 1 are the Top 5 probability values of the pre-trained VGG
16 network. It is noteworthy that images with a white background
showed comparable predictions to images in the original category,

TABLE 1 Classification accuracies and standard error of means (SEM)
showing the results for five classes of ImageNet.

Type of images Class label Accuracy SEM

Original Bicycle 0.50 ± 0.23

Birds 0.95 ± 0.04

Bus 0.97 ± 0.01

Cat 0.54 ± 0.17

Elephant 0.71 ± 0.03

Styled Bicycle 0.20 ± 0.02

Birds 0.29 ± 0.09

Bus 0.79 ± 0.10

Cat – –

Elephant – –

Textured Bicycle – –

Birds – –

Bus – –

Cat – –

Elephant – –

White background Bicycle 0.34 ± 0.05

Birds 0.92 ± 0.07

Bus 0.97 ± 0.01

Cat 0.50 ± 0.17

Elephant 0.71 ± 0.10

All original images were pre-trained on VGG16 and were classified in a range between
(50 and 97%) with correct class labels. As for the styled images classification accuracies
mostly fluctuate between (20 and 79%), images with white background (34–97%).
However, all textured images failed to give correct class predictions (0%) hence are not
listed in the table above.

making the object an important cue for decision making. There was
a slight decrease in prediction probabilities for the styled images
when compared to the original and white-background images. By
contrast, textured images did not get correctly classified because
the texture was derived from a completely different class of images.
Therefore, the decision was biased because it was based on the
added texture rather than the class itself, suggesting that the texture
of the image plays an important role in network decision-making.

4.2. Influential image scores and class
predictions

In the previous sections, we showed how to calculate influence
scores for each of the 16 layers of the VGG16 network and named
it layer-wise influence score (Iscr_l). We also defined the total
influence score Itotal as the sum of all the 16 layers to analyze
the global network predictions. To identify influential images,
here we used this total influence score for all images with added
disturbances as well as the original images to identify which training
image influenced the prediction of a testing image with the highest
influence score.

All the original images were predicted correctly and were given
the same predicted class label as their influential image (Figure 2A
and Table 2). For the white-background images, the network’s
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FIGURE 2

Intra-class influential images with highest influential score calculated using (Itotal) among the training set and corresponding test inputs of panels (A)
original, (B) styled, (C) textured, and (D) white background images.

TABLE 2 Intra-class influential images and the corresponding test images with their ImageNet class id and class label along with average influence
score shown for five classes.

Types of images Influential image Test image Average
influence score

Class id Class label Class id Class label

Original 11 “Goldfinch, Carduelis” 11 “Goldfinch, Carduelis” 4.73E + 05

385 “Indian elephant, Elephas maximus” 385 “Indian elephant, Elephas maximus” 4.58E + 00

444 “Bicycle-built-for-two, tandem bicycle” 444 “Bicycle-built-for-two, tandem bicycle” 2.22E + 01

779 “School bus” 779 “School bus” 1.83E + 03

281 “Tabby, tabby cat” 281 “Tabby, tabby cat” 1.13E−03

Styled 11 “Goldfinch, Carduelis” 88 “Macaw” 3.83E + 00

385 “Indian elephant, Elephas maximus” 917 “Comic book” 1.32E + 01

444 “Bicycle-built-for-two, tandem bicycle” 671 “Mountain bike, all-terrain bike” 1.07E + 02

779 “School bus” 779 “School bus” 1.03E + 09

281 “Tabby, tabby cat” 557 “Flagpole, flagstaff” 3.45E−05

Textured 11 “Goldfinch, Carduelis” 386 “African elephant, Loxodonta africana” 1.18E + 01

385 “Indian elephant, Elephas maximus” 184 “Irish terrier” 7.90E−01

444 “Bicycle-built-for-two, tandem bicycle” 533 “Dishrag, dishcloth” 2.47E−01

779 “School bus” 533 “Dishrag, dishcloth” 1.08E + 05

281 “Tabby, tabby cat” 386 “African elephant, Loxodonta africana” 2.87E−04

White background 11 “Goldfinch, Carduelis” 11 “Goldfinch, Carduelis” 3.84E + 01

385 “Indian elephant, Elephas maximus” 385 “Indian elephant, Elephas maximus” 4.91E + 02

444 “Bicycle-built-for-two, tandem bicycle” 444 “Bicycle-built-for-two, tandem bicycle” 4.95E + 00

779 “School bus” 779 “School bus” 1.25E + 01

281 “Tabby, tabby cat” 281 “Tabby, tabby cat” 8.32E−04

The varying influential image class id and label for styled and texture images indicate a strong dependence on the added visual disturbance.

prediction was also correct, and the influential training image also
belonged to the same class label as the original (Figure 2D). As
for the styled and textured images, one interesting observation
is the similarity of the spatial features of the test images with

their most influential training images (Figures 2B, C). However,
in this case, the influential images played a negative role in the
sense that the predicted class labels for the test images were very
different from their influential image class, indicating a strong
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FIGURE 3

Comparison of intra-class scores showing a plot between average influence scores (Iavg) of original, styled, textured images and white background
images for five classes. Red dotted reference line indicates median whereas green and blue lines indicate max and min ranges for the spread of the
whole dataset, respectively.

FIGURE 4

A dataset split of five intra-class styled images with correct and incorrect classification results. The images with influence score in a positive median
range are classified correct while all images with influence score range below the median are incorrectly classified. Red dotted lines show the
median, whereas the green and blue line show the min-max range of influence scores of the whole dataset.

dependence on the styling and texture representations of the input
images (Table 2). Also, for styled and white-background images, the
average influence score shows comparable fluctuations with their

original images as control groups, indicating their strong influence
on correct network classifications, as is also evident from Table 1.
By contrast, we observe a larger dispersion of influence score
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TABLE 3 Classification accuracies of texture image patches and class
labels of content images after texture transfer.

Before texture transfer After texture transfer

Texture image
patch

Accuracy Content
image

Predicted
class label

Zebra 0.93 Bird Zebra

Leopard 0.90 Cat Leopard

Elephant 0.95 Bus Indian elephant

Golden retriever 0.92 Elephant Golden retriever

in images that have been styled or textured (Figure 3), because
their visual appearance has been disturbed. However, the average
influence score of all textured images as well as their control group
in most cases are very different, indicating that influential training
images are not considered for prediction, but the added texture was
more dominant in network decisions (Table 2).

We calculated the average of the intra-class influence score
(Iavg) to show a comparison of the images with disturbances with
their original images as control plotted for five classes in Figure 3.
The images were correctly classified if the influence score range lies
at or above the positive median range of the intra-classes. Since
most styled classes were classified correctly, we split the dataset
to give a clearer distinction of the network behavior as shown in
Figure 4 for the aforementioned classes. We can see that all images
of the Bicycle and Bus class were correctly predicted by the network,
whereas for the Birds class only the images with influence score
above the median range of dataset were correctly classified. All
those images that do not lie in this range and their influence score
is low were misclassified.

4.2.1. Analysis on images with texture
To verify the importance of texture for the network’s decisions,

we tested the network with texture patches as input. The network
was able to correctly identify the texture with classification
probabilities given in Table 3. Further, we transferred the textured
patches to 50 white-background images using the method Gatys
et al. (2015) (Figure 5) to confirm our findings. Again, the network
was making its decision based on the texture but not on the content
of the image (Table 3, second column).

As a case study, we further evaluated the textural biasness by
adding texture with different percentages onto the images, hence,
checking the correct prediction capability of the network model.
We show the results of this case study example by using elephant
texture patches applied with various percentages to an image of
the Cat class (Figure 6). Maximum image distortion starts as soon
as the texture transfer algorithm reaches the 10th iteration and
continues up to iteration 20. Then it gradually increases with the
remaining transfer steps. During this time the appearance of the
original images changes in a drastic manner making it difficult
for the network to correctly identify the predicted class label. The
change in the training image class label was observed to vary after
the 10th iteration step of the texture transfer. The influence score
shown here in the example is calculated with respect to intra-class
of the cat class.

A change in the amount of added texture (%) affected the
network’s decisions in an inverse proportion to the fluctuation in
influence scores. In addition, the amount of texture on the test
images decreased the influence that a training instance had on
the network’s ability to correctly classify the images. Consequently,
incorrect object recognition resulted as the texture on test images
increased and the influence score became negative. Thus, the
image’s texture has a greater influence on the network’s decisions
than the object itself.

4.2.2. Analysis on images with style
Since the network was able to correctly classify most of the

styled images (Table 1) we divided the styled image dataset to
see it’s effect of the influence score on correct and incorrect
class predictions. We further performed inter-class experiments to
evaluate how the training set of one class influences the testing
set of the other classes in terms of network’s class prediction
capability. For demonstration purpose we show the results of inter-
class evaluation for three classes and the corresponding dataset split
for style images with correct and incorrect classification in Figure 7.
The styling of images alters their appearance, making it difficult for
the network to identify the original image features and use them for
its decision. This network can provide some correct classification
results in spite of the fluctuation in the layer-wise influence scores
(Table 1), which is also reflected in the dataset split for styled images
(Figures 4, 7). The model made a correct prediction when the

FIGURE 5

Example showing predicted class label and accuracy for elephant class before and after transfer of texture.
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FIGURE 6

An example showing elephant texture patch transfer for 50 iterations on an image of a cat class showing the decrease of influence score and
accuracy with the increase of texture at different iteration steps.

influence score showed comparable fluctuation between the Intra-
class scores of the original (control) images or between the range
calculated for the original images of the inter-classes. However,
incorrect predictions were made when the influence score were
more dispersed from their corresponding control images.

4.2.3. Analysis on images with white background
From our results of influential images and class prediction,

we found that original and white background images have a close
resemblance in terms of the influential images. To verify this
resemblance, we performed hierarchical cluster analysis based on
the layer-wise feature vectors calculated earlier in the section. As
an example of this analysis, we show the results for three classes as
well as their Pearson’s distance correlation matrices to interpret the
results shown in Figure 8.

We identified three clusters: original and white background
as one cluster shown in blue, styled in red and textured in green
(Figure 8). The color of the cluster variables is assigned depending
on how similar/dissimilar the observations are to better visualize
the common characteristics in clustering. We assigned blue color to
show grouping between original and white background images, red
color for styled and green color for textured images. The similarity
is determined based on the global influence score calculated for
each intra-classes using Iavg . To further learn about the common
patterns that the model considers during decision making, we
identified mean influence score of disturbed images at individual
layers using Il_avg . For demonstration purpose we present the
results of three classes showing the mean influence score of different
layers of all types of images as shown below in Figure 9. It was
found that the layer-wise influence scores between the original
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FIGURE 7

Results of inter-class influence score (A) influence of training set of different classes on testing set of bicycle class, (B) influence of training set of
different classes on testing set of bird class, (C) influence of training set of different classes on testing set of bus class. Parts (D,E) shows the split in
the corresponding styled image dataset showing correct and incorrect classifications, whereas in panel (F) all classes were correctly able to classify
styled buses and hence no incorrect classification is given. Red dotted lines show the median, whereas the green and blue line show the min-max
range of influence scores of the whole dataset. The images with influence score below the positive median range of the training set were incorrectly
classified, whereas those above or are within the range of their intra-class influence are correctly classified.
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FIGURE 8

Layer-wise intra-class cluster analysis of the influence score on VGG16 network shown for three classes bicycle, bird, and elephant class. Parts
(A,C,E) show three clusters, evaluated by Pearson’s distance correlation based on Iavg. The original and white background images were determined
as one cluster in terms of their visual similarity of features while style-textured images were identified as separate clusters based on dissimilarity from
their controlled groups. Panels (B,D,F) shows their corresponding correlation matrix based on intra-class average layer-wise influence scores (Il_avg)
for the above classes.

and white-background images were highly similar, making the
actual object in the image useful as a learned representation
for prediction (Table 1). The layer-wise influence scores of the

styled images fluctuated more toward the middle layers, indicating
that the deeper layers observe abstract representations compared
to their controlled groups. By contrast, the network identifies
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FIGURE 9

Layer-wise fluctuation of influence score shown for three classes bicycle, bus, and bird (A) layer-wise influence score for original images, (B)
layer-wise influence score for styled images, (C) layer-wise influence score for textured images (D) layer-wise influence score for white background
images. In the cases presented above, styled images fluctuate mostly in the middle layers, whereas for textured images the higher peaks are toward
the last layers whereas for white background images the influence of object is more pronounced throughout similar to influence of its
corresponding original images.

no visual similarity between the images with added texture
and their corresponding original images. As a result, textured
images show high peaks of layer-wise influence scores toward
the last layers. Thus, embedded texture with high peaks at last
layers tend to represent the learned texture as also shown in
Table 3 where classification is made on the added texture. Thus,
textured images formed a separate cluster and exhibited a negative
influence, indicating a high degree of dissimilarity between layer-
wise influence scores.

4.2.4. Bi-directional interpretation of influence
scores via Shapley values

To further evaluate and interpret the learned representations,
we identified Shapley value-based (Lundberg and Lee, 2017)
influential regions between different types of test inputs
(Figure 10). Here, we did not calculate layer-wise Shapley
values but only considered the test images to see which image
regions were important for the network using our previous work
(Aamir et al., 2022). The reason for this analysis is that we wanted
to identify what the network looks at in making its decision. We
considered a region to be influential if the Shapley values in that
region were high (marked by red color in the Figure 10). As
shown by the results of the clustering method, the original and
white background images are grouped together, and the styled and

textured images are grouped separately, this is also indicated in the
Shapley values interpretation (Figure 10).

5. Discussion and conclusion

The interpretation of the reasons why a machine learning
model arrived at a particular decision are still not understood,
particularly for Deep Neural Networks, which are often referred
to as "Black Box" models. Finding good reasons and making
model decisions transparent are challenging tasks unless we know
the underlying learned representations. We developed a layer-
wise interpretability approach in order to increase transparency
in network predictions based on intra-class layer-wise influence
scores calculated from training images onto their corresponding
test images with disturbances. According to Figures 10B, C, the
influential regions of the styled and textured images are larger
and more dispersed than those of the original images. Adding
style or texture changes the visual appearance of the image and a
pre-trained model, such as the one used in our study, is unable
to make correct predictions. According to Hinton et al. (2015)
and Kriegeskorte (2015), CNNs use a combination of low level
as well as high-level complex features to make their decisions.
Adding disturbances in images, as in our case, changes the
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FIGURE 10

Shapley-value based influential regions of images with disturbances, (A) original (B) textured (C) styled, and (D) white background images.

visual appearance affecting the prediction capability of the model.
Another reason for the misclassification of textured and styled
images could be that CNN models rely on the shape of the object
and tend to ignore color information associated with it (Ritter
et al., 2017). In our study, we have also observed that removing
the background and adding a white color background does not
promote misclassification. However, distorted shape boundaries
due to style and added texture made it impossible to identify
low level features and the network failed to correctly classify the
disturbed images. Specifically, the textured images were always
classified based on the texture pattern added on the content
image. The texture bias in the pre-trained CNN that we observed
through the influence score has also been identified in the work
of Geirhos et al. (2018) and Hermann et al. (2020) and retraining
targeted layers may help to address this bias. Therefore, fine-
tuning individual layers is more efficient than retraining the entire
network. We demonstrated this using the VGG-16 network but this
approach can be used for other pre-trained convolutional neural
networks, because the overall functionality of all convolutional
networks remains same. Since, our method is post hoc interpretable,
analyzing networks with fewer layers is easier to interpret compared
to very deep networks.

The work of Koh and Liang (2017) considers the entire
parameter set of the model to identify influential images of
the (training, testing) dataset and mostly works with adversarial
images. However, giving reasons for the identified influential
images and features that make the images influential over the
others or interpretation of neural network decisions based on
the influential images was not the scope of their paper. We
therefore built on the idea of identifying influential images,
and firstly modified our images with disturbances and we do
not consider adversarial images in our dataset. The reason for
adding disturbances in images is to make model decisions more

transparent, hence going a step further to explore individual
layers. We have explored the layer-wise influences of individual
(training, testing) ImageNet images as well as the influences of
modified images. This way we were able to identify which layers
can be retrained or fine-tuned to deal with images that are slightly
modified but belong to the same intra classes. This approach could
in particular be useful in medical domain to identify normal and
slightly distorted or modified images this way potentially helping in
early diagnostics of various diseases. We calculated the compound
influence (I_{total}) score as well as layer-wise scores to identify
transparent solutions of influential (training, testing) images. We
observed that our compound and layer-wise influence scores were
somewhat related but the compound influence of the layers did
not give decisive results on the modified images as compared
to the layer-wise analysis. Hence, there is definitely a clear gain
in obtaining results of local and more precise influential images
compared to global and more generalized network descriptors, for
which we have provided evidence by the different analyses shown in
the paper. The approach presented here can be seen as a step toward
providing deeper insights and transparency regarding the internal
states of deep learning models. Several types of disturbed input
images were tested in order to observe the effects of our method
on class predictions. We have found that a positive layer-wise
influence score range of the training instance provides information
about why there are correct or incorrect network decisions. In
addition, identifying specific layers where the disturbed images’
influence scores are most noticeable can be fined tuned to improve
the correct predictions. Considering styled images, we observed
correct class prediction when the influence score ranges in between
the intra-class scores of the original images or between the ranges
calculated for the original images of the inter-classes. The removal
of background, however, does not have much effect on the correct
class prediction and the foreground object alone is sufficient for
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the correct classification. This is in spite of the fact that the
network strongly relies on textural cues for its classification and a
sudden drop in classification accuracy is observed as soon as the
percentage of texture is increased. Thus, this suggests that one can
overcome the texture bias and retrain the target layers to improve
the predictability of the deep network models.

Currently in our study, we have proposed a method that
can make the decisions of a network transparent by providing
layer-wise influence scores. We tested our methodology by adding
disturbances to images taken from the ImageNet dataset. It might
be useful to further improve our method and make it more robust
by testing it on other publicly available datasets. This would help
to provide a more refined contribution of identifying the role of
disturbances in individual layers of the networks. This information
could then be used to fine-tune and/or retrain the network in order
to avoid biased decisions. Furthermore, our method is constrained
by using only a limited number of image disturbances. In future
work this limitation can be overcome by including other more
complex disturbance patterns or by using test images without any
texture, for example, just simple shape outlines of the objects. Other
future work may involve using this layer-wise influence score to
obtain more transparent solutions to image classification problems
in the medical domain. In particular, we believe that we could
improve classification accuracy and interpret and debug the model
to achieve better results, which should be a promising direction for
future research.
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