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Excitatory and inhibitory neurons are fundamental components of the brain,

and healthy neural circuits are well balanced between excitation and inhibition

(E/I balance). However, it is not clear how an E/I imbalance a�ects the self-

organization of the network structure and function in general. In this study, we

examined how locally altered E/I balance a�ects neural dynamics such as the

connectivity by activity-dependent formation, the complexity (multiscale entropy)

of neural activity, and information transmission. In our simulation, a spiking neural

networkmodel was usedwith the spike-timing dependent plasticity rule to explore

the above neural dynamics. We controlled the number of inhibitory neurons and

the inhibitory synaptic weights in a single neuron group out of multiple neuron

groups. The results showed that a locally increased E/I ratio strengthens excitatory

connections, reduces the complexity of neural activity, and decreases information

transmission between neuron groups in response to an external input. Finally, we

argued the relationship between our results and excessive connections and low

complexity of brain activity in the neuropsychiatric brain disorders.

KEYWORDS

E/I balance, spiking neural network, complexity, information transmission,

neuropsychiatric brain disorder, self-organization

1. Introduction

The neural network structure and its function are interdependently organized. That

is, neural activity emerge through the cycle of interactions between neurons connected by

synapses, and the synaptic efficacy changes depending on neural activity. The interaction

is influenced by the neural physiology that determines the behavior of an individual

neuron and synapse. Thus, abnormalities in the physiological parameters may impair the

organization processes of the neural structure and function, leading to altered responses to

sensory stimuli.

The excitation and inhibition (E/I) of neurons are the fundamental physiological basis

of neural circuits. An atypical E/I balance is considered the main precipitating factor for

schizophrenia and autism spectrum disorder (ASD) (Rubenstein and Merzenich, 2003;

O’Donnell, 2011; Nelson and Valakh, 2015). Hashemi et al. (2018) reported that the number

of inhibitory neurons (in particular, parvalbumin-expressing interneurons) in the prefrontal

cortex of patients with ASD was less than that in typical developing (TD) persons, whereas

the number of excitatory neurons was comparable. In addition, a study using a mouse
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model of ASD showed a reduction in inhibitory neurons in only

one hemisphere of the parietal and occipital cortices rather than

throughout the brain (Gogolla et al., 2009). Further, a decrease

in gamma aminobutyric acid (GABA) receptors, which affects

the E/I balance, was also reported in the brains of patients with

ASD (Fatemi and Folsom, 2009; Oblak et al., 2009, 2011; Blatt

and Fatemi, 2011). Furthermore, using optogenetic tools, Yizhar

et al. (2011) showed that the elevation of E/I balance, i.e., weaker

inhibition, within the medial prefrontal area of mice induced

impairments in social behaviors similar to those observed in

patients with ASD and impaired information transmission, i.e., a

decrease in mutual information between a neuron and a stimulus.

Studies on the brains of individuals with neuropsychiatric

disorders have reported low complexity of neural activity (Bosl

et al., 2011; Ghanbari et al., 2015; Hadoush et al., 2019; Xu

et al., 2020) and discussed its relationship with the E/I balance.

Complexity is often evaluated in terms of the unpredictability

of time-series signals, and a method that uses sample entropy

over multiple time scales [multiscale entropy (MSE)] has been

proposed to evaluate the complexity (Costa et al., 2002, 2005).

Bosl et al. (2011) measured electroencephalogram (EEG) signals

during the resting state in children with ASD and TD and

showed that the mean of MSE across channels in the children

with ASD was lower than that in the TD children. Further,

using magnetoencephalography (MEG), Ghanbari et al. (2015)

evaluated children with ASD during the resting state and showed

that the complexity of MEG signals differed from that in TD

children, depending on the brain region and frequency band.

Although the authors hypothesized that the tight regulation of

neural activity by GABA might lead to the reduced complexity of

neural activity (Ghanbari et al., 2015), the specific mechanism is

not well understood.

Various studies have reported an atypical brain structure in

individuals with neuropsychiatric disorders such as increased

neuronal density of some local regions (cortical areas M1, V1,

frontal association cortex, and S1) (Casanova et al., 2006), excessive

connections between regions (Solso et al., 2016), and decreased

global connectivity in the frontal and temporal regions (Van der

Meij and Voytek, 2018). Although these findings are controversial,

various studies from different perspectives indicated that these

atypical structural characteristics may indicate a disruption in

the interaction between brain regions. As a result, characteristic

behavior and brain activity indicative of neuropsychiatric disorders

are observed. However, it is unclear how an altered E/I balance in a

local brain region may affect the low complexity of neural activity

and structural characteristics, especially from the perspective of

organization of the brain through structure-function interactions.

Several studies have investigated the relationship between

the E/I balance and neural activity using a computational

model. Most of these studies showed that globally weak or

absent inhibitory connections in the network resulted in atypical

neural activity, e.g., unstable dynamics (Loh et al., 2007), less

information transmission (Deco et al., 2014), reduced neural

oscillation (Börgers and Kopell, 2003), and an impairment in the

self-organization of the network (Yamada et al., 2013). However,

as previously mentioned, physiological abnormalities related to the

E/I imbalance were observed in some areas of the brain (Gogolla

et al., 2009). Therefore, it is necessary to examine not only the

globally atypical inhibition but also the effect of atypical inhibition

in a local brain region on the entire brain structure and its

activity. Further, synapses in the brain exhibit plasticity. Therefore,

synaptic connections between neurons can be modified depending

on neural activity, and the altered synapses in turn affect neural

activity. To the best of our knowledge, no study has examined how

locally altered E/I balance in a single brain region affects both the

mutual organization of an atypical network structure and the low

complexity of neural activity in the brain.

Park et al. (2019) investigated the relationship between the

network structure and the complexity of neural activity using a

computational model. They simulated a spiking neural network

model consisting of multiple neuron groups with different

macroscopic network structures. Their results showed that the

complexity of neural activity decreased in a neuron group with

many local connections, i.e., local over-connectivity. However,

since the global structure among neuron groups was given, it is

not clear how the excessive connectivity emerges through the spike

timing-dependent plasticity (STDP) that one of the plasticity rules

to change synaptic weights based on the spike timing between two

neurons.

The main objective of this study is to elucidate how locally

altered E/I balance affects not only neural activity and information

transmission, but also the organization of connectivity in the

brain using a spiking neural network model. We hypothesize that

organization through the interaction of the neural structure and

function under local E/I imbalance leads to excessive connectivity

between neurons and decreased complexity of neural activity,

resulting in decreased information transfer in response to an

external input. To verify this hypothesis, we constructed a model

consisting of multiple spiking neuron groups and controlled the

number of inhibitory neurons and the inhibitory synaptic weights

to excitatory neurons within a single neuron group to change

the E/I balance locally (see Figure 1). Further, we used the STDP

to change excitatory synaptic weights in the model. We used

the average weights of connections in each neuron group and

between neuron groups to evaluate the neural network structure

after the STDP process and used MSE to evaluate the complexity of

neural activity. To evaluate information transfer in the network in

response to an external input, we measured the mutual information

(MI) between each neuron group and an external input and the

transfer entropy (TE) between neuron groups when external input

was given. Finally, we discuss the correspondence between our

simulation results and existing studies in neuropsychiatric brain

disorders that showed excessive connections and low complexity

of brain activity.

2. Materials and methods

2.1. Network model

Figure 1 shows an overview of the model used in this study.

The model consists of multiple neuron groups, each of which

has 800 excitatory and NI inhibitory neurons. We used regular-

spiking neurons and fast-spiking neurons from the Izhikevich
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FIGURE 1

Neuron group model. (A) Intra- and interconnections in a model with two neuron groups. (B) A network model using ten neuron groups. Each

neuron group comprises excitatory (red nodes) and inhibitory (blue nodes) neurons, as shown in (A). Excitatory neurons have intra- (black arrows)

and interconnections (purple arrows), and inhibitory neurons have intraconnections only. Each white circle indicates a neuron group and purple arc

arrows show connections between neuron groups. The number of inhibitory neurons and the synaptic weights from inhibitory neurons to excitatory

neurons in neuron group 1 (imbalanced neuron group) are changed to control the local E/I balance. The parameters in other neuron groups

(balanced neuron group) are not changed. E/I, excitation and inhibition.

model (Izhikevich, 2003, 2006; Izhikevich and Edelman, 2008)

for the excitatory and inhibitory neurons, respectively. Here,

the fast-spiking neuron corresponds to a parvalbumin-expressing

interneuron of which the number and activity are smaller in

the brains of individuals with psychiatric than in those of

normal healthy persons (Fatemi and Folsom, 2009; Oblak et al.,

2009, 2011; Blatt and Fatemi, 2011; Hashemi et al., 2018). Each

excitatory neuron has 70 connections with randomly selected

neurons within the same neuron group (intraconnection) and 30

connections with randomly chosen neurons in other neuron groups

(interconnection). These parameters were determined based on the

biological evidence that the ratio of local and global connections

of pyramidal excitatory neurons is ∼7:3 (Gruner et al., 1974).

Intra- and interconnections have time delays for the propagation of

potentials sampled from uniform distributions in the range of 2–4

and 4–10 ms, respectively. The synaptic weights of these excitatory

connections change based on an STDP rule (Pfister and Gerstner,

2006), which is a biologically plausible plasticity mechanism.

Each inhibitory neuron has 100 intraconnections but does not

have interconnections. To control the strength of inhibition by

parameters, we assume that inhibitory synapse does not have

plasticity, i.e., two synaptic weight matrices, WIE, from inhibitory

neurons to excitatory neurons, and WII, between inhibitory

neurons, are fixed. The time delay for inhibitory connections is

sampled from a uniform distribution in the range of 1–3 ms.

2.2. Simulation setting

We performed simulations using two kinds of network models;

one with two neuron groups and the other with ten neuron groups,

to investigate the effects of the local E/I imbalance in a single

neuron group on the entire network. The following parameters

were used to control the E/I balance in a neuron group:

• NI: Number of inhibitory neurons {100, 150, 200 (baseline),

250, 300}.

• WIE: Synaptic weights from inhibitory neurons to excitatory

neurons {0.0125, 0.01875, 0.025 (baseline), 0.03125, 0.0375}.

Hereafter, a neuron group with these control parameters is

called an imbalanced neuron group, while other non-controlled

(baseline) neuron groups are called balanced neuron groups. The

imbalanced neuron group is shown as neuron group 1 in Figure 1.

The parameters in the balanced neuron groups were set to NI =

200,WIE = 0.025, andWII=0.013. Initial excitatory synaptic weight

WE were sampled from uniform distributions in the range of 0.0–

0.04. The number of inhibitory neurons were determined based on

the existing study that showed the ratio of number of excitatory

and inhibitory neurons in the mammalian cortex is ∼4:1 (Nowak

et al., 2007). The parameters for synaptic weights were determined

to show resting-state-like neural activity in vivo (Softky and Koch,

1993; Wilson, 1994), where each neuron shows Poisson firing

patterns with low frequency after the STDP process.

The total simulation time was 1,520 s, and one time step was

0.05 ms. The duration for changes of excitatory synaptic weights

through STDP was set as 1,500 s from 5 s. Each neuron received

excitatory input of homogeneous Poisson spike trains with 0.6 Hz

throughout the simulation using the following equation:

P(n spikes during 1t) = e−λ1t (λ1t)n

n!
, (1)

where, λ is the firing rate, and n is the number of spikes during

a time interval 1t. A synaptic weight of Poisson input was set

to 0.6. After the changes of synaptic weights, the complexity was

evaluated using neural activity from 1,510 s for 5 s, when neural

activity reached a steady state. Neural activity in each neuron group

is represented as a time series of the local average potential (LAP),

which is the average membrane potential of excitatory neurons in

a neuron group. Therefore, LAP reflects the synchronized neural
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activity of excitatory neurons. The simulation was conducted

independently 20 times for each condition.

To investigate how well the organized network can transfer

the external input to other neuron groups, we measured the MI

between the external input and neural activity of each neuron group

when the external input was given to excitatory neurons in one

neuron group in the network from 1,515 s for 5 s.We alsomeasured

the TE to understand the information transmission from neural

activity of a neuron group receiving external input to those of

other neuron groups. In this study, we constructed the external

input using an inhomogeneous Poisson process. The firing rate of

the process λ was determined by λ(t) = 25 sin2(2π t). A synaptic

weight of external Poisson input was set to 0.05. The LAP signal in

each neuron group and the summation of external Poisson input in

each time step were used to calculate the MI and TE.

2.3. Neuron model

We used regular-spiking and fast-spiking neurons of the

Izhikevich neuron model (Izhikevich, 2003, 2006; Izhikevich and

Edelman, 2008). The equations are as follows:

dv

dt
= 0.04v2 + 5v+ 140− u+ Isyn, (2)

du

dt
= a(bv− u), (3)

if v ≥ 30mV, then

{

v← c

u← u+ d,
(4)

where v and u represent membrane potential and recovery variable,

respectively. Variables a and b denote the time scale and sensitivity

of the recovery variable u, respectively. Variables c and d represent

the reset values of themembrane potential and the recovery variable

after the spike, respectively. These parameters are the same as

in other studies (Izhikevich, 2003, 2006). Synaptic current Isyn is

expressed as follows:

Isyn = gAMPA(0− v)+ gNMDA
[(v+ 80)/60]2

1+ [(v+ 80)/60]2
(0− v)

+gGABA(−70− v), (5)

Each conductance g is given by:

dg

dt
=

(

x
τ

τ1/(τ2−τ1)
2

τ1
− g

)

/τ1,

dx

dt
= −

x

τ2
,

x← x+ w upon spike from synapse,

(6)

where w is a synaptic weight. We used τ1 = 0.5 ms and τ2 = 2.4 ms

for gAMPA, τ1 = 4.0 ms and τ2 = 40.0 ms for gNMDA, and τ1 = 1.0

ms and τ2 = 7.0 ms for gGABA based on existing studies (Hill and

Tononi, 2005; Gerstner et al., 2014). In our study, the fourth-order

Runge-Kutta method was used to calculate the neuron model.

2.4. STDP

We used the triplet rule of STDP (Pfister and Gerstner, 2006) to

update the synaptic weights of excitatory connections. The triplet

rule of STDP changes synaptic weights based on the firing timing

of two postsynaptic spikes and one presynaptic spike, considering

their firing frequency. The amount of change in a weight, 1w, is

determined using the following equations:

1w =

{

−o1(t)[A
−
2 + A−3 r(t − ǫ)] if t = tpre,

r1(t)[A
+
2 + A+3 o2(t − ǫ)] if t = tpost,

(7)

dr1(t)

dt
= −

r1(t)

τ+
if t = tpre, then r1 ← r1 + 1,

dr2(t)

dt
= −

r2(t)

τx
if t = tpre, then r2 ← r2 + 1,

do1(t)

dt
= −

o1(t)

τ−
if t = tpost, then o1 ← o1 + 1,

do2(t)

dt
= −

o2(t)

τy
if t = tpost, then o2 ← o2 + 1,

(8)

where tpre and tpost denote the presynaptic spike arrival time

and the postsynaptic spike time, respectively. Synaptic weights

increase and decrease with tpre [long-time potentiation (LTP)] and

tpost [long-time depression (LTD)], respectively. Here, A+2 and A−2
control the amplitudes of the weight change based on the two

pair of spikes. The A+3 and A−3 control the amplitudes of LTP and

LTD for the triplet rule, respectively. We used A+2 = 5 × 10−11,

A−2 = 7 × 10−4, A+3 = 6.2 × 10−4, and A−3 = 2.3 × 10−5. The

time constants τ+, τ−, τx, and τy for controlling LTP and LTD decay

were set as 16.8, 33.7, 101, and 125 ms, respectively. Accordingly, ǫ

is a small positive constant that allows the weight to be updated

prior to r2 or o2. Here, we used ǫ = 1 ms. These parameters

were determined based on an existing study (Pfister and Gerstner,

2006). The weights of the inhibitory neurons (WIE and WII) were

not updated, and the minimum and maximum values of the weight

were 0 and 0.04, respectively.

2.5. Analyses neural activity

Neural activity in each neuron group is represented as a time

series of the LAP, which is the average membrane potential of

excitatory neurons in a neuron group. Therefore, LAP reflects

the synchronized neural activity of excitatory neurons. Here, we

analyzed the MSE, MI, and TE of LAP signals to investigate the

effect of local E/I imbalance in a neuron group on the complexity

of neural activity and information transmission among neuron

groups.

2.5.1. Multiscale entropy
MSE, which indicates the complexity (degree of irregularity) of

a time-series signal, is obtained by computing the sample entropy

for a coarse-grained signal over multiple time scales (Costa et al.,

2002, 2005). The procedure of calculation is as follows:
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1. Downsample an original signal x(t) to obtain coarse-grained

signal y(t) at scale ǫ:

y(t) =
1

ǫ

i=tǫ
∑

i=(t−1)ǫ+1

x(i) (1 ≤ t ≤ N/ǫ) (9)

2. Calculate sample entropy for each coarse-grained signal:

SampEn(r,m,N) = − ln[Cm+1(r)/Cm(r)], (10)

Cm(r) =
number of pairs(i, j) (|zmi − zmj | < r, i 6= j)

(N −m+ 1)(N −m)
, (11)

where zmi = {yi, yi+1, · · · , yi+m−1} represents a subsequence of

the coarse-grained signals from the ith to the (i + m − 1)th

data point of y(t), m denotes the length of the subsequence,

Y = {y1, · · · , yi, · · · , yN} means the coarse-grained signals, and N

denotes the length of Y .

We utilized LAP signal downsampled to 1 ms for each neuron

group as x(t), and used m = 2 and r = 0.15, which are commonly

used for MSE analysis.

2.5.2. Information transmission
MI is a measure of mutual dependence between two time series.

The MI between the LAP time series xi of the ith neuron group and

the external input signal u is calculated as:

MI(xi; u) =
∑

m∈xi

∑

n∈u

p(xi,m, un) log
p(xi,m|un)

p(xi,m)
, (12)

TE is a measurement that determines how one time series

affects another. The TE from the LAP time series xi of the ith

neuron group to the LAP time series xj of the jth neuron group

(where i 6= j) is calculated as:

TExi→xj =
∑

xj,t+1 ,x
k
j ,x

l
i

p(xj,t+1, x
k
j,t , x

l
i,t) log

p(xt+1|x
k
j,t , x

l
i,t)

p(xj,t+1|x
k
j,t)

, (13)

where, l and k indicate the historical lengths used to predict the

future states and t denotes the current time step. In this study, we

used l = 1 and k = 140 (= 7 ms). As TE includes the direction of

the information flow, unlike MI, we can evaluate the information

transmission from one neuron group receiving an external input

to other neuron groups. We utilized Java Information Dynamics

Toolkit (Lizier, 2014) to calculate MI and TE using the method

developed by Kraskov, Stögbauer, and Grassberger (Kraskov et al.,

2004).

3. Results

3.1. Two neuron groups

3.1.1. STDP under increased E/I ratio strengthens
intra- and interconnections

Figure 2 shows intra- and interconnections after the STDP

process in themodel with two neuron groups. The simulation result

shows that the intra- and interconnections in both neuron groups,

not only in the imbalanced neuron group, increased when the E/I

ratio increased, i.e., weak inhibition. In the case of a decreased

E/I ratio, i.e., strong inhibition, intra- and interconnections in

the imbalanced neuron group slightly increased. However, intra-

and interconnections in the balanced neuron group slightly

decreased.

3.1.2. Increased E/I ratio causes high firing rates
Figure 3 shows the firing rates of neuron groups after the STDP

process in the model with two neuron groups. The results show that

the firing rates in both neuron groups, not only in the imbalanced

neuron group, increased with the increased E/I ratio. This finding

might have been caused by increased intra- and interconnections,

as shown in Figure 2.

3.1.3. The complexity of neural activity decreases
with the increased E/I ratio

Figure 4 shows the complexity of neural activity (summation

of sample entropy for 100 scale factors) after the STDP process

in the model with two neuron groups. As shown in the figure,

the complexity of neural activity in both neuron groups decreased

when the E/I ratio increased. This result implies that the neural

activity with low complexity in the imbalanced neuron group

induced a decrease in the complexity of neural activity in the

balanced neuron group through interconnections. Further, in the

case of the increased E/I ratio, a decrease in the complexity

of neural activity occurred in all scale factors, especially in

the higher scale factors (see Supplementary Figure S1). Since the

downsampling according to the scale factor acts like a low-pass

filter, this result indicates a significant decrease in the complexity

of neural activity in low-frequency bands with an increased E/I

ratio.

The same analyses of neural activity in the model with two

neuron groups without STDP showed lower firing rates and lower

complexity than those with STDP, even in those with an imbalanced

E/I ratio (see Supplementary Figures S2, S3). Further, the balanced

neuron group was not affected by changes in the E/I ratio in

the imbalanced neuron group. Thus, the relationship between the

locally imbalanced E/I ratio and the altered complexity of neural

activity/firing rates was induced by organization through STDP.

3.2. Ten neuron groups

To investigate the effect of the local E/I imbalance within

a single neuron group on the whole network, we constructed

a network model using ten neuron groups. We used a simple

ring topology in which all neuron groups were coupled in the

same way to eliminate the influence of network topology as much

as possible and to clarify the graph-theoretical distance between

neuron groups. Each neuron had interconnections with randomly

selected neurons from four neighboring neuron groups. The results

of only three cases ([high (H)-E/I; NI = 100 and WIE = 0.0125],

[low (L)-E/I; NI = 300 and WIE = 0.0375], and [baseline (B)-

E/I; NI = 200 and WIE = 0.025]) were given provided below
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FIGURE 2

The average weights of intra- and interconnections after self-organization in the model with two neuron groups. (A) The average weights of

intraconnections in the imbalanced neuron group. (B) The average weights of intraconnections in the balanced neuron group. (C) The average

weights of interconnections from the imbalanced neuron group to the balanced neuron group. (D) The average weights of interconnections from

the balanced neuron group to the imbalanced neuron group. The x- and y-axes show the number of inhibitory neurons (NI) and weights from

inhibitory neurons to excitatory neurons (WIE) in the imbalanced neuron group, respectively. The number and the number in parentheses in each box

represents the average and standard deviations of the weights among 20 simulations, respectively. ***p < 0.001, **p < 0.01, *p < 0.05 indicate

statistical significance for di�erences compared to values for the model with base parameters (NI = 200, WIE = 0.025) using Welch’s t-tests.

to make the outcomes under different conditions comprehensible.

An imbalanced neuron group with H-E/I and L-E/I had weak and

strong inhibitions, respectively, compared with neuron groups with

B-E/I.

3.2.1. STDP under locally increased E/I ratio
induces over-connectivity in the network

Figure 5 shows intra- and interconnections after the STDP

process in the model with ten neuron groups. The simulation

results show that intra- and interconnections were greater in

all neuron groups in H-E/I than those in L-E/I and B-E/I.

That is, over-connectivity in the network was caused by locally

weak inhibitory activity in one neuron group. Particularly, the

intra- and interconnections around the imbalanced neuron

group were stronger than other intra- and interconnections.

In the case of L-E/I, interconnections between the imbalanced

neuron group and other neuron groups slightly decreased

compared to B-E/I, but several interconnections between

balanced neuron groups slightly increased compared to

B-E/I, e.g., interconnections between neuron groups from

3 to 5.
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FIGURE 3

Firing rate after self-organization in the model with two neuron groups. (A) Firing rate of excitatory neurons in the imbalanced neuron group. (B)

Firing rate of excitatory neurons in the balanced neuron group. (C) Firing rate of inhibitory neurons in the imbalanced neuron group. (D) Firing rate of

inhibitory neurons in the balanced neuron group. The x- and y-axes show the number of inhibitory neurons (NI) and weights from inhibitory neurons

to excitatory neurons (WIE) in the imbalanced neuron group, respectively. The number and the number in parentheses in each box represents the

average and standard deviations of the firing rate among 20 simulations, respectively. ***p < 0.001, **p < 0.01 indicate statistical significance for

di�erences compared to values for the model with base parameters (NI = 200, WIE = 0.025) using Welch’s t-tests.

3.2.2. Low complexity of neural activity caused by
locally increased E/I ratio in the network

Figure 6 shows the complexity of neural activity and

interconnections after the STDP process. As shown in the figure,

the complexity was low in all neuron groups in H-E/I. Notably,

the neuron groups with low complexity corresponded to those

with increased connectivity, as shown in Figure 5. Particularly, a

neuron group with more incoming interconnections showed lower

complexity than other groups (see Supplementary Figure S4). That

is, the low complexity of neural activity in the network might result

from excessive incoming connections that were strengthened by

interactions with the imbalanced neuron group.

3.2.3. Locally increased E/I ratio globally disrupts
the information transmission of the external input
into the network

Figure 7 shows theMI between the neural activity of the neuron

group and external input, and the TE from neural activity of a

neuron group receiving external input to those of other neuron

groups, when the external input was given to an imbalanced group

1. Figure 8 shows almost the same, but the external input was given

to a balanced neuron group 3. As shown in Figure 7, the MI and

TE decreased in all neuron groups in H-E/I compared to those in

other conditions. In the L-E/I condition, the TE was slightly higher

than in the other conditions. However, when the external input was

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1169288
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Park et al. 10.3389/fncom.2023.1169288

FIGURE 4

Complexity of neural activity after self-organization in the model with two neuron groups. (A) Complexity of neural activity in the imbalanced neuron

group. (B) Complexity of neural activity in the balanced neuron group. The x- and y-axes show the number of inhibitory neurons (NI) and weights

from inhibitory neurons to excitatory neurons (WIE) in the imbalanced neuron group, respectively. Color indicates the summation of the sample

entropy for all 100 scale factors. The number and the number in parentheses in each box represents the average and standard deviations of the

complexity among 20 simulations, respectively. ***p < 0.001, *p < 0.05 indicate statistical significance for di�erences compared to values for the

model with base parameters (NI = 200, WIE = 0.025) using Welch’s t-tests.

FIGURE 5

The average weights of intra- and interconnections after self-organization. Each numbered circle indicates a neuron group with its index. The color

of the node indicates the average weights of intraconnections. Purple arrows indicate the average weights of interconnections from one neuron

group to another. Neuron group 1 has an imbalanced E/I ratio. (A) High-E/I. (B) Base-E/I. (C) Low-E/I. E/I, excitation and inhibition; WIE, the inhibitory

synaptic weights to excitatory neurons; NI, the number of inhibitory neurons.

given to the balanced neuron group (Figure 8), the MI between

the external input and neural activity of the imbalanced neuron

group in L-E/I was slightly lower than that in the B-E/I condition

(Tukey’s test, p = 0.017). These results indicate that the imbalanced

E/I ratio, especially the high E/I ratio, disrupted the information

transmission of the external input to other neuron groups.

4. Discussion

In this study, we showed that organization under an increased

E/I ratio in a neuron group induced excessive intra- and

interconnections in neuron groups and decreased the complexity

of neural activity. Notably, the results with ten neuron groups
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FIGURE 6

Complexity of neural activity in the neuron group after self-organization. Each numbered circle indicates a neuron group with its index. The color of

the node indicates the complexity of neural activity in the neuron group that is the summation of the sample entropy for all 100 scale factors. Purple

arrows indicate the average weights of interconnections from one neuron group to another. Neuron group 1 has an imbalanced E/I ratio. (A)

High-E/I. (B) Baseline-E/I. (C) Low-E/I. E/I, excitation and inhibition; WIE, the inhibitory synaptic weights to excitatory neurons; NI, the number of

inhibitory neurons.

FIGURE 7

Mutual information and transfer entropy in the neuron group after self-organization. Each numbered circle indicates a neuron group with its index.

The color of the node indicates the mutual information between neural activity of the neuron group and the external input. Red arrows indicate the

transfer entropy from neural activity of one neuron group receiving external input to another. Neuron group 1 has an imbalanced E/I ratio. The

external input was fed into neuron group 1. (A) High-E/I. (B) Baseline-E/I. (C) Low-E/I. E/I, excitation and inhibition; WIE, the inhibitory synaptic

weights to excitatory neurons; NI, the number of inhibitory neurons.

showed that a locally high E/I ratio within a single neuron group

resulted in an increase in connections and decreased the complexity

of neural activity in the entire network. In addition, the MI and

TE decreased in the network in response to an external input.

These phenomena were observed particularly when the inhibition

was weak. If we suppose that the neuron group is a local brain

region, these results can be interpreted that connections in the

brain region become dense and the information transmission of

an external input, e.g., sensory input, to other regions would

become impaired. Our results suggest that physiological parameters

concerning the E/I balance within a local area are important factors

that support the interaction of brain structure and function through

STDP and contribute to information transmission across the entire

network.
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FIGURE 8

Mutual information and transfer entropy in the neuron group after self-organization. Each numbered circle indicates a neuron group with its index.

The color of the node indicates the mutual information between neural activity of the neuron group and the external input. Red arrows indicate the

transfer entropy from neural activity of one neuron group receiving external input to another. Neuron group 1 has an imbalanced E/I ratio. The

external input was fed into neuron group 3. (A) High-E/I. (B) Baseline-E/I. (C) Low-E/I. E/I, excitation and inhibition; WIE, the inhibitory synaptic

weights to excitatory neurons; NI, the number of inhibitory neurons.

4.1. Organization under the local E/I
imbalance

Our results showed that an increased E/I ratio causes the

decreased complexity of neural activity and increased intra- and

interconnections. Based on these analyses, we consider a possible

mechanism behind them as follows:

1. Since the imbalanced neuron group has weak inhibition,

neurons are easily fired by synaptic input from the same neuron

group or other neuron groups (see Supplementary Figures S2,

S5).

2. STDP under the high-firing situation forms excessively

strong intra- and interconnections (see Figures 2, 5;

Supplementary Figure S6).

3. Strong intra- and interconnections increase synchronous firing

of neurons (see Supplementary Figure S5). As a result, the

complexity of neural activity decreases (see Figures 4, 6).

4. Excessive firing within the imbalanced neuron group also affects

the other neuron groups through interconnections, resulting in

increased connections and reduced complexity of neural activity

in the network.

The STDP under synchronous neural activity in turn might

strengthen the connections further by repeating the above

procedures. Thus, structure-function interactions through STDP

might magnify the effect of locally imbalanced E/I, leading to the

global effect. This result is similar to our previous study (Park

et al., 2019) that showed a decreased in the complexity of neural

activity of neuron groups when many local connections were given.

Therefore, our results showed that locally imbalanced E/I ratio

induces local-over connectivity that reduces the complexity of

neural activity.

4.2. Examining the relationship between
our results and studies on neuropsychiatric
disorders

Our results imply that the locally imbalanced E/I ratio might

cause atypical brain structure and low complexity of brain activity,

which are observed in neuropsychiatric disorders. As shown

in Figures 2, 5, intra- and interconnections increased with an

increased E/I ratio. These results are similar to those reported by

ASD and schizophrenia studies, which showed increased neural

density within certain local areas (Selemon et al., 1998; Casanova

et al., 2006) and excessive interconnections (Li et al., 2014; Solso

et al., 2016), respectively. Our MSE analysis showed the complexity

of neural activity decreased with an increased E/I ratio (Figure 4),

especially at high scales (Supplementary Figure S1). This result

aligns with those of studies that showed lower complexity of

functional near-infrared spectroscopy (Xu et al., 2020), EEG (Bosl

et al., 2011), and MEG (Ghanbari et al., 2015; Hadoush et al.,

2019) signals in children with ASD compared to that of TD

children or children with mild ASD. Further, similar to our

previous studies (Park et al., 2019), the current simulation

results showed a decrease in the complexity of neural activity of

neuron groups with many local connections, especially incoming

interconnections (Figure 6; Supplementary Figure S5). Thus, our

model could predict that a decrease in the complexity of brain

activity in a brain region of ASD or schizophrenia might be induced

by excessive synaptic input from other brain regions through

incoming interconnections that were strengthened by interactions

with the brain region with imbalanced E/I ratio.

However, in contrast to studies showing increased

interconnections that are consistent with our results, weak

interconnections with distant regions have also been reported
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in ASD (Rane et al., 2015). Ghanbari et al. (2015) showed that

although the complexity of brain activity in children with ASD

compared with children with TD was lower in some regions

(frontal regions in the delta band and occipital-parietal regions

in the alpha band), it was higher in other regions (parietal

regions in delta, central and temporal regions in theta, and

frontal-central boundary regions in gamma). Furthermore, even

though our results showed that an increase in the E/I ratio

increased the firing rate and connections, studies of ASD and

Schizophrenia using fMRI or positron emissions tomography

showed hyper- and hypoactivity during resting state appeared

simultaneously depending on regions (e.g., hyperactivity in the

right supplementary motor area and bilateral lingual gyrus, and

hypoactivity in the right middle temporal gyrus and ventromedial

prefrontal cortex) (Kuhn and Gallinat, 2013; Wang et al., 2018).

We associate these differences to the effect of different structures

in each region. In our study, we assumed that all neuron groups

have the same types of neurons and connections (each neuron

group is regularly connected with neighboring neuron groups),

but the human brain has different types of neurons and long-

range connections with other regions, depending on the region.

Especially, existing computational studies showed the a neuron

group with many interconnections decreases the complexity of

the neural activity (Park et al., 2019), and small-world network

structure suppresses the chaoticity in neural activity (Kawai et al.,

2019). Future studies using a computational model with various

network structures, e.g., small-world network, scale-free network,

or network structure based on real human connectome data, and

neuron types may clarify our speculation.

Many studies reported hypersensitivity or hyposensitivity

to external input in ASD (Hazen et al., 2014; Schauder and

Bennetto, 2016) and dysfunction of sensory processing in

schizophrenia (Javitt and Sweet, 2015). We found that the

locally increased E/I ratio decreased information transmission

in the entire network (see Figures 7, 8). These results suggest

a possibility that abnormal neural responses to external input

in ASD and schizophrenia might originate from an imbalanced

E/I ratio in not only in sensory area but also in other

regions.

4.3. Limitations of the study and future
work

The current model had fixed control parameters with regard to

inhibition, and it had plastic excitatory synapses that were updated

according to STDP. However, several physiological studies have

shown that inhibitory synapses also exhibit plasticity (Caporale and

Dan, 2008). A neurophysiological study using rats (D’amour and

Froemke, 2015) and computational studies (Vogels et al., 2011; Akil

et al., 2021) showed that STDP of inhibitory synapses contributes to

homeostasis of neural activity. Especially, Wang and Maffei (2014)

showed that excitatory LTP decreases as inhibitory LTP increases

in the visual cortex of rats. Intrinsic plasticity that changes the

intrinsic electrical properties of neurons is another mechanism

that directly contributes to homeostasis (Turrigiano, 2011). If we

consider synaptic and intrinsic homeostatic plasticity, the actual

effects of the E/I balance might be less than those in our study. In

addition, the time window for LTP and LTD of excitatory plasticity

or inhibitory plasticity differs depending on brain regions and

layers (Caporale and Dan, 2008). In the future, the relationship

between several types of plasticity, including homeostatic plasticity,

and E/I balance should be investigated in detail. Further, we

only used regular-spiking neurons and fast-spiking neurons for

excitatory neurons and inhibitory neurons, respectively. Although

these neurons occupy a large proportion of the cortex, other

types of neurons, bursting type neurons or somatostatin-expressing

neurons, also exist, and their importance in neural dynamics has

been discussed (Tremblay et al., 2016; Zeldenrust et al., 2018).

The contribution of different types of inhibitory neurons to the

information transmission in the organized network is also a

fascinating subject.

Although we evaluated the complexity and information

transmission of neural activity, we did not assess how the

transferred information and the complexity of neural activity

contribute to cognitive functions and motor behavior. Moreover,

in this study, organization of the network occurred with Poisson

input. However, the brains of humans and animals receive

structured sensory signals through the body and reflect them

in behavior. The mechanism through which altered E/I balance

affects the self-organization of the brain and behavior through

interactions with the environment is a cutting-edge research topic

in developmental science, especially in the field of developmental

disorders.
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