
TYPE Original Research

PUBLISHED 08 June 2023

DOI 10.3389/fncom.2023.1148284

OPEN ACCESS

EDITED BY

Feng Liang,

Xi’an Jiaotong University, China

REVIEWED BY

Zhang Jian,

Xi’an Jiaotong University, China

Yu Zhang,

Zhejiang Lab, China

*CORRESPONDENCE

Ramashish Gaurav

rgaurav@vt.edu

RECEIVED 19 January 2023

ACCEPTED 16 May 2023

PUBLISHED 08 June 2023

CITATION

Gaurav R, Stewart TC and Yi Y (2023) Reservoir

based spiking models for univariate Time Series

Classification.

Front. Comput. Neurosci. 17:1148284.

doi: 10.3389/fncom.2023.1148284

COPYRIGHT

© 2023 Gaurav, Stewart and Yi. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Reservoir based spiking models
for univariate Time Series
Classification

Ramashish Gaurav1*, Terrence C. Stewart2 and Yang Yi1

1Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, United States,
2University of Waterloo Collaboration Centre, National Research Council of Canada, Waterloo, ON,

Canada

A variety of advanced machine learning and deep learning algorithms achieve

state-of-the-art performance on various temporal processing tasks. However,

these methods are heavily energy ine�cient—they run mainly on the power

hungry CPUs and GPUs. Computing with Spiking Networks, on the other hand,

has shown to be energy e�cient on specialized neuromorphic hardware, e.g.,

Loihi, TrueNorth, SpiNNaker, etc. In this work, we present two architectures of

spiking models, inspired from the theory of Reservoir Computing and Legendre

Memory Units, for the Time Series Classification (TSC) task. Our first spiking

architecture is closer to the general Reservoir Computing architecture and we

successfully deploy it on Loihi; the second spiking architecture di�ers from the first

by the inclusion of non-linearity in the readout layer. Our second model (trained

with Surrogate Gradient Descent method) shows that non-linear decoding of the

linearly extracted temporal features through spiking neurons not only achieves

promising results, but also o�ers low computation-overhead by significantly

reducing the number of neurons compared to the popular LSM based models—

more than 40x reduction with respect to the recent spiking model we compare

with. We experiment on five TSC datasets and achieve new SoTA spiking results

(—as much as 28.607% accuracy improvement on one of the datasets), thereby

showing the potential of our models to address the TSC tasks in a green energy-

e�cient manner. In addition, we also do energy profiling and comparison on Loihi

and CPU to support our claims.

KEYWORDS

Legendre Memory Units, Time Series Classification (TCS), Spiking Neural Network (SNN),

Surrogate Gradient Descent, Loihi, Reservoir Computing (RC)

1. Introduction

Almost all of the signals around us are intrinsically temporal (e.g., audio/speech,

sensor signals, etc.) or have a temporal component to it (e.g., video/vision signals, etc.).

Machine Learning (ML) and Deep Learning (DL) algorithms, no doubt, have catered

well to the growing processing needs of temporal datasets (Pan et al., 2022)—with

respect to scalability, variety, and robustness, etc. However, one evident drawback of the

traditional ML/DL algorithms [e.g., LSTM (Hochreiter and Schmidhuber, 1997), HIVE-

COTE (Lines et al., 2018), ResNet (He et al., 2016), etc.] is their energy inefficiency when

deployed on general purpose CPUs/GPUs/FPGAs. This energy-intensive characteristic of the

conventional/DL Time-Series models makes them poorly suited to the energy constrained

devices/applications. On the contrary, Spiking Neural Networks (SNNs), the next generation

of neural networks is gaining prominence due to their promise of low power and low

latency AI when deployed on specialized neuromorphic hardware, e.g., Intel’s Loihi, IBM’s

TrueNorth, SpiNNaker, etc.

Frontiers inComputationalNeuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://www.frontiersin.org/journals/computational-neuroscience#editorial-board
https://doi.org/10.3389/fncom.2023.1148284
http://crossmark.crossref.org/dialog/?doi=10.3389/fncom.2023.1148284&domain=pdf&date_stamp=2023-06-08
mailto:rgaurav@vt.edu
https://doi.org/10.3389/fncom.2023.1148284
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

For simpler Time-Series datasets (e.g., signals from sensors),

Reservoir Computing (Lukoševičius and Jaeger, 2009) based

models are not only fast but also perform at par with complex

time-series models (Bianchi et al., 2020), e.g., LSTM-FCN (Karim

et al., 2017). In the Reservoir Computing (RC) paradigm, the input

units are connected to a reservoir of randomly interconnected

non-linear internal units with static weights, which is then further

connected to a single trainable linear readout layer. The reservoir

of internal units generate a high-dimensional temporal feature-

map (i.e., extract temporal features from the input) on which

the linear readout layer performs a linear transformation. Note

that the connection weights of the readout layer are trained using

regression methods.

In this work, the primary problem we aim to address is:

“How do we leverage the computational efficiency of Reservoir

Computing methods to develop spiking architectures for Time

Series Classification (TSC)?—which are not only energy efficient

but also high performing.” To this end, we present two spiking

network architectures for the Time Series Classification (TSC)

task of univariate signals. We develop our spiking models

with neuromorphic hardware compatibility in mind, especially

deployment on Intel’s Loihi boards.

Echo State Network (ESN) (Jaeger, 2001), Liquid State Machine

(LSM) (Maass et al., 2002), and Delayed Feedback Reservoir

(DFR) (Appeltant et al., 2011; Bai and Yi, 2018) are widely

studied/used RC models. Since the ESNs are non-spiking, they

aren’t suitable for neuromorphic hardware deployment. DFRs on

the other hand are spiking networks, but to the best of our

knowledge, they haven’t been evaluated on any neuromorphic

hardware. Furthermore, DFRs are much simpler architectures that

merely keep track of temporally shifted inputs (Nowshin et al.,

2020); they do not extract temporal features from the input signal.

LSMs too are composed of spiking neurons and have been recently

deployed on Loihi (Shenoy Renjal, 2019) (authors do a proof-of-

concept demonstration with experiment on a small subset of a

speech dataset) and on the SpiNNaker-103 board (Patiño-Saucedo

et al., 2022). However, the dedicated circuits for synapses and

spiking neurons in Loihi make it more efficient for processing low

dimensional input signals than Spinnaker2 with general purpose

ARM processors (Yan et al., 2021). Note that SpiNNaker-103 is

less energy efficient than SpiNNaker2 (Yan et al., 2021) (and

plausibly Loihi), since it is an older generation SpiNNaker1 board

and does not have the MAC array. Note that apart from the

RC based spiking models, a few DL inspired SNNs for TSC

also exist; however, either they are too complex models which

employ convolutions to extract features (Dominguez-Morales

et al., 2018; Gautam and Singh, 2020) or use a relatively high

number of trainable parameters in their architectures [more than

120000 in Fang et al. (2020)—although, for multivariate TSC].

This makes them less desirable for the resource constrained

Edge/IoT devices. We next briefly introduce the Legendre Memory

Unit (Voelker et al., 2019) which has the characteristics of a

RC model.

Legendre Memory Unit (LMU) (Voelker et al., 2019) is a novel

type of memory cell for RNNs that is based on the Delay Network

(Voelker and Eliasmith, 2018); LMU has already shown promise in

a wide range of AI tasks (Blouw et al., 2020; Chilkuri and Eliasmith,

2021; Chilkuri et al., 2021). Voelker et al. (2019) mention that the

LMU memory cells (or the Delay Networks) can be implemented

using spiking neurons; we refer to this implementation here as

the Legendre Delay Network (LDN)—more details in Voelker and

Eliasmith (2018). The LDN is based on the Linear Time-Invariant

(LTI) system,

ẋ(t) = Ax(t)+ Bu(t) (1a)

y(t) = Cx(t)+ Du(t) (1b)

where u(t), x(t), ẋ(t), and y(t) are the system’s input, system’s state,

its time derivative, and system’s output, respectively; A,B,C, and

D are the time-invariant matrices defining the LTI system. Note

that the spiking model of the LDN can be implemented using the

principles of Neural Engineering Framework (NEF) (Eliasmith and

Anderson, 2003; Stewart, 2012). Also note that NEF/LDN performs

better than LSMs for implementing time delays (Voelker, 2019).We

base both of our spikingmodels for TSC on LDN, and find that they

indeed perform better than LSMs.

While one of our proposed spiking models follows the

architecture of conventional RC models, our other model

introduces non-linearity in the readout layer, such that the readout

layer post the reservoir has a hidden layer of spiking neurons

before the output layer. Direct training of SNNs is non-trivial;

conventional back-propagation algorithm to train ANNs is not

applicable to SNNs natively. This is primarily due to the non-

differentiability of spikes while calculating the gradient of the loss

function, as well as, due to the inherent temporality of SNNs.

Although, a few methods exist to train SNNs (Pfeiffer and Pfeil,

2018), with the ANN-to-SNN conversion being extensively studied

(Rueckauer and Liu, 2018; Bu et al., 2021; Li et al., 2021; Datta and

Beerel, 2022; Gaurav et al., 2022b), where an already trained ANN

is converted to an SNN by replacing the rate neurons (e.g., ReLU)

with spiking neurons (e.g., Integrate & Fire), along with the

other required network modifications. However, the ANN-to-SNN

conversion suffers with two apparent disadvantages—(1): it fails to

leverage the inherent temporal dynamics of SNNs while training

and (2): it rips off any opportunity to train a high performance

SNN on existing neuromorphic hardware in an energy efficient

manner. Direct training of SNNs (Lee et al., 2016; Wu et al.,

2018, 2019; Neftci et al., 2019; Zheng et al., 2021) intends to

address these two problems. At the heart of direct training (most

recent works), lies the approximation of the spike derivative with

a surrogate derivative, which enables the back-propagation of the

error-gradients to the deeper layers. In our second model with

non-linear readout layer, we use this Surrogate Gradient Descent

(SurrGD) approach to train it; we provide more details later. Note

that this work is an extension of our previous work (Gaurav

et al., 2022a) (recently published) where we developed a Spiking

Reservoir Computing (SRC) model and deployed it on Loihi—

in one of the firsts. For the sake of completeness, we present the

relevant details of our previous work here. Sections 2.3, 3.1.1, 3.2,

4.1, and 5.1 are reused from our previous work. We next lay down

our major contributions [contributions from Gaurav et al. (2022a)

are italicized, rest are novel to this work]:

1. We propose two novel spiking architectures for the TSC of

univariate signals

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

• Spiking Legendre Reservoir Computing (SLRC)model (note

that SRC model is renamed to SLRC)

• Legendre Spiking Neural Network (LSNN) that achieves

SoTA spiking results on used datasets

2. In one of the firsts, we deploy our SLRC model on Loihi and

do inference. Loihi has been gaining prominence within the

neuromorphic community with timely updates to the hardware

(Davies et al., 2018; Intel, 2021; Orchard et al., 2021). For

efficiency reasons stated above and up-to-date hardware, we

aimed our work toward Loihi deployment.

3. The LSNN model is highly resource efficient—uses as low as

120 (or lesser) number of spiking neurons (depends on a hyper-

parameter d—explained later), and is more than 40x resource

efficient than the compared LSM based model. It is also more

than 30x energy efficient than its non-spiking counterpart.

4. We support our claims with exhaustive experiments on five

TSC datasets, along with energy profiling on CPU and Intel’s

Loihi-1 board.

We organize our paper as follows. In Section 2, we describe

the theory behind our proposed spiking models: SLRC and LSNN,

followed by the Section 3 where we explain the training and

evaluation details of our experiments. We then present a detailed

analysis of our results in the Section 4, followed by a discussion on

our models and energy consumption in Section 5. We then finally

conclude this work and lay down the future work prospects in the

Section 6.

2. Methods

In this section, we describe the theoretical underpinnings of

our proposed spiking models. We start with a brief explanation

of the LDN [proposed by Voelker and Eliasmith (2018) with

detailed explanations in Voelker (2019)], followed by the specifics

of the Surrogate Gradient Descent (SurrGD) method. We then

describe the architecture of our two proposed spiking univariate-

TSC models—the Spiking Legendre Reservoir Computing (SLRC)

model and the Legendre Spiking Neural Network (LSNN) model.

Note that both the models are based on the LDN; in the SLRC

model, the LDN is implemented with spiking neurons (using the

principles of NEF), whereas in the LSNN model, the LDN is

implemented with regular matrix operations. We use the Nengo

(Stewart, 2012; Bekolay et al., 2014) and PyTorch (Paszke et al.,

2019) libraries to build the SLRC and LSNN models, respectively.

Henceforth, all the instances of neuron imply Integrate &

Fire (IF) spiking neuron, unless otherwise stated.

2.1. Legendre delay network (LDN)

LDN is a type of an RNN (or a dynamical system) which

implements a continuous-time delay of an input signal. We can

mathematically represent a delay of an input signal u(t) as follows:

y(t) = u(t − θ) (2)

where θ ∈ R
+ is the time-seconds by which the input u(t) is

delayed, and y(t) is the delayed output (by design, θ is limited to the

duration of u(t)). To implement a system where the input is u(t),

and the output is y(t), a straightforward way is to determine the

Transfer function of such a systemwhere it maps u(t) to the delayed

output u(t− θ). Transfer functions are written as a ratio of terms in

the complex variable s; the terms are the Laplace transforms of the

input u(t) and the output y(t). To decompose y(t) (in Equation 2) as

a function of u(t) and θ (to facilitate the calculation of the Transfer

function), we observe the following.

An important property of the Impulse function (i.e., the Dirac’s

δ(t) function) is that when a shifted Impulse, i.e., δ(t − θ) is

convolved with another time domain function, e.g., f (t), it sifts out

the value of the function f at time t − θ ; also called as the sifting

property. That is:

f (t) ∗ δ(t − θ) = f (t − θ) (3)

where ∗ is the convolution operator. Therefore, we can rewrite the

Equation (2) as a convolution of the input signal u(t) and δ(t − θ)

as follows (note, here f (t) is replaced by u(t), and δθ (t) is short for

δ(t − θ)):

y(t) = u(t) ∗ δθ (t) (4a)

= u(t − θ) (4b)

Now that we have decomposed y(t) into u(t) and δθ (t) in

the Equation (4a), we can further simplify the Equation (4a)

by taking its Laplace transform, i.e., L[y(t)] = L[u(t) ∗

δθ (t)] = L[u(t)]L[δθ (t)] (convolution in time domain becomes

multiplication in Laplace domain); we can rearrange it as follows:

L[y(t)]

L[u(t)]
= L[δθ (t)] (5a)

H⇒
Y(s)

U(s)
= e−θs (5b)

H⇒ F(s) = e−θs (5c)

where e−θs in Equation (5b) is the Laplace transform of the shifted

Impulse function δθ (t), and F(s) is the Transfer function of the

system which implements a delay of θ time-seconds. Note that a

Transfer function can be converted to an LTI state-space model

(Equation 1) if and only if it can be written as a proper ratio of finite

order polynomials in s (Brogan, 1991); Voelker presents a detailed

derivation for the same in Voelker (2019), thereby obtaining the

state space matrices A and B (in Equation 1a) as follows (we do not

use Equation 1b in our models):

A = [a]i,j, ai,j = (2i+ 1)

{

−1 i < j

(−1)i−j+1 i ≥ j
(6a)

B = [b]i, bi = (2i+ 1)(−1)i (6b)

for i, j ∈ [0, d − 1] (more details in Voelker and Eliasmith,

2018; Voelker, 2019; Voelker et al., 2019). Note that here d is the

dimension/order of the LTI’s state-space vector x(t) (in Equation

1), i.e., x(t) ∈ R
d (hereby, we refer x(t) as the LDN’s state-space

vector). Also note that this x(t) can be used to obtain a delayed

input with any delay of φ ∈ (0, θ) time-seconds.

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

2.1.1. Approximating the canonical LTI system
through a neural LTI system

To implement the LDN via spiking neurons in Nengo (for the

SLRC model) we need to approximate the state-space (Equation 1a

and Figure 1A) of the canonical LTI system in the neural domain.

We can do that by approximating the integral function (Figure 1A)

with a continuous-time first order low-pass filter h(t) = 1
τ
e
−t
τ (in

Figure 1B) in the neural domain; Figure 1B shows the neural LTI

system described by the following equation:

x(t) = h(t) ∗ (A′x(t)+ B′u(t)) (7)

The goal is find the matrices A′ and B′, such that both the

systems—the canonical and the neural, are equivalent. We can do

that taking the Laplace transform of the Equations (1a) and (7), and

equating them. Note that the Laplace transform of Equation (1a) is

sX(s) = AX(s)+ BU(s) (8)

and of Equation (7) is

X(s) = H(s)(A′X(s)+ B′U(s)) (9)

where H(s) = L[h(t)] = 1
1+sτ . Upon rearranging the Equation

(9) (with H(s) replaced) to resemble the Equation (8), we get the

following equation (proof in Supplementary material):

sX(s) =
1

τ
(A′ − I)X(s)+

1

τ
B′U(s) (10)

Equating the coefficients of X(s) and U(s) on the RHS in both

the equations (i.e., Equations 10 and 8) gives us the following values

for the A′ and B′ matrices (to implement the neural LTI system):

A′ = τA+ I and (11a)

B′ = τB (11b)

where A and B are defined in the Equations (6a) and (6b),

respectively, and I is the Identity matrix.

Note that Nengo implements the discretization of continuous-

time systems internally with default 1t = 0.001 and ZOHmethod.

For the LSNN model, where the LDN is implemented via regular

matrix operations (in PyTorch), and not through a neural LTI

system, we obtain the value of A′ and B′ matrices by explicit

discretization of the continuous-time LTI system (Equation 1) with

1t = 0.001 and ZOH method. Also, in both models, we refer the

state-space vector x(t) as the extracted out temporal features of the

input u(t).

2.1.2. Tunable parameters of LDN
In the SLRC model, the tunable parameters of the LDN are

its state-space vector’s (i.e., x(t)’s) dimension d ∈ Z
+, low-pass

filter’s (i.e., h(t)’s) time-constant τ ∈ R
+, and the length of the

rolling window i.e., θ ∈ R
+ of the input signal u(t) which the LDN

encodes in its memory. In the LSNNmodel, the tunable parameters

of the LDN are d and θ only, since we do not employ neural

approximation in LSNN.

2.2. Surrogate gradient descent (SurrGD)

As mentioned in the Section 1, direct training of SNNs with

standard back-propagation algorithm is not feasible. We can use

the Back-propagation Through Time algorithm to account for the

temporality in SNNs, however, we also need to address the non-

differentiabilty of the spikes for a successful direct training. The

spiking function of a neuron i in layer l, i.e., Sli[t] in an SNN

(conventionally) depends on its membrane potential V l
i [t] and its

chosen membrane threshold Vthr ; S
l
i[t] can formally be written as

follows:

Sli[t] = 2(V l
i [t]− Vthr) (12)

where 2(.) is simply the Heaviside step function.

The derivative of the loss function L (of an SNN) w.r.t. weights

W (following the chain rule) is below:

∂L

∂W
=

∑

t

∂L

∂S[t]

∂S[t]

∂V[t]

∂V[t]

∂I[t]

∂I[t]

∂W
(13)

One can observe in Equation (13) that the partial derivative
∂S[t]
∂V[t] (in light of Equation 12) is always 0, except when the

argument to the Heaviside step function 2(.) is 0, at which,

the derivative is undefined; in fact, this ill defined gradient can

be formulated as the Dirac’s δ(t) function. Consequently, either

the error gradients vanish in the deeper layers (when the S[t]’s

derivative is 0) or explode (when the S[t]’s derivative is undefined),

resulting in frozen or infinite weights, respectively.

To alleviate this problem, authors in Zenke and Ganguli (2018)

and Neftci et al. (2019) discussed the usage of surrogate derivatives

in place of the actual undefined derivative of S[t]. Zenke and

Ganguli (2018) use the partial derivative of the negative half of the

fast sigmoid function, i.e., f ′(x) = 1
(1+|x|)2

(where x = V l
j [t] −

Vthr in our case) as a surrogate derivative; we use the same in

this work. Note that this method of using surrogate derivatives to

implement the gradient descent to update weights is also known as

the Surrogate Gradient Descent (SurrGD) method.

Now that we have briefly explained the LDN and SurrGD, we next

explain our proposed spiking models.

2.3. Spiking Legendre Reservoir Computing
(SLRC) model

In this section, we propose and describe the architectural details

of our first spiking-TSC model—the Spiking Legendre Reservoir

Computing (SLRC) model. As the name suggests, this model’s

architecture (Figure 2A) is inspired from the conventional RC

architectures, where it has an input layer, followed by a reservoir

of spiking neuron ensembles, and an output layer; albeit, we

add an extra ensemble of spiking neurons between the reservoir

and the output layer. Note that the spiking neurons in all the

ensembles in the SLRC model rate-encode the input signals. The

input layer/node INP is connected to the reservoir RES with a

connection weight of τB (Equation 11b), and the reservoir RES is

recurrently connected with a connection weight of τA+I (Equation

11a). The number of ensembles in the reservoir RES is equal to

the order of the LDN, i.e., d, such that each is sensitive to only

one of the dimensions of x(t). Since the reservoir RES is further

connected to an ensemble ENS with an identity connection weight

I, the ensemble ENS simply collects and represents the extracted

Frontiers inComputationalNeuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

FIGURE 1

Appromixation of Equation (1a) of the Canonical LTI system through a Neural LTI system. (A) Canonical LTI system. (B) Neural LTI system.

FIGURE 2

In (A), I is the input node; C1, C2 are the output nodes. Weights between ENS and OTP are learned through regression method. Nodes are deployed

o�-chip; Ensembles (RES and ENS) are deployed on-chip. In (B), a sample input signal u(t) is shown, and (C) shows the extracted x(t) from spiking

LDN.

out d-dimensional temporal features, i.e., x(t), and aids in the

learning of the connections to the output layer OTP. Note that a full

connection matrix (to connect the spiking neurons) is internally

obtained in Nengo by pre and post multiplying the matrices {τB,

τA + I, and I} with a randomly generated Encoder matrix and

a computed Decoder matrix, respectively. More details on the

Encoder and Decoder matrices can be found in NEF (Eliasmith

and Anderson, 2003; Stewart, 2012). All the connections here are

static, except the connections between the ENS and OTP, which are

learned offline through the Least Squares Regression method with

L2 regularization.

2.3.1. Network design hyper-parameters
Apart from the LDN parameters d, θ , and τ , other architectural

parameters in the SLRC model are the number of spiking neurons,

i.e., Nsn in each ensemble, their minimum and maximum firing

rates, i.e., FRmin and FRmax, respectively, and their representational

radius r; more details about these parameters can be found in

Eliasmith and Anderson (2003). To briefly demonstrate the LDN’s

state-space output x(t) for a sample input signal (Figure 2B),

Figure 2C shows the extracted temporal features, i.e., x(t) for

arbitrarily chosen values of d, τ , θ , Nsn, FRmin, FRmax, and r of

the RES ensembles. Note that these are the signals which are

fed to and represented by the ENS, and on which the weights

are learned upon by the readout layer connections to the OTP

nodes. Note that the reservoir RES has d ensembles; and each

ensemble has the same number of spiking neurons—Nsn. However,

since the connected ensemble ENS collectively represents the d-

dimensional temporal features x(t), we set it to have a higher

number of spiking neurons—Nsn×d
4 (arbitrarily set, d > 4 while

tuning). Another parameter which varies between the RES and

the ENS is the radius r—we set it separately as rRES and rENS.

This is done because the RES computes the temporal features

x(t), while the ENS simply collects and represents those features.

Note that for the time-series datasets where each sample is

independent of the other and fed in online fashion to the SLRC

model, one can choose to either inhibit the RES neurons or

not inhibit it between the samples; more details in the Section

3.2. In case one chooses to inhibit the RES, two architectural

parameters need to be set—the magnitude and the duration of

the inhibition.

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

2.4. Legendre Spiking Neural Network
(LSNN) model

We next propose and describe the architectural details of our

second spiking-TSCmodel—the Legendre Spiking Neural Network

(LSNN) model. Similar to the SLRC model, this model uses the

LDN to extract the high dimensional temporal features x(t) from

the input signal u(t). Before diving into the architecture of the

LSNN model, let us define the neuron’s membrane potential (V(t))

and current (I(t)) state equations (in continuous-time domain),

used in our LSNN model.

2.4.1. IF neuron’s state equations
Equations (14a), (14b), and (15) define the IF neuron state

equations (i is the index of the neuron in layer l):

dV l
i (t)

dt
=

RIli(t)

τvol
when V l

i (t) < Vthr (14a)

V l
i (t)← 0 when V l

i (t) ≥ Vthr (14b)

and

dIli(t)

dt
=
−Ili(t)

τcur
+

∑

j

W l
j,iS

l−1
j (t) (15)

where τvol and τcur are the membrane voltage and current time

constants, respectively, and R is the membrane resistance. Our

state equations differ from Neftci et al. (2019) in ways that we

do not consider the leak term (Burkitt, 2006) in the ODE for

V(t) (Equation 1 in Neftci et al., 2019) and the recurrent term

in the ODE for I(t) (Equation 2 in Neftci et al., 2019). Also, we

conveniently set the value of R to 1 and keep the time constants

tunable. We define the discrete-time equations later.

2.4.2. LSNN architecture
Now that we have formally described the neuron state

equations, we next describe the architecture of our proposed LSNN

model—Figure 3. It comprises of an input node I (INP) to feed

the input signal u(t) to the network, followed by the LDN node—

which constitutes of static linear matrix operations. The LDNmaps

the univariate input to the d-dimensional temporal features x(t),

which are then relayed to the IF neurons (in pairs) in the ENC

layer; as the name suggests, the ENC layer neurons rate-encode the

extracted x(t) to binary spikes. Every pair of the IF neurons in the

ENC layer consists of a positive encoder and a negative encoder—

which encodes the positive and negative part of the feature signal

x(t), respectively. Note that only one of the encoder neurons in each

pair is active at a time. The ENC layer neurons are next densely

connected to the HDN layer of IF neurons through an all-to-all

connection. Note that there is only one HDN layer of IF neurons

which is then densely connected to the OTP layer (where Ci are class

nodes). In our model, only the connections between the ENC layer

to HDN layer and the HDN layer to OTP layer are trained; rest of the

connections remain static. Also, the usage of surrogate derivatives

in the HDN layer enables the error gradient flow backwards to the

ENC layer, thereby updating the hidden layer connections.

2.4.3. Discrete-time state equations
Here, we describe the discrete-time functioning of the LSNN

components. For simulation ease, we first extract and save the

temporal features of the entire training and test set, from the LDN.

We then simulate the rest of the network, i.e., the spiking part

with extracted temporal features as the input (green connections) to

the ENC layer. Note that in each simulation time-step, the entirety

of the spiking network is simulated, which enables us to have

current time-step values from the previous layers (more details in

sections below).

2.4.3.1. ENC layer

Encoding neurons in the ENC layer follow the state equations

defined below (here l is ENC layer only):

Ili[t] = ρ × ǫi mod 2 × x⌊ i2 ⌋
[t]+ ι (16a)

V l
i [t] = V l

i [t − 1]+ Ili[t] (16b)

where i ∈ [0, 1, · · · , 2d − 1], ρ and ǫi mod 2 are the IF neuron’s gain

and encoder values, respectively, where ǫ0 = 1 and ǫ1 = −1, and ι

is the bias current (Eliasmith and Anderson, 2003). x[t] ∈ R
d is the

temporal feature vector from the LDN. Note that whenV[t] reaches

the threshold Vthr, a spike is generated (Equation 12) and it is reset

to 0 (Equation 14b).

2.4.3.2. HDN layer

HDN layer IF neurons follow the state equations defined below

(l is one HDN layer in LSNN model) :

Ili[t] = αIli[t − 1]+
∑

j

W l
j,iS

l−1
j [t] (17a)

V l
i [t] = V l

i [t − 1]+ Ili[t] (17b)

where α is a current decay constant (α = exp(−1t
τcur

),1t = 0.001).

Here, too V l
i [t] is reset once it reaches the threshold Vthr (Equation

14b) and a binary spike is generated (Equation 12).

2.4.3.3. OTP layer

The OTP layer nodes function similar to the IF neurons in the

HDN layer, except that they do not output a spike and their voltage

decays with time (hence, we do not qualify them as IF neurons);

they follow the equations below (here l is just the OTP layer):

Ili[t] = αIli[t − 1]+
∑

j

W l
j,iS

l−1
j [t] (18a)

V l
i [t] = βV l

i [t − 1]+ Ili[t] (18b)

where β is a voltage decay constant (β = exp(−1t
τvol

),1t = 0.001).

Note that Equation (18a) and (17a) are same. We define the

classification loss function on the maximum voltage of the output

nodes (over all the simulation time-steps). We use the PyTorch’s

negative log likelihood loss function, i.e., NLLLoss(ŷpred, ytrue)

to calculate the loss, where ytrue are the true classes and ŷpred =

log(softmax(x)), x = max
t
(V l[t]).

2.4.4. Network design hyper-parameters
The number ofENC layer neurons depends on the order d of the

LDN, i.e.,NENC = 2×d. We arbitrarily set the number of HDN layer

Frontiers inComputationalNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

FIGURE 3

Architecture of our LSNN model (all neurons are IF spiking). The INP is connected to the LDN through a static connection weight of 1. The outputs

from the LDN, i.e., x(t) (the green connections) are relayed as is to the relay stops where each individual feature signal is multiplied by the static

weights of 1 and 1 (simultaneously), i.e., the blue connections and fed to ENC. Only the connections in black are trained.

neurons toNHDN = 3×d. The number of OTP layer nodes is equal

to the number of classes, which is 2 in all our experimented datasets.

With respect to the LDN, as mentioned in Section 2.1.2, only d and

θ are tunable. With respect to the neurons in the ENC layer, their

gain and bias values, i.e., ρ and ι, respectively, are kept tunable. The

neurons in the HDN layer have their τcur set tunable. In addition,

all the IF neurons (in the ENC and HDN layers) have their voltage

decay constant β = 1 (i.e., no voltage decay) and Vthr set tunable.

In the OTP layer, the voltage time-constant τvol is kept tunable,

thus the voltage decay constant β is tunable. Overall, the following

hyper-parameters were tuned during our LSNN experiments: LDN

dimension d, rolling window θ (in seconds), gain ρ, bias ι, τcur, τvol,

and Vthr.

3. Experiments

In this section, we outline the implementation level details of

our proposed models and the conducted experiments, and finally

present the accuracy results. We also detail out the derivative

models of the LSNN model with which compare/benchmark

against. We start with the datasets description, followed by the

training, deployment, and evaluation details of the SLRC and the

LSNN model, followed by the results.

3.1. Datasets

We train and evaluate our models on univariate binary-TSC

datasets. For the SLRC model, we use only the ECG5000 dataset;

and for the LSNN model, we use the ECG5000 along with four

others, experimented with in Dey et al. (2022)—Ford-A, Ford-

B, Wafer, and Earthquakes. We chose these datasets not only to

compare our results with, but also to show the application of our

models in sensor domain. We briefly describe each of the five

datasets next. Note that all these datasets are available at the Time

Series Classification website.1

3.1.1. ECG5000
This dataset consists of 500 training samples and 4, 500 test

samples of ECG signals; each sample si ∈ R
140. The dataset has

5 classes: N, R-on-T PVC, PVC, SP, and UB—class definitions are

in Table 1 that also shows the sample distribution and sample

counts for all the 5 classes. As can be inferred from the Table 1,

the ECG5000 dataset is heavily imbalanced. Note that the class N

corresponds to a normal/healthy heartbeat, and rest of the classes

correspond to abnormal/unhealthy heartbeat. We therefore group

all the 4 abnormal classes into one class. Thus, the ECG5000 time-

series classification task is modeled as a binary classification task

between healthy and unhealthy heartbeats; a few authors do the

same (Matias et al., 2021; Oluwasanmi et al., 2021; Biloborodova

et al., 2022).

3.1.2. Ford-A
This dataset consists of 3, 601 training and 1, 320 test samples

of the engine noise signals; each sample si ∈ R
500. The task is

to diagnose whether or not a certain disorder exists based on the

engine noise—thus, a binary TSC problem. We discard the last 1

training sample to suit the experiment’s batch requirements.

1 http://www.timeseriesclassification.com/index.php

Frontiers inComputationalNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
http://www.timeseriesclassification.com/index.php
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 1 Training and test samples distribution and count of the ECG5000

dataset.

Class Training set Test set

Normal (N) 58.4% (292) 58.38% (2627)

R-on-T premature ventricular

contraction (R-on-T PVC)

35.4% (177) 35.33% (1590)

Premature ventricular contraction

(PVC)

2.00% (10) 1.91% (86)

Supra-ventricular premature beat (SP) 3.80% (19) 3.89% (175)

Unclassified beat (UB) 0.40% (2) 0.49% (22)

3.1.3. Ford-B
It is similar to Ford-A, except that while the training data of

3, 636 samples were collected under typical operating conditions,

the test data of 810 samples were collected under noisy conditions.

Note that here too, each sample si ∈ R
500, and the task is to identify

whether or not a disorder exists in the engine subsystem.

3.1.4. Wafer
This dataset consists of 1, 000 training samples and 6, 164 test

samples of the sensor signal recorded during the processing of

wafers; each sample si ∈ R
152 and belong to either normal or

abnormal class, thus, a binary TSC task. We discard the last 14 test

samples to suit the experiment’s batch size requirements.

3.1.5. Earthquakes
This dataset consists of 322 training and 139 test samples of the

recorded seismic data; each sample si ∈ R
512. The task is to predict

whether or not a major event is about to occur based on the seismic

data—thus, a binary TSC task. We discard the last 1 test sample to

suit the experiment’s batch size requirements.

3.2. SLRC model training and evaluation

We next describe the experiment details of our proposed SLRC

model. We start with the hyper-parameter tuning details, followed

by the deployment details on the Loihi neuromorphic hardware and

the CPU.

3.2.1. Hyper-parameter tuning
As noted earlier, for the SLRC model, we experimented with

just the ECG5000 dataset, where each sample is independent of

the other. For such disjointed ECG signals each having their

own class, through some preliminary experiments we found that

inhibition of the RES neurons between the samples while training

helps in achieving higher training and test accuracy. This is

because the inhibition of the RES neurons helps it clear out the

memory of the previous input signal. Therefore, following the

basic investigative experiments, we set the magnitude and the

duration of the inhibition to be 8 and 50 time-steps, respectively.

In addition to setting the inhibition parameters, we also set the τ

parameter to 0.1—we found that varying it doesn’t improve the

TABLE 2 Hyper-parameter values over which grid-search is done for the

SLRC model on ECG5000 dataset.

Hyper-
parameters

Deployment platforms

Values on Loihi Values on CPU

d {6, 8, 10} {6, 8, 10}

θ {0.10, 0.12, 0.14} {0.12, 0.14}

FRmin {40, 60, 80} {75, 150}

FRmax {100, 120, 140} {250, 350}

rRES {0.5, 1.0, 1.5} {0.5, 1.0, 1.5, 2.0}

rENS {0.5, 1.0, 1.5} {0.5, 1.0, 1.5, 2.0}

Nsn {100, 200} {100, 200}

results significantly. Next, we begin training our SLRCmodel along

with tuning the rest of the hyper-parameters. Table 2 shows the

hyper-parameter values over which the grid-search is done—for

both the platforms: Loihi and CPU. For each of the platforms,

we choose the hyper-parameter combination for inference which

provides the best training accuracy. Note that, to account for the

random initialization of the Nengo networks, we conduct grid-

search with two different SEED values (3 & 9). Also note in Table 2,

that θ is limited to maximum 0.14s, since each ECG signal is only

140 time-steps long and we consider 1 time-step = 1ms. We next

present the platform specific deployment details.

3.2.2. Loihi-1 deployment
We use the NengoLoihi simulator to deploy our SLRC model

on the Loihi-1 boards. Note that on Loihi-1, the IF neurons

suffer from firing rate quantization errors, i.e., their firing rates

are quantized. This is because the spikes on Loihi-1 are binary,

i.e., they assume a value of either a 0 or a 1. This coupled with

IF neurons having integral Inter Spike Interval (ISI), results in

them to fire only at certain designated firing rates, e.g., at 500 Hz

(when ISI = 2), 333 Hz (when ISI = 3), 250 Hz (when ISI = 4),

200 Hz (when ISI = 5), and so on... This unfortunately limits

their ability to differentiate between multiple inputs (more details

later). Consequently, the spiking networks on Loihi-1 have poor

expressivity and limited discriminatory power. Therefore, to limit

the effects of quantization errors, we train our SLRC model with

lowminimum andmaximumfiring rates for Loihi deployment. The

accuracy results are mentioned in the Table 3.

3.2.3. CPU deployment
We use the Nengo simulator to deploy our SLRC model on

CPUs. Note that on CPUs, the IF neurons do not suffer from

firing rate quantization errors. This is because the spikes on CPUs

can be graded, which allows the IF neurons to have a continuous

spectrum of firing rates (more details later). Consequently, they

can distinctively represent each input, and the IF neurons based

spiking networks on CPUs have better expressivity and higher

discriminatory power. Therefore, we perform grid-search with

higherminimum andmaximumfiring rates on CPUs than on Loihi.

The accuracy results are mentioned in Table 3.

Frontiers inComputationalNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 3 ECG5000 test accuracy with corresponding hyper-parameters.

SLRC Model Parameters Test accuracy -

on platformSEED Nsn FRmin FRmax d θ rRES rENS

9 100 80 120 6 0.14 1.5 0.5 80.20% - on Loihi

3 200 150 350 10 0.12 0.5 1.0 91.97% - on CPU

3.3. LSNN model training and evaluation

Here, we describe the experiment details of our proposed LSNN

model. We start with its hyper-parameter tuning details, followed

by that of its derivative models. We then present the results

obtained with LSNN and its derivatives on the five TSC datasets.

Note that we do not deploy this model on Loihi, it was trained and

evaluated on CPUs only. We used the Adam optimizer (Kingma

and Ba, 2014) for all our LSNN related experiments.

3.3.1. Hyper-parameter tuning
As mentioned in Section 2.4.4, we fix the number of neurons

in the ENC and HDN layers to 2 × d and 3 × d, respectively, and

the tunable parameters in the LSNN model are d, θ , ρ, ι, τcur,

τvol, and Vthr—which we tune differently in cognizance of the

datasets; in addition, we also tune the learning rate η. The number

of training epochs and batch size too, varies with the dataset; they

are, training epochs: 50 for ECG5000 and Wafer, 250 for Ford-

A, Ford-B, and Earthquakes, and batch size: 50 for ECG5000 and

Wafer, 40, 18, 23 for Ford-A, Ford-B, and Earthquakes, respectively.

For a dataset, the number of epochs and batch size are kept the

same across all its related experiments. Note that, unlike the case

with SLRC, there is no need to inhibit the LDN here, since it is

implemented via the matrix operations (in the LSNN model) and

there is no residual memory of the previous input. We conducted

a few preliminary LSNN experiments on the ECG5000 dataset

to investigate the effects of the tunable hyper-parameters; which

we later adapt to all the datasets and conduct our exhaustive

experiments. During the preliminary experiments with ECG5000,

we also found that the hard reset of V[t] and no normalization of

the LDN extracted features x(t) improve the inference accuracies;

therefore, we keep this setting for the rest of the datasets. Table 4

shows the dataset specific hyper-parameters’ values over which the

grid search is done—for three different runs with SEED ∈ {6, 9,

100}. Note that we shuffle the training data every 20 epochs for

all the experiments, and calculate the test accuracy on the entire

test set every training epoch. Table 5 shows the test accuracy results

for all the experimented datasets, obtained over all the (dataset

specific) hyper-parameter combinations and the threeSEED values;

we provide further explanations of Table 5 in Section 4.

3.3.2. Derivative models of LSNN
In this section, we do the ablation study of the LSNN

model. We next explain the derivative models of the LSNN

which were employed to characterize the practicality of the

LSNN’s architecture. The first derivative of LSNN is obtained by

removing the spiking hidden layer (HDN) altogether—to resemble

the conventional RC architecture, and the second one is obtained by

switching the spiking neurons to the non-spiking ReLU neurons.

Note that for all the derivatives’ experiments with each dataset, we

use the related hyper-parameters’ values mentioned in the Table 4,

and execute three runs with SEED ∈ {6, 9, 100}.

3.3.2.1. No hidden layer

To qualify if the HDN layer of spiking neurons is necessary

in the LSNN model’s architecture for a superior performance, we

compare our LSNN against its derivative model with no HDN

layer; such that the derivative now resembles a conventional RC

architecture. It now has the LDN which maps the input to the high

dimensional temporal features x(t), followed by the ENC layer of

2 × d encoding neurons densely connected to the OTP layer, i.e.,

with no non-linearity in between. We call this model as LSNNnhdn.

3.3.2.2. Non-spiking model

To qualify how the LSNN performs against its non-spiking

counterpart, we replace the spiking neurons in the LSNN’s

architecture with non-spiking ReLU neurons. Since the ANNs do

not need to separately encode the positive and negative part of the

input, we replace the ENC layer with an Input layer of d nodes,

followed by a Hidden layer of 3× d number of ReLU neurons. In

the Output layer, we collect the outputs from the class nodes over

all the simulation time-steps and apply the same procedure as in

Section 2.4.3.3 to calculate the loss and back-propagate it. We call

this non-spiking variant as LSNNnspk.

Table 5 shows the results obtained with the LSNNnhdn and

LSNNnspk models, in comparison to the other SoTA results. Code

at: https://github.com/R-Gaurav/spiking-models-for-TSC.

4. Result analysis

Here, we present a detailed analysis of the experiment results

obtained from our models: the SLRC and the LSNN models. We

start with SLRC model’s result analysis followed by that of the

LSNN.

4.1. SLRC model’s result analysis

The test accuracy results mentioned in Table 3 are obtained

from the hyper-parameter combination (refer Table 2) which gave

the best training accuracy. As can be seen in the Table 3, we

obtained 80.20% and 91.97% test accuracy on the ECG5000 dataset,

on Loihi and CPU, respectively. Note that we rounded off the

class prediction scores to calculate accuracy. To the best of our

knowledge, our spiking results for the ECG5000 dataset with

neuromorphic deployment are the first, therefore, we could not

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://github.com/R-Gaurav/spiking-models-for-TSC
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 4 Hyper-parameters values over which the grid-search is done for the LSNN experiments, for each of the three runs with di�erent SEED values.

Hyper-
params

Datasets

ECG5000 WAFER FORD-A FORD-B EARTHQUAKES

d {12, 14} {10, 12, 14} {10, 12, 16, 24} {10, 12, 16, 24} {10, 12, 16, 24}

θ {0.12} {0.11, 0.13, 0.15} {0.025, 0.05, 0.1, 0.15} {0.025, 0.05, 0.1, 0.15} {0.025, 0.05, 0.1, 0.15}

ρ {1, 2, 4} {1, 2, 4} {2, 4} {2, 4} {2, 4}

ι {0, 0.5} {0, 0.5} {0, 0.5} {0, 0.5} {0, 0.5}

τcur {5e-3, 10e-3, 15e-3} {5e-3, 10e-3, 15e-3} {5e-3, 10e-3} {5e-3, 10e-3} {5e-3, 10e-3}

τvol {10e-3, 20e-3, 30e-3} {10e-3, 20e-3, 30e-3} {20e-3, 30e-3} {20e-3, 30e-3} {20e-3, 30e-3}

Vthr {1, 1.5} {1, 1.5} {1, 1.5} {1, 1.5} {1, 1.5}

η {0.005, 0.01, 0.05} {0.005, 0.01, 0.05} {0.005, 0.01} {0.005, 0.01} {0.001, 0.005, 0.01}

In case of Ford-A, Ford-B, and Earthquakes, the combinations of d = {10, 12} with θ = {0.025, 0.05, 0.1}, and d = {16, 24} with θ = {0.1, 0.15} were considered.

TABLE 5 Comparison of test accuracy results (in %) obtained from our LSNN model and its derivatives.

Dataset
Non-spiking
Acc. (SoTA)

Spiking
Acc. (SoTA)

LSNN Acc. LSNNnhdn Acc. LSNNnspk Acc.

Maxacc Meanacc Maxacc Meanacc Maxacc Meanacc

ECG5000 98.43 (Pereira and

Silveira, 2019)

– 98.49 98.19±0.21 97.73 97.22±0.37 98.42 98.18±0.18

WAFER 100.00 (Karim et al.,

2017)

98.85 (Dey et al.,

2022)

99.51 99.38±0.17 99.38 99.30±0.06 99.82 99.76±0.05

FORDA 97.33 (Karim et al., 2017) 80.37 (Dey et al.,

2022)

93.56 93.36±0.19 89.62 88.25±1.67 93.03 92.98±0.07

FORDB 92.86 (Lines et al., 2018) 64.32 (Dey et al.,

2022)

82.72 81.98±0.88 77.78 76.46±1.06 81.98 81.90±0.12

EARTHQUAKES 83.54 (Karim et al., 2017) 71.94 (Dey et al.,

2022)

80.43 79.95±0.68 79.71 78.74±1.37 81.88 79.71±1.56

Acc. stands for accuracy; Maxacc and Meanacc stand for the maximum accuracy and mean of the maximum accuracies (mean ± std) over 3 runs. We compare our results with only the SoTA

spiking ones (Dey et al., 2022). The italicized values indicate accuracy values from non-spiking models. The bold values indicate the highest accuracy results.

FIGURE 4

(A, B) Show the firing rate profile of IF neurons on Loihi and CPU, respectively. Note r = 1. (A) Tuning Curves on Loihi. (B) Tuning Curves on CPU.

compare our results with any. We present a comparison with non-

spiking results on the ECG5000 dataset later. As can be seen,

the spiking results on CPU are higher than that on Loihi. This

is due to the IF neurons having a more continuous spectrum of

firing rates on CPU than on Loihi—explained in detail in the next

paragraph.

4.1.1. Quantization error comparison on CPU and
Loihi

To better illustrate the firing rate quantization error difference

on Loihi-1 and CPU, Figure 4 shows the tuning curves (or the

firing rate profiles) of 15 random IF neurons on Loihi-1 and

CPU. As can be seen in case of Loihi-1 (Figure 4A), the tuning

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

curves are quite smooth only until 100 Hz, beyond which they

are jagged. That is, the firing rates on Loihi are quantized—

multiple scalar inputs elicit the same firing rate value, and the

quantization effect on firing rates becomes more prominent after

100 Hz or so. Therefore, we keep the IF neurons’ firing rates on

Loihi around 100 Hz. However, in case of CPU (Figure 4B), the

tuning curves are smooth all along the firing rate spectrum. That

is, each scalar input elicits different firing rate values. Therefore,

we can leverage this higher variability to our advantage by keeping

higher minimum and maximum firing rates, as well as by utilizing

a broader spectrum.

With respect to improving the results on Loihi, we tried

to further fine tune the hyper-parameters around the values

mentioned in the Table 3 (with respect to Loihi experiments)—

FRmax ∈ [110, 112, · · · , 130], FRmin ∈ [70, 72, · · · , 90], rRES ∈

[1.1, 1.2, · · · , 2.0], rENS ∈ [0.1, 0.2, · · · , 0.9]—one parameter at a

time in an arbitrary order. However, fine tuning on Loihi did not

improve the results than already mentioned in the Table 3. One

specific trend that we did observe between the accuracy results and

the order d of the LDN (keeping the rest of the hyper-parameters

same), is that on CPU, the results improved with the increase

in d, but on Loihi, the results worsened; this worsening can be

attributed to the firing rate quantization effect on Loihi. Higher

d implies richer temporal information in the state-space vector

x(t); however, due to the limited representational capacity of the

spiking networks on Loihi-1, they could not leverage it and the

models overfitted. This wasn’t the case with the spiking networks

on CPU, which very well differentiated and leveraged the high

dimensional state-spaces to improve the classification accuracy,

with increase in d.

4.2. LSNN model’s result analysis

We start by rementioning that for each dataset, we obtained

the prediction accuracy on the entire test set every training epoch,

and the ECG5000 dataset was molded to suit the binary TSC task;

therefore, we compare our results on it with works which do the

same. The results reported in the Table 5 under the LSNN’s and its

derivative models’ columns are defined as follows: Maxacc denotes

the maximum test accuracy obtained over all the hyper-parameter

combinations (dataset specific, refer Table 4) across all the three

runs with different SEED values, andMeanacc denotes the mean of

the maximum test accuracies (over all the dataset specific hyper-

parameter combination) obtained in each of the three runs. We

also mention the State-of-The-Art (SoTA) results obtained with the

non-spiking methods [e.g., LSTM-FCN (Karim et al., 2017) and

HIVE-COTE (Lines et al., 2018)] for completeness, but compare

ours with only the other spiking results for fairness. As can be seen

in the Table 5, the Maxacc results obtained with the LSNN model

completely outperforms the latest spiking results on the Wafer,

Ford-A, Ford-B, and the Earthquakes dataset reported by Dey et al.

(2022). In fact, with the LSNN model, considering the Maxacc

results, we get an improvement of 0.668%, 16.412%, 28.607%, and

11.802% in classification accuracy (over Dey et al., 2022) for Wafer,

Ford-A, Ford-B, and Earthquakes datasets, respectively. On the

ECG5000 dataset, the LSNN model obtains a maximum accuracy

of 98.49% which interestingly outperforms the current SoTA

98.43% obtained by a non-spiking model (Pereira and Silveira,

2019), although, by a small margin. Also note that the Meanacc

results under the LSNN column are very close to the Maxacc

results (also under LSNN) with minimal standard deviation, while

also being better than those obtained by Dey et al. (2022). We

next analyse the accuracy results obtained by the LSNN model’s

derivatives.

Considering theMaxacc andMeanacc accuracy results obtained

with the LSNNnhdn model (where the network is still spiking,

but with no HDN layer), we see that they too outperform the

results obtained by Dey et al. (2022), with 0.536%, 11.509%,

20.927%, and 10.801% improvement (w.r.t. Maxacc results under

LSNNnhdn) on Wafer, Ford-A, Ford-B, and Earthquakes datasets,

respectively. Note that the Maxacc and Meanacc results under

the LSNNnhdn column are relatively poorer than those obtained

with the LSNN model (especially for Ford-A and Ford-B); this

implies that non-linearity in the readout layer (i.e., the HDN layer)

is necessary for a superior performance. Next, considering the

Maxacc and Meanacc accuracy results obtained with the LSNNnspk

model, where the spiking neurons are replaced with non-spiking

ReLU neurons, it is encouraging to note that the LSNN model

performs either similar or better than its non-spiking counterpart.

Generally, ANN-to-SNN conversion does not yield a superior

performing SNN (than its isomorphic ANN). This seconds the

strength of the SurrGD approach to train the SNNs from scratch,

such that the training takes into account and leverages the

temporal dynamics of the SNN. Note that our non-spiking LSNN

model (i.e., LSNNnspk) does not outperform the SoTA non-spiking

results. This can be attributed to the simplicity of our LSNNnspk’s

architecture compared to that of the complex models such as

LSTM-FCN.

Similar to the SLRC experiments on CPUs, we observed that

the performance of LSNN model improves with the increase in

d [of the LDN’s state-space output x(t)]. This can be due to two

reasons here: (1) richer temporal information to train and infer

upon, and (2) increased number of neurons in the architecture.

We also note that our LSNN’s neurons generate binary spikes,

thus, they too suffer from the firing rate quantization error.

However, as seen in the Table 5 with respect to the ECG5000

dataset, the performance of LSNN and LSNNnhdn is better than

that of the SLRC model on Loihi (and even on CPU). This

positive difference could be due to the exact calculation of the

state-space vector x(t) in LSNN (and LSNNnhdn), in contrast to

its approximation in the SLRC model—as the LDN in the SLRC

model is implemented via spiking neurons (both on Loihi and

CPU). This approximation coupled with the firing rate quantization

error on Loihi-1, severely limits the expressivity and discriminatory

power of the LDN extracted features x(t). With respect to SLRC

on CPU, although the spikes are graded, the state-vector x(t) is

still approximated, and further represented via the ENS which

contributes to added information loss in x(t) (also true in case

of Loihi deployment). We also surmise that iterative SurrGD

in LSNNnhdn perhaps offers a better fit to the data than the

Least Squares Regression fitting in SLRC, although, this should be

thoroughly investigated.

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

5. Discussion

We now present a detailed discussion on our proposed models,

starting with the SLRC model, followed by the LSNN model. We

then present the energy consumption analysis of our models on

CPU and Loihi-1.

5.1. Discussion on the SLRC model

In light of the limitations of the SLRC model described in the

paragraph above, one may question the necessity of approximating

and further representing the temporal features x(t) via spiking

neurons in the model. This was done because of the following

reasons:

• First, the SLRC model serves the purpose to show that the

LDN can be entirely implemented with spiking neurons, and

a spiking RC based model can be built with it

• Second, following the NEF theory, the approximation and

representation of vectors can be improved by increasing the

number of neurons in the ensembles

• Third, although further representation of the approximated

temporal features x(t) could have been avoided by having the

RES constituted directly of spiking neurons (and connecting

the OTP nodes to the RES neurons directly), the architectural

decision to break the RES into ensembles and then collectively

represent the x(t) via another ENS was taken due to the

following two sub-reasons:

– No separate ensembles in the RES would mean that all

the neurons would be sensitive to all the dimensions of

x(t), thereby poorly approximating the state-space vector

(for the same total number of neurons as with splitting the

RES into ensembles—each composed of lesser number of

neurons)

– The number of learnable readout connections from the

RES neurons to the OTP nodes would be too high, thereby

increasing the SLRC model’s complexity

Therefore, where the approximation of the temporal features

x(t) is implicit due to the spiking implementation of the LDN,

further representing it via a smaller ENS of neurons lowers down

the SLRC model’s complexity. We note that the SLRC model,

compared to the LSNN is quicker to train (due to the Least Squares

Regression method) and more neuromorphic-hardware friendly

(as demonstrated by us via its deployment and inference on Loihi-

1). However, to overcome the limitations of the approximation

and representation of x(t), thereby increasing the SLRC model’s

performance, one would be needed to employ ensembles with

large number of neurons—but this comes at the cost of higher

computational complexity.

We further note that Loihi-2 [which has been recently released

(Orchard et al., 2021)] overcomes the binary spikes limitation of

Loihi-1 by offering 32-bit graded spikes implementation, similar to

CPU. Therefore, we expect that our SLRCmodel when deployed on

the Loihi-2 boards, would achieve similar test accuracy results as

that on CPU. Also note that in our SLRC model, the inhibition of

the RES neurons is not always necessary. For a continuous stream

of inputs, i.e., for an online input signal where the class of a current

scalar input depends on the previous inputs, intervening inhibition

would be adverse.

5.2. Discussion on the LSNN model

To mitigate the performance extenuating effect of the

approximation and representation of the temporal features x(t) by

the spiking LDN, we decided to explicitly calculate x(t) through

regular matrix operations in the LSNN model. This helps in two

ways. First, the accurate and information-rich temporal features

x(t) helps us achieve better test results compared to the SLRC

model. Second, it also helps in reducing the number of neurons

required in our LSNN model; for d-dimensional x(t), we require

2 × d neurons in the ENC layer, followed by 3 × d neurons in

the HDN layer. Thus, the LSNN model requires a total of 5 × d

number of spiking neurons. Considering the values of d in our

LSNN experiments (refer Table 4), the minimum and maximum

number of employed neurons in our LSNN model is 50 and 120,

respectively, which is far below the number of neurons required

in the SLRC model, where each ensemble has either 100 or 200

neurons, and the minimum number of ensembles is 6 (refer

Table 2). In Table 5, we compared our spiking results with the

current SoTA on 4 experimented datasets (Dey et al., 2022), where

the authors have used LSMs as their spiking reservoir model.

We note that the authors (Dey et al., 2022) use a minimum

and maximum of 2500 and 5000 spiking neurons, respectively, in

their reservoir, with additional 15 neurons in their Gaussian Spike

Encoder layer; these numbers are significantly higher than ours in

the LSNN model (more than 40x).

One may argue that the computational resource efficiency and

the superior inference performance of the LSNN model perhaps

comes at the cost of increased energy consumption, since there

is no spiking reservoir in the LSNN model, rather a non-spiking

LDN module to extract the temporal features. However, we note

that the non-spiking LDN module offers minimal computation

overhead due to the linear static matrix operations. The Loihi-1

(Davies et al., 2018) and Loihi-2 (Orchard et al., 2021) chips have

3 and 6 (respectively) number of embedded x86 processor cores—

which can be efficiently used for non-spiking LDN preprocessing

to extract the temporal features, before they are encoded to spikes

(Davies et al., 2021). SpiNNaker-2 has MAC arrays which also offer

the feasibility of inexpensive matrix operations in neuromorphic

setting (Yan et al., 2021). We next analyze the energy consumption

of the SLRC, LSNN, and LSNNnspk models on CPU and Loihi-1.

We did not do energy profiling on GPUs because previous works

(Blouw et al., 2019; Patel et al., 2021) have shown that energy

consumption on GPU is generally higher than that on Loihi for

per sample inference. This is because the GPUs are optimized

for parallel processing of data (and not online). Moreover, the

application domain of our work is most well-suited to small

IoT/Edge devices with sensors and batteries (GPUs are generally

space consuming).

Frontiers inComputationalNeuroscience 12 frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

TABLE 6 Comparison of energy consumption (per sample) in milli-Joules (mJ) of our spiking models—SLRC and LSNNmodel, and the non-spiking

variant of LSNN, i.e., LSNNnspk on CPU and Loihi-1.

Platform
SLRC LSNN LSNNnspk

Max Min Mean Max Min Mean Max Min Mean

CPU 7359.72 5262.13 6285.71± 803.61 3031.73 2189.45 2689.23± 248.30 2780.94 2319.15 2553.59± 163.20

LOIHI-1 91.94 85.06 87.30± 2.08 90.91 73.40 81.65± 5.79 – – –

The bold values indicate the minimum energy consumption values.

5.3. Discussion on energy consumption

Table 6 shows the energy consumption (in milli-Joules) of our

proposed models, per sample, on Intel Core i5-5257U CPU and

Nahuku32 board (built with Loihi-1 chips). Note that for energy

consumption analysis, we did not train/evaluate the models on the

CPU or Loihi-1 boards with the training/test data. We rather built

our SLRC, LSNN, and LSNNnspk models in Nengo with randomly

generated matrices and executed them with Nengo simulator on

CPU and with NengoLoihi simulator on Loihi-1. An input signal

of 140 time-steps was randomly generated, and for all the analyzed

models, we set d = 10. For the SLRC model, we use the hyper-

parameters’ valuesmentioned in the first row of the Table 3; we keep

each model (and its hyper-parameters) unchanged while executing

it on CPU and Loihi-1 (we ran each model for 10 times on both

platforms).Max,Min, andMean columns in Table 6 for eachmodel

denote the maximum, minimum, and mean ± std of the energy

consumption measurements in mJ. As can be seen in the Table 6,

LSNN on Loihi-1 reports the minimum energy consumption scores

per input sample. Compared to LSNNnspk, on average (i.e.,Mean),

LSNN on Loihi-1 is 31.27 times more energy efficient. Compared to

SLRCmodel too on Loihi-1, on average, LSNN reports lower energy

consumption (87.30mJ vs. 81.65 mJ, respectively). It’s interesting

to note that for d = 10 and Nsn = 100, where the SLRC model

has 1250 neurons and LSNN has meager 50 neurons, the gain in

energy efficiency with LSNN on Loihi-1 isn’t much. However, on

CPU, we see that on average, LSNN is 2.34 times more energy

efficient than SLRC—this small gain to an extent is explained by

the disparity in the number of neurons. To investigate further, we

built a simple spiking network to represent a scalar over time. The

network consisted of an input node (outputting 1) connected to

an ensemble of N neurons that was probed. For N = 100 and

N = 4096 each, we ran the network for 10 times on Loihi-1, and

measured the energy consumption for each run. We found that for

N = 100 and N = 4, 096, the network consumed 59.94 ± 0.59 mJ

and 63.46±0.57 mJ on average, respectively. Therefore, we surmise

that energy consumption on Loihi-1 does not increase dramatically

with the number of neurons. Detailed energy consumption plots

can be found in the Supplementary material.

Note that we did not do inference with the LSNN model

on Loihi, because PyTorch does not support Loihi deployment;

as well as, because of the cross-library (i.e., PyTorch and

Nengo/NengoLoihi) challenges to port trained weights. However,

Loihi-2 which has been recently released, supports three-factor

learning rules (based on the surrogate gradient approach, Zenke

and Ganguli, 2018), and SNNs on it can be trained/deployed by

using Intel’s Lava library (Intel, 2021); thus, the LSNN model is

quiet well-suited for training and inference-mode deployment on

Loihi-2. Next, we revisit the Table 5 and make a subtle remark

with respect to the LSNN’s results on the Ford-B dataset. We

see that authors (Dey et al., 2022) achieve 64.32% accuracy on

Ford-B with an LSM based model, where unlike the training

data, the test samples are noisy. However, the LSNN model and

its derivatives achieve far better accuracy on Ford-B (28.607%

max improvement). This subtly hints toward the LDN (and

subsequently the LSNN) being more robust to noise than LSMs—

although, this needs to be properly investigated. Nonetheless,

with respect to the LSNN’s (and LSNNnhdn’s) overall inference

performance in Table 5, compared to Dey et al. (2022), we see

that the LSNN has a clear advantage over the popular LSMs—

both in terms of accuracy and resource efficiency. One likely

limitation of both SLRC and LSNNmodels could be the large set of

hyper-parameters to tune (Tables 2, 4). In our LSNN experiments,

although exhaustive with a wide range of hyper-parameters’ values

(and 3 runs each), we could not identify any conclusive trends

between the individual hyper-parameters and test accuracy, other

than, that test accuracy increases with the increase in order d of

the LDN (which is expected). There were a few weak correlations

suggesting higher values of neuron gain ρ, and higher values of

θ for higher values of d being helpful to LSNN’s performance.

Also, lower values of learning rate, i.e., η < 0.05 demonstrated

better fit.

6. Conclusion and future work

The literature around spiking TSC is not very rich; only a few

popular spiking models exist, namely: the LSMs and the DFRs,

and a few others (Dominguez-Morales et al., 2018; Fang et al.,

2020; Gautam and Singh, 2020). There’s a scarcity of spiking TSC

models which are not only high performing but also resource

efficient and neuromorphic hardware friendly. In this work, we

presented two novel spiking models for the TSC task of univariate

signals, along with their theoretical details and detailed empirical

analysis. We first presented an entirely spiking, RC based model—

the SLRC model, which was deployed on Loihi-1 for inference

and also served as a precursor to our next improved model—

the LSNN (if one counts its spiking derivative with no hidden

layer—the LSNNnhdn as another, then in total three spiking models

were presented). We also did the energy consumption analysis of

both our models on CPU and Loihi neuromorphic hardware, and

observed that the LSNN model not only establishes a new SoTA

spiking results on the experimented datasets, but also achieves

the best energy efficiency (on average) on Loihi-1, among the

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

compared models. We also found that the energy consumption

gap between the spiking networks (on Loihi-1) with as much

as 40 times the difference in the number of spiking neurons, is

not much—although, this observation should be put to rigorous

tests. However, in the context of our work, this leaves enough

room to further introduce deeper layers, or more neurons in a

layer, or increase the dimensionality d of the state-space vector

in the LSNN model to improve its performance, without being

at the risk of dramatically increasing its energy consumption

on Loihi. To further establish the efficacy of our LSNN model,

we intend to evaluate it on the entire set of the multi-class

univariate TSC datasets, publicly available at the Time Series

Classificationwebsite.We note that currently, our proposed spiking

models are limited to univariate signals, we plan to address this

limitation too in future. Another avenue which was looked over

in this work, is the neuromorphic on-chip training of the spiking

models; both, SLRC and LSNN models were trained off-chip. As

stated in the previous section, SNNs can be trained on Loihi-

2 with Lava using Three-Factor Rule based learning; this could

be another promising direction to look into. In the end, the key

takeaway of this work should be the LSNN model, which not only

performs better compared to the LSM based models, but is also

frugally resource efficient with minimum energy consumption on

Loihi-1.

Data availability statement

Publicly available datasets were analyzed in this study. The

datasets can be found here: https://www.timeseriesclassification.

com/.

Author contributions

RG proposed, designed, and experimented with the models

presented in this work, and wrote the manuscript. TS discussed

the design of the models and provided valuable inputs to refine

and improve them. RG, TS, and YY analyzed the results, with YY

overseeing the development of the models and supervising this

project. All authors reviewed the manuscript, contributed to the

article, and approved the submitted version.

Funding

This work was supported in part by the U.S. National Science

Foundation (NSF) under Grants CCF-1750450, ECCS-1731928,

ECCS-2128594, and CCF-1937487.

Acknowledgments

We gratefully acknowledge Intel for providing us the cloud

access to Loihi-1 boards, and thank Shiya Liu for fruitful

discussions on our work. We also thank Virginia Tech’s ARC for

providing us the computing resources to run our experiments.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fncom.

2023.1148284/full#supplementary-material

References

Appeltant, L., Soriano, M., Van der Sande, G., Dankaert, J., Massar, S., Dambre, J.,
et al. (2011). “Reservoir computing using a delayed feedback system: towards photonic
implementations,” in 16th Annual Symposium of the IEEE Photonics Benelux Chapter
(IEEE/LEOS), 125–128.

Bai, K., and Yi, Y. (2018). DFR: an energy-efficient analog delay feedback reservoir
computing system for brain-inspired computing.ACM J. Emerg. Technol. Comput. Syst.
14, 1–22. doi: 10.1145/3264659

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen, D.,
et al. (2014). Nengo: a Python tool for building large-scale functional brain models.
Front. Neuroinform. 7, 48. doi: 10.3389/fninf.2013.00048

Bianchi, F. M., Scardapane, S., Løkse, S., and Jenssen, R. (2020).
Reservoir computing approaches for representation and classification of
multivariate time series. IEEE Trans. Neural Netw. Learn. Syst. 32, 2169–2179.
doi: 10.1109/TNNLS.2020.3001377

Biloborodova, T., Skarga-Bandurova, I., Skarha-Bandurov, I., Yevsieieva, Y., and
Biloborodov, O. (2022). “ECG classification using combination of linear and non-linear

features with neural network,” in Challenges of Trustable AI and Added-Value on
Health.

Blouw, P., Choo, X., Hunsberger, E., and Eliasmith, C. (2019). “Benchmarking
keyword spotting efficiency on neuromorphic hardware,” in Proceedings of the 7th
Annual Neuro-Inspired Computational Elements Workshop (New York, NY), 1–8.

Blouw, P., Malik, G., Morcos, B., Voelker, A. R., and Eliasmith, C. (2020). Hardware
aware training for efficient keyword spotting on general purpose and specialized
hardware. arXiv preprint arXiv:2009.04465.

Brogan, W. L. (1991).Modern Control Theory. Pearson Education India.

Bu, T., Fang, W., Ding, J., Dai, P., Yu, Z., and Huang, T. (2021). “Optimal
ANN-SNN conversion for high-accuracy and ultra-low-latency spiking
neural networks,” in International Conference on Learning Representations
(Vienna).

Burkitt, A. N. (2006). A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input. Biol. Cybernet. 95, 1–19. doi: 10.1007/s00422-006-0068-6

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://www.timeseriesclassification.com/
https://www.timeseriesclassification.com/
https://www.frontiersin.org/articles/10.3389/fncom.2023.1148284/full#supplementary-material
https://doi.org/10.1145/3264659
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/TNNLS.2020.3001377
https://doi.org/10.1007/s00422-006-0068-6
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

Gaurav et al. 10.3389/fncom.2023.1148284

Chilkuri, N., Hunsberger, E., Voelker, A., Malik, G., and Eliasmith, C. (2021).
Language modeling using LMUS: 10x better data efficiency or improved scaling
compared to transformers. arXiv preprint arXiv:2110.02402.

Chilkuri, N. R., and Eliasmith, C. (2021). “Parallelizing legendre memory unit
training,” in International Conference on Machine Learning (PMLR), 1898–1907.

Datta, G., and Beerel, P. A. (2022). “Can deep neural networks be converted to ultra
low-latency spiking neural networks?” in 2022 Design, Automation & Test in Europe
Conference & Exhibition (DATE) (Antwerp: IEEE), 718–723.

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al. (2018).
Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38,
82–99. doi: 10.1109/MM.2018.112130359

Davies, M., Wild, A., Orchard, G., Sandamirskaya, Y., Guerra, G. A. F., Joshi, P.,
et al. (2021). Advancing neuromorphic computing with loihi: a survey of results and
outlook. Proc. IEEE 109, 911–934. doi: 10.1109/JPROC.2021.3067593

Dey, S., Banerjee, D., George, A. M., Mukherjee, A., and Pal, A. (2022). “Efficient
time series classification using spiking reservoir,” in 2022 International Joint Conference
on Neural Networks (IJCNN) (Padua: IEEE), 1–8.

Dominguez-Morales, J. P., Liu, Q., James, R., Gutierrez-Galan, D., Jimenez-
Fernandez, A., Davidson, S., et al. (2018). “Deep spiking neural network model for
time-variant signals classification: a real-time speech recognition approach,” in 2018
International Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro, Brazil:
IEEE), 1–8.

Eliasmith, C., and Anderson, C. (2003). Neural Engineering: Computation,
Representation, and Dynamics in Neurobiological Systems. MIT Press.

Fang, H., Shrestha, A., and Qiu, Q. (2020). “Multivariate time series classification
using spiking neural networks,” in 2020 International Joint Conference on Neural
Networks (IJCNN) (Glasgow: IEEE), 1–7.

Gaurav, R., Stewart, T. C., and Yi, Y. (2022a). “Spiking reservoir computing for
temporal edge intelligence on loihi,” in 2022 IEEE/ACM 7th Symposium on Edge
Computing (SEC) (Los Alamitos, CA: IEEE Computer Society), 526–530.

Gaurav, R., Tripp, B., and Narayan, A. (2022b). “Spiking approximations of the
maxpooling operation in deep SNNs,” in 2022 International Joint Conference on Neural
Networks (Padua: IJCNN), 1–8.

Gautam, A., and Singh, V. (2020). CLR-based deep convolutional spiking neural
network with validation based stopping for time series classification. Appl. Intell. 50,
830–848. doi: 10.1007/s10489-019-01552-y

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (Las Vegas, NV).

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780.

Intel (2021). Taking Neuromorphic Computing with Loihi 2 to the Next Level.
Technology Brief.

Jaeger, H. (2001). The “Echo State” Approach to Analysing and Training Recurrent
Neural Networks-With an Erratum Note. Bonn: German National Research Center for
Information Technology GMD Technical Report.

Karim, F., Majumdar, S., Darabi, H., and Chen, S. (2017). Lstm fully
convolutional networks for time series classification. IEEE Access 6, 1662–1669.
doi: 10.1109/ACCESS.2017.2779939

Kingma, D. P., and Ba, J. (2014). Adam: a method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10, 508.
doi: 10.3389/fnins.2016.00508

Li, Y., Deng, S., Dong, X., Gong, R., and Gu, S. (2021). “A free lunch from
ANN: towards efficient, accurate spiking neural networks calibration,” in International
Conference on Machine Learning (Honolulu, HI: PMLR), 6316–6325.

Lines, J., Taylor, S., and Bagnall, A. (2018). Time series classification with hive-
cote: the hierarchical vote collective of transformation-based ensembles. ACM Trans.
Knowledge Discov. Data 12. doi: 10.1145/3182382

Lukoševičius, M., and Jaeger, H. (2009). Reservoir computing approaches
to recurrent neural network training. Comput. Sci. Rev. 3, 127–149.
doi: 10.1016/j.cosrev.2009.03.005

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing
without stable states: a new framework for neural computation based on

perturbations. Neural Comput. 14, 2531–2560. doi: 10.1162/089976602760
407955

Matias, P., Folgado, D., Gamboa, H., and Carreiro, A. V. (2021). “Robust anomaly
detection in time series through variational autoencoders and a local similarity
score,” in International Conference on Bio-inspired Systems and Signal Processing 2021
(Vienna), 91–102. doi: 10.5220/0010320500910102

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient learning in
spiking neural networks: bringing the power of gradient-based optimization to spiking
neural networks. IEEE Signal Process. Mag. 36, 51–63. doi: 10.1109/MSP.2019.2931595

Nowshin, F., Liu, L., and Yi, Y. (2020). “Energy efficient and adaptive analog ic
design for delay-based reservoir computing,” in 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS) (Springfield, MA).

Oluwasanmi, A., Aftab, M. U., Baagyere, E., Qin, Z., Ahmad, M., and Mazzara,
M. (2021). Attention autoencoder for generative latent representational learning in
anomaly detection. Sensors 22, 123. doi: 10.3390/s22010123

Orchard, G., Frady, E. P., Rubin, D. B. D., Sanborn, S., Shrestha, S. B., Sommer,
F. T., et al. (2021). “Efficient neuromorphic signal processing with loihi 2,” in 2021 IEEE
Workshop on Signal Processing Systems (SiPS) (Coimbra: IEEE), 254–259.

Pan, W., Zhang, W., and Pu, Y. (2022). Fractional-order multiscale attention
feature pyramid network for time series classification. Appl. Intell. 53, 8160–8179.
doi: 10.1007/s10489-022-03859-9

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).
“PyTorch: an imperative style, high-performance deep learning library,” in Advances in
Neural Information Processing Systems 32 (Vancouver, BC).

Patel, K., Hunsberger, E., Batir, S., and Eliasmith, C. (2021). A spiking neural
network for image segmentation. arXiv preprint arXiv:2106.08921.

Patiño-Saucedo, A., Rostro-González, H., Serrano-Gotarredona, T., and Linares-
Barranco, B. (2022). Liquid state machine on spinnaker for spatio-temporal
classification tasks. Front. Neurosci. 16, 819063. doi: 10.3389/fnins.2022.819063

Pereira, J., and Silveira, M. (2019). Unsupervised representation learning and
anomaly detection in ECG sequences. Int. J Data Mining Bioinform. 22, 389–407.
doi: 10.1504/IJDMB.2019.101395

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking neurons: opportunities
and challenges. Front. Neurosci. 12, 774. doi: 10.3389/fnins.2018.00774

Rueckauer, B., and Liu, S.-C. (2018). “Conversion of analog to spiking neural
networks using sparse temporal coding,” in 2018 IEEE International Symposium on
Circuits and Systems (ISCAS) (Florence), 1–5.

Shenoy Renjal, A. (2019). Liquid state machine model with homeostasis and
supervised stdp on neuromorphic loihi processor (Master’s thesis).

Stewart, T. C. (2012). A technical overview of the neural engineering framework.
Univ. Waterloo 110.

Voelker, A., Kajić, I., and Eliasmith, C. (2019). “Legendre memory units:
continuous-time representation in recurrent neural networks,” in Advances in Neural
Information Processing Systems 32.

Voelker, A. R. (2019). Dynamical systems in spiking neuromorphic hardware (Ph.D.
thesis). Vancouver, BC: University of Waterloo.

Voelker, A. R., and Eliasmith, C. (2018). Improving spiking dynamical networks:
accurate delays, higher-order synapses, and time cells. Neural Comput. 30, 569–609.
doi: 10.1162/neco_a_01046

Wu, Y., Deng, L., Li, G., Zhu, J., and Shi, L. (2018). Spatio-temporal backpropagation
for training high-performance spiking neural networks. Front. Neurosci. 12, 331.
doi: 10.3389/fnins.2018.00331

Wu, Y., Deng, L., Li, G., Zhu, J., Xie, Y., and Shi, L. (2019). “Direct training for
spiking neural networks: Faster, larger, better,” in Proceedings of the AAAI Conference
on Artificial Intelligence (Honolulu, HI), 1311–1318.

Yan, Y., Stewart, T. C., Choo, X., Vogginger, B., Partzsch, J., Höppner, S., et al.
(2021). Comparing loihi with a spinnaker 2 prototype on low-latency keyword
spotting and adaptive robotic control. Neuromorph. Comput. Eng. 1, 014002.
doi: 10.1088/2634-4386/abf150

Zenke, F., and Ganguli, S. (2018). Superspike: supervised learning
in multilayer spiking neural networks. Neural Comput. 30, 1514–1541.
doi: 10.1162/neco_a_01086

Zheng, H., Wu, Y., Deng, L., Hu, Y., and Li, G. (2021). “Going deeper with directly-
trained larger spiking neural networks,” in Proceedings of the AAAI Conference on
Artificial Intelligence (Vancouver, CA), 11062–11070.

Frontiers inComputationalNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fncom.2023.1148284
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/JPROC.2021.3067593
https://doi.org/10.1007/s10489-019-01552-y
https://doi.org/10.1109/ACCESS.2017.2779939
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1145/3182382
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1162/089976602760407955
https://doi.org/10.5220/0010320500910102
https://doi.org/10.1109/MSP.2019.2931595
https://doi.org/10.3390/s22010123
https://doi.org/10.1007/s10489-022-03859-9
https://doi.org/10.3389/fnins.2022.819063
https://doi.org/10.1504/IJDMB.2019.101395
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1162/neco_a_01046
https://doi.org/10.3389/fnins.2018.00331
https://doi.org/10.1088/2634-4386/abf150
https://doi.org/10.1162/neco_a_01086
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Reservoir based spiking models for univariate Time Series Classification
	1. Introduction
	2. Methods
	2.1. Legendre delay network (LDN)
	2.1.1. Approximating the canonical LTI system through a neural LTI system
	2.1.2. Tunable parameters of LDN

	2.2. Surrogate gradient descent (SurrGD)
	2.3. Spiking Legendre Reservoir Computing (SLRC) model
	2.3.1. Network design hyper-parameters

	2.4. Legendre Spiking Neural Network (LSNN) model
	2.4.1. IF neuron's state equations
	2.4.2. LSNN architecture
	2.4.3. Discrete-time state equations
	2.4.3.1. ENC layer
	2.4.3.2. HDN layer
	2.4.3.3. OTP layer

	2.4.4. Network design hyper-parameters

	3. Experiments
	3.1. Datasets
	3.1.1. ECG5000
	3.1.2. Ford-A
	3.1.3. Ford-B
	3.1.4. Wafer
	3.1.5. Earthquakes

	3.2. SLRC model training and evaluation
	3.2.1. Hyper-parameter tuning
	3.2.2. Loihi-1 deployment
	3.2.3. CPU deployment

	3.3. LSNN model training and evaluation
	3.3.1. Hyper-parameter tuning
	3.3.2. Derivative models of LSNN
	3.3.2.1. No hidden layer
	3.3.2.2. Non-spiking model

	4. Result analysis
	4.1. SLRC model's result analysis
	4.1.1. Quantization error comparison on CPU and Loihi

	4.2. LSNN model's result analysis

	5. Discussion
	5.1. Discussion on the SLRC model
	5.2. Discussion on the LSNN model
	5.3. Discussion on energy consumption

	6. Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References

