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Human motion prediction is one of the fundamental studies of computer vision.

Much work based on deep learning has shown impressive performance for it

in recent years. However, long-term prediction and human skeletal deformation

are still challenging tasks for human motion prediction. For accurate prediction,

this paper proposes a GCN-based two-stage prediction method. We train a

predictionmodel in the first stage. Using multiple cascaded spatial attention graph

convolution layers (SAGCL) to extract features, the prediction model generates an

initial motion sequence of future actions based on the observed pose. Since the

initial pose generated in the first stage often deviates from natural human body

motion, such as a motion sequence in which the length of a bone is changed.

So the task of the second stage is to fine-tune the predicted pose and make

it closer to natural motion. We present a fine-tuning model including multiple

cascaded causally temporal-graph convolution layers (CT-GCL). We apply the

spatial coordinate error of joints and bone length error as loss functions to train

the fine-tuning model. We validate our model on Human3.6m and CMU-MoCap

datasets. Extensive experiments show that the two-stage prediction method

outperforms state-of-the-art methods. The limitations of proposed methods are

discussed as well, hoping to make a breakthrough in future exploration.

KEYWORDS

motion prediction, GCN-based, two-stage prediction method, spatial attention, causally

temporal

1. Introduction

3D skeleton-based human motion prediction uses an action posture observed in the

past to predict an action posture in the future. Motion prediction technology helps robots

understand human behavior. This technology is of great value in areas such as intelligent

security, autonomous driving (Ge et al., 2019; Djuric et al., 2020; Gao et al., 2020), object

tracking, and human-robot collaboration (Liu and Wang, 2017; Oguz et al., 2017; Liu et al.,

2019a, 2021; Li et al., 2020b; Liu and Liu, 2020; Ding et al., 2021; Mao et al., 2021).

Recurrent neural networks(RNN) are usually adopted to solve sequence-to-sequence

prediction tasks, such as voice recognition and automatic translation (Wang et al., 2017; Tang

R. et al., 2018; Iida et al., 2019; Yao et al., 2021). Due to the sequential nature of motion in

the time dimension, many works use RNN to realize human motion prediction (Fragkiadaki

et al., 2015; Chiu et al., 2019; Guo and Choi, 2019; Corona et al., 2020). However, RNN-

based networks are usually difficult to train and have the problem of error accumulation in

long-term predictions. There are a few works adopting convolution networks (CN) to solve
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the problem of human behavior prediction (Butepage et al., 2017;

Li et al., 2018; Cui et al., 2021; Shu et al., 2021). They process the

human motion sequences as images and use 2D convolution to

generate the prediction sequence.

Nevertheless, human motion sequences are not traditional

image data, and traditional convolution neural networks are

limited in processing such sequences. In recent years, lots of work

uses graph convolution networks (GCN) to solve human motion

prediction tasks and achieved excellent results (Aksan et al., 2019;

Cui et al., 2020; Cui and Sun, 2021; Dang et al., 2021). GCN is

similar to CNN except that it performs feature extraction on graphs.

GCN usually defines an adjacency matrix in advance, representing

the interconnection relationship between each node in the graph.

Then GCN generates new node information by aggregating related

node information. In addition, by aggregating action information

efficiently, recent work (Mao et al., 2019) confirms that the discrete

cosine transform (DCT) has great advantages in motion prediction.

Taking advantage of GCN, Many works have achieved good

performance, but they also expose some shortcomings of GCN. For

example, many GCN-based methods convert joint information to

the frequency domain for prediction and recover the time domain

information, causing the joint position generated to not smooth on

the time domain. In addition, many works have changed the bone

length of the human body, causing deformation.

Inspired by the proposed concept of two stages prediction

(Shan et al., 2022), we present a two stages framework to solve

the above problems, including the prediction stage and fine-

tuning stage, to achieve precise prediction of human motion

sequences. The task of the prediction stage is to use DCT

to encode the motion information and then use the attention

mechanism to calculate the attention score to strengthen the

interaction of each node. Then we use IDCT (inverse discrete

cosine transform) to decode the aggregated features into the

original 3D pose, generating the initial prediction for the

first stage.

We observe that the initial prediction always has a certain

deviation from the ground truth. To solve this problem, we

organize a fine-tuning model to correct the initial predictions

of the first stage. Observing that the actors for different

actions in the datasets are the same, each frame in the action

sequence should contain the same body structure information,

such as the length of each bone. We add a bone length

constraint term in the loss function of the fine-tuning model.

Since the motion sequences generated by the frequency domain

are not coherent in the time domain, the traditional TCN

method uses a global adjacency matrix to aggregate sequence

information, which often makes predicted actions deviate from

reality. In response to this problem, we propose a CMM

(causal mask matrix) to improve the T-GCN and fine-tune the

initial prediction, making each frame future sequence generated

only related to its previous information, which eliminates the

effect of future inaccurate information when constructing the

current frame.

We used MPJPE as metrics to evaluate our network on the

Human3.6m and CMU-MoCap, and conducted related ablation

experiments to analyze our key models. Many comparative

experiments show that our method achieves more accurate

predictions than the existing approaches.

In summary, the main contributions of this paper can be

concluded as follows:

• We propose a two-stage trainingmethod, including prediction

and fine-tuning stages. Fine-tuning stage corrects the human

motion sequences generated by the prediction stage.

• To further utilize the interactive information on the temporal

structure of humanmotion, we present a CMM improving the

T-GCN in the fine-tuning stage to reconstruct the sequence in

a causal, temporal order.

• In order to improve the power of GCN to extract the spatial

interaction information of the human, we introduce a SAB

(spatially attention block) to aggregate node information

along the spatial dimension. Moreover, we incorporate

the constraint of length invariance of human bones for

guiding the framework to generate more realistic human

motion sequences.

2. Related work

2.1. RNN-based method

RNN-based methods are widely used for sequence-to-sequence

tasks (Jain et al., 2016b; Martinez et al., 2017; Tang Y. et al., 2018;

Liu et al., 2019b; Sang et al., 2020). According to the characteristics

of human motion sequence, a lot of works use RNN as the basic

structure of the network. By embedding encoder and decoder

networks before and after recurrent layers, Fragkiadaki et al.

(2015) propose an Encoder-Recurrent-Decoder (ERD) model for

predicting human motion. Jain et al. (2016a) combine RNNs with

the spatiotemporal structure of the human body, proposing the

Structural-RNN. Liu et al. (2019b) develop a hierarchical recurrent

network structure to simultaneously encode the local context of a

single frame and the global context of a sequence.

However, RNN combines the hidden layer of the previous unit

to output the prediction of the next unit, which will cause the

accumulation of errors. These methods cannot avoid the error

accumulation problem. Error accumulation causes discontinuities

in generated frames, resulting in unrealistic human motion

sequences. Gui et al. (2018) propose a novel sequence-to-sequence

model that adds a residual architecture connection between the

input and output of each RNN module, which alleviates the

discontinuity problem of the RNN model. Guo and Choi (2019)

modified the seq2seq framework to encode temporal correlations

at different time scales. Shu et al. (2021) designed a new bone-

joint attention mechanism to dynamically learn the bone-joint

feature map of the bone-joint attention feature map, making

the generated action sequences closer to reality. Although these

methods effectively improve the accuracy of prediction, their

performance in long-term prediction is still insufficient.

2.2. GCN-based method

Compared with traditional CNN-based methods, the GCN-

basedmethod has significant advantages in the face of irregular data

structures, such as social networks (Tabassum et al., 2018; Li et al.,
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2020a) and human body posture and behavior (Fan et al., 2019;

Chen et al., 2020). In recent years, graph neural networks have been

widely used for 3D human motion prediction and have achieved

outstanding results. Lebailly et al. (2020) use GCN as an encoder

andGCN to decode the aggregated features. The works ofMao et al.

(2019), Cui et al. (2020), and Dang et al. (2021) totally used GCN

to organize the model. Li et al. (2020b) encode the human body

into multiple scales and perform information fusion, proposing the

DMGNN. Ma et al. (2022) used a spatiotemporal GCN to build a

model to obtain more accurate long-term predictions by predicting

the median value of human motion. Mao et al. (2019) used discrete

cosine transform to encode humanmotion sequences and designed

a GCN-based model that automatically learns node relationships.

Although these GCN-based methods have achieved good

results, these methods still have not solved the following problems:

The method predicts in the frequency domain often cannot pay

attention to the time dependence of the original information. The

future human motion sequence generated by these methods does

not follow the bone constraints. In other words, the length of the

human bone skeletal generated has changed. In order to solve

the time dependence of frequency domain prediction methods, we

propose a two-stage network architecture. The first stage is initially

predicted in the frequency domain, and the second stage fine-tunes

the initial result in the time domain. In the second stage, we use

CMM to change the adjacentmatrix into causality. In order tomake

the prediction results follow the bone constraints, we proposed

the SAB to enhance the ability to capture the Spatial interaction

relationship of the joint and increase all bone length as a constraint

to train the model. We introduce the details of our framework

architecture in the following section.

3. Problem formulation

Suppose that X−Tp : 0 =

[

X−Tp , . . . ,X0

]

denotes the historical

human motion sequence of length Tp + 1 and X1 :Tf =
[

X1, . . . ,XTf

]

denotes the future sequence of length Tf , where Xi ∈

R
N×D with N joints and D = 3 feature- dimensions depicts the 3D

human pose at time i. The task of 3D human motion prediction is

to generate the future sequence X1 :Tf given the historical one.

For predicting complex humanmotion more accurately, we use

a two-stage prediction method based on GCN. We use cascading

SAGCLs to predict the results of the first stage. Then, the initial

prediction is fine-tuned by using the space-time constraints of the

human body to get the second stage prediction that is closer to real

human movement.

4. Methodology

4.1. Prediction and fine-tuning framework

In order to predict future motion sequences precisely, we adopt

a two-stage training method, as shown in Figure 1. According

to the human motion of T frames observed in the past X− =

[X−T ,X−T+1, . . . ,X−1], we first apply DCT along the time

dimension to convert the temporal dynamics of motions into the

frequency domain.

The encoder in the predicted model uses the node information

in the frequency domain of SAGCL and SAGCB (Spatial Attention

Graph Convolution Block), and then generates the predictive

information of the frequency domain through the same structured

decoder. Then the prediction model will use IDCT to restore

the predicted joint information to the time domain. As shown

in Figure 1, the red skeleton in the middle denotes the initial

prediction of the first stage. We use the joint position errors as

constraints to train the prediction model. Meanwhile, the skeleton

is marked as red, representing the problem of discontinuity and

skeletal deformation.

We reduce the impact of these problems in the second stage.

CT-GCL only predicts depending on the past sequence. And we

consider the joint position and the bone length constraint to train

the fine-tuning model. The second stage corrects the bone length

and keeps temporal dependence, which makes the prediction closer

to natural human motion.

4.2. Prediction model (frequency domain)

Based on S-GCN (Spatial-Graph Convolution Layer) and T-

GCN (temporal-Graph Convolution Layer), we build an encoder-

decoder human motion prediction model. Both the encoder and

decoder contain a SAGCL and a SAGCB. Each SAGCB includes six

SAGCLs. The structure of SAGCL is shown in Figure 2. When the

motion information flows through SAGCL, SAB will first extract

the interaction information between human joints based on the

motion information. In SAB, we use the average pooling layer

to aggregate human body node interactive information along the

spatial dimension. SAB can calculate the gating weight value of

each node in the interval 0 − 1 according to the Sigmoid function

and finally aggregate the information between dependent nodes

according to the dynamic joint weight. The weight matrix of SAB

can be calculated by the following formula:

ASAB = Sigmoid(WAvgPool(H)+ b), (1)

Where H represents the hidden feature. W and b are the

Parameter matrix and bias vector of FC layer, respectively. AvgPool

denotes the average pooling along the temporal dimension. The

Sigmoid function calculates the jointswise 0− 1 gating weights.

Then S-GCN aggregates interaction information along the

spatial dimensions. Let X ∈ RL×M×F be a pose sequence where

L is the length of the sequence, M is the number of joints of a

pose, and F indicates the number of features of a joint. Defining

a learnable adjacency matrix As ∈ RM×M the elements of which

measure relationships between pairs of joints of a pose, S-GCN

work as:

Xl+1
= σ

(

ASABAsX
lW l

s

)

, (2)

Where l denotes the parameter in lth layer. σ represents the

Leaky ReLU. T-GCN aggregates interaction information along the

temporal dimensions. Defining a learnable adjacency matrix At ∈

RL×L measuring weights between pairs of joints of a trajectory,

T-GCN computes:

Y l+1
= σ

(

AtY
lW l

t

)

. (3)
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FIGURE 1

Overview of our prediction and fine-tuning human motion prediction framework containing a prediction model and a fine-tuning model. SAGCL

denotes the spatial attention graph convolution layer, and the SAGCB consists of cascade SAGCL. Black skeleton represents group truth. The red

skeleton represents the prediction of the first stage, and the green skeleton represents the result of fine-tuning.

FIGURE 2

The structure of SAGCL. SAB denotes spatial attention block. S-GCN

and T-GCN indicates the Spatial and temporal GCN, respectively. BN

indicates batch normalize operation.

4.3. Fine-tuning model (time domain)

Previous work based on graph convolution often focuses

on global historical information through the temporal adjacency

matrix when generating future action sequences. But the results

predicted by the frequency domain are only sometimes smooth

in time series. Using the unsmoothed global history motion

information tends to corrupt the future sequence generated by

the network. Therefore, we build a Fine-tuning model based on a

cascade CT-GCL to reconstruct all the future sequences in the time

domain. The input of the fine-tuning model is the complete output

of the prediction model. The output of the fine-tuning model is a

new sequence adjusted by constraints. As shown in Figure 3, each

CT-GCL is mainly established by the S-GCN, CMM, and T-GCN,

creating a newmapping between the temporal independent motion

sequence and the temporal causal sequence.

CMM adjusts the node position predicted in the first stage in

the temporal series so that the node position at each moment is

only related to the previous time. As shown in Figure 4, CMM is

initialized as an upper triangular matrix and makes a Hadamard

product with the adjacency matrix in the temporal dimension.

FIGURE 3

The structure of fine-tuning model. CMM denotes causal mask

matrix that improve the T-GCN. The hyperparameter m denotes the

cascade number of “CT-GCL”.

FIGURE 4

The temporal adjacency matrix makes hadamard product with CMM.

So only the information at the current moment and before is

aggregated whenCT-GCL reconstructs the futuremotion sequence.

4.4. Loss function

For training the prediction network, we consider L2 loss

function for 3D joint positions. Suppose that the prediction sample

is χ̂ , and the corresponding ground truth value is χ . For T training

samples and K nodes, the loss function is:

Lprediction (χ , χ̂) =
1

KT

K
∑

k=1

T
∑

t=1

∥

∥

∥
pkt − p̂kt

∥

∥

∥

2
, (4)
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Where pkt denotes the ground truth position of k-th joint in

frame t and p̂kt denotes the predicted one. We adopts L2 loss

function for 3D joint positions and the length of each bone in a

human body to train the fine-tuning network. The loss function is:

Lfine-tuning (χ , χ̂) =
1

KT

K
∑

k=1

T
∑

t=1

∥

∥

∥
pkt − p̂kt

∥

∥

∥

2

+
1

MT

M
∑

m=1

T
∑

t=1

∥

∥

∥
bmt − b̂mt

∥

∥

∥

2
,

(5)

Where bmt denotes the length of the Mth bone in the human

body, and b̂mt denotes the length of the Mth bones in frame t. pkt
and p̂kt are the same as in formula (4). By correcting the length of

the bones in each frame of the predicted sequence, the fine-tuning

network makes the reconstructing sequence closer to the actual

value.

5. Experiments

We used Human 3.6m (Ionescu et al., 2013) and CMU-MoCap

dataset to validate our framework. The joint data for both datasets

are represented by an exponential map. In this work, We convert

it to a 3D coordinate representation. Furthermore, we show the

quantitative results for both short-term and long-term human

motion predictions for joint positions by Mean Per Joint Position

Error (MPJPE).

5.1. Datasets

5.1.1. CMU−MoCap
CMU-MoCap has 5main categories ofmotion data. In line with

previous work (Mao et al., 2019; Dang et al., 2021), we selected eight

actions to validate our framework: “basketball”, “basketball signal”,

“directing traffic”, “jumping”, “running”, “soccer”, “walking”, and

“washing window”. Each motion data contains 38 joints (contains

repeated joints), and we preserve 25 valuable joints. The division

of the training set and test set also remains the same as Mao et al.

(2019) and Dang et al. (2021).

5.1.2. Human3.6m
Human3.6m has 15 different classes of motion performed by 7

actors. Each motion in subjects contains 32 joints, and we preserve

22 joints. To be consistent with Li et al. (2020b), we train the model

on 6 subjects and test it on the 5th subject. To be consistent with

previous work (Dang et al., 2021), we use S1, S6, S7, S8, and S9 for

training and use S5 and S11 for testing and validation, respectively.

5.2. Metrics

In this paper, we train and test the 3D coordinates coordinate

representation of the human pose and show the measurement

results in 3D coordinates. Defining the prediction sample is X̂, and

the corresponding ground truth value is X. We use mean per-joint

position error (MPJPE) as an evaluation metric for 3D error:

MPJPE(X, X̂) =
1

NT

N
∑

n=1

T
∑

t=1

∥

∥pnt − p̂nt
∥

∥

2
, (6)

Where pnt represents the nth ground truth joint position in tth

frame. And p̂nt denotes the predictive one.

5.3. Model configuration

There are different cross-validation methods, such as k-fold

cross-validation and jack-knife test, which have been generally used

to train the model (Arif et al., 2021; Ge et al., 2021, 2022a,b;

Sikander et al., 2022). We trained our proposed model using a

10-fold cross-validation method. Our network predicts the human

pose of 25 frames in the future by observing the position of the

joints in the past 10 frames. Each SAGCB in the prediction model

contains 6 SAGCLs. After testing, we cascaded 6 CT-GCLs in the

fine-tuned model. We utilize Adam as an optimizer. The learning

rate is initialized to 0.005 with a 0.96 decay every epoch. Both

the prediction model and the fine-tuning model are trained for 50

epochs, and the batch size is set to 32.We implemented our network

on GeForce RTX 2080 Ti GPU using Pytorch.

5.4. Comparison to state-of-the-art
methods

We validated our model on Human3.6m and CMU-MoCap

datasets and present detailed results. We compared our method

with DMGNN (Li et al., 2020b), LTD (Mao et al., 2019), MSR (Dang

et al., 2021), and ST-DGCN (Ma et al., 2022). DMGNN uses GCN

to extract features of multiple scales of the human body and uses

graph-based GRU for decoding. Applying DCT, LTD uses GCN for

prediction in the frequency domain. MSR is improved on the basis

of LTD, taking into account multi-scale factors of the human body.

5.4.1. Human3.6m
As seen in Table 1, we compared the several methods

mentioned above in short-term prediction (within 400 ms) on

Human3.6m. The results show that our method outperforms

previous methods in short-term prediction. For example, our

method has a significant advantage in the action “greeting”,

“posing”, and “sit down”. Our method is greatly reduced in the

short -term prediction of many actions such as “walkingdog”,

“greeting”, and “discussion”, which performance is more than

10% higher than the best method in 80 ms. And Table 2 shows

the comparisons of long-term prediction (between 400 and 1,000

ms). In most cases, our results are better than the compared

methods. For example, the performance of our method in motion

“discussion” and “posing” is about 3% higher than the best method

in 1,000 ms and motion “walkingtogether” is more than 5%

higher, which shows that our method also performs well in the

longest prediction. According to the average errors for short-term

and long-term prediction, our method outperforms the compared

methods by a large margin.
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TABLE 1 Comparisons of short-term prediction on Human3.6m. Results at 80, 160, 320, 400 ms in the future are shown.

Scenarios Walking Eating Smoking Discussion

Millisecond 80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

DMGNN 17.3 30.7 54.6 65.2 11.0 21.4 36.2 43.9 9.0 17.6 32.1 40.3 17.3 34.8 61.0 69.8

LTD 12.3 23.0 39.8 46.1 8.4 16.9 33.2 40.7 7.9 16.2 31.9 38.9 12.5 27.4 58.5 71.7

MSR 12.2 22.7 38.6 45.2 8.4 17.1 33.0 40.4 8.0 16.3 31.3 38.2 12.0 26.8 57.1 69.7

PGB 10.2 19.8 34.5 40.3 7.0 15.1 30.6 38.1 6.6 14.1 28.2 34.7 10.0 23.8 53.6 66.7

Ours 9.5 19.0 34.8 41.4 6.6 14.5 30.1 37.7 6.2 13.6 27.9 34.8 9.3 22.8 52.7 66.0

Scenarios Directions Greeting Phoning Posing

Millisecond 80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

DMGNN 13.1 24.6 64.7 81.9 23.3 50.3 107.3 132.1 12.5 25.8 48.1 58.3 15.3 29.3 71.5 96.7

LTD 9.0 19.9 43.4 53.7 18.7 38.7 77.7 93.4 10.2 21.0 42.5 52.3 13.7 29.9 66.6 84.1

MSR 8.6 19.7 43.3 53.8 16.5 37.0 77.3 93.4 10.1 20.7 41.5 51.3 12.8 29.4 67.0 85.0

PGB 7.2 17.6 40.9 51.5 15.2 34.1 71.6 87.1 8.3 18.3 38.7 48.4 10.7 25.7 60.0 76.6

Ours 6.7 17.0 40.6 51.5 13.8 31.9 69.2 85.8 7.8 17.7 38.2 48.3 9.3 23.7 57.3 73.8

Scenarios Purchases Sitting Sittingdown Takingphoto

Millisecond 80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

DMGNN 21.4 38.7 75.7 92.7 11.9 25.1 44.6 50.2 15.0 32.9 77.1 93.0 13.6 29.0 46.0 58.8

LTD 15.6 32.8 65.7 79.3 10.6 21.9 46.3 57.9 16.1 31.1 61.5 75.5 9.9 20.9 45.0 56.6

MSR 14.8 32.4 66.1 79.6 10.5 22.0 46.3 57.8 16.1 31.6 62.5 76.8 9.9 21.0 44.6 56.3

PGB 12.5 28.7 60.1 73.3 8.8 19.2 42.4 53.8 13.9 27.9 57.4 71.5 8.4 18.9 42.0 53.3

Ours 11.8 27.8 60.0 73.9 8.3 18.2 41.1 52.5 13.0 26.4 55.2 69.4 8.0 18.3 41.6 53.0

Scenarios Waiting Walkingdog Walkingtogether Average

Millisecond 80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

80
ms

160
ms

320
ms

400
ms

DMGNN 12.2 24.2 59.6 77.5 47.1 93.3 160.1 171.2 14.3 26.7 50.1 63.2 17.0 33.6 65.9 79.7

LTD 11.4 24.0 50.1 61.5 23.4 46.2 83.5 96.0 10.5 21.0 38.5 45.2 12.7 26.1 52.3 63.5

MSR 10.7 23.1 48.3 59.2 20.7 42.9 80.4 93.3 10.6 20.9 37.4 43.9 12.1 25.6 51.6 62.9

PGB 8.9 20.1 43.6 54.3 18.8 39.3 73.7 86.4 8.7 18.6 34.4 41.0 10.3 22.7 47.4 58.5

Ours 8.4 19.3 42.8 54.0 16.9 36.6 71.2 84.7 8.4 18.2 35.2 42.3 9.6 21.7 46.5 57.9

The best results are highlighted in bold.
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TABLE 2 Comparisons of long-term prediction on Human3.6M.

Scenarios Walking Eating Smoking Discussion Directions Greeting Phoning Posing

Millisecond 560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

DMGNN 73.4 95.8 58.1 86.7 50.9 72.2 81.9 138.3 110.1 115.8 152.5 157.7 78.9 98.6 163.9 310.1

LTD 54.1 59.8 53.4 77.8 50.7 72.6 91.6 121.5 71.0 101.8 115.4 148.8 69.2 103.1 114.5 173.0

MSR 52.7 63.0 52.5 77.1 49.5 71.6 88.6 17.6 71.2 100.6 116.3 147.2 68.3 104.4 116.3 174.3

PGB 48.1 56.4 51.1 76.0 46.5 69.5 87.1 118.2 69.3 100.4 110.2 143.5 65.9 102.7 106.1 64.8

Ours 48.7 56.1 50.7 73.4 46.1 68.5 87.1 115.6 70.7 101.0 11.4 142.2 66.9 101.6 107.3 161.7

Scenarios Purchases Sitting Sittingdown Takingphoto Waiting Walkingdog Walkingtogether Average

Millisecond 560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

560
ms

1,000
ms

DMGNN 118.6 153.8 60.1 104.9 122.1 168.8 91.6 120.7 106.0 136.7 194.0 182.3 83.4 115.9 103.0 137.2

LTD 102.0 143.5 78.3 119.7 100.0 150.2 77.4 119.8 79.4 108.1 111.9 148.9 55.0 65.6 81.6 114.3

MSR 101.6 139.2 78.2 120.0 102.8 155.5 77.9 121.9 76.3 106.3 111.9 148.2 52.9 65.9 81.1 114.2

PGB 95.3 133.3 74.4 116.1 96.7 147.8 74.3 118.6 72.2 103.4 104.7 139.8 51.9 64.3 76.9 110.3

Ours 95.5 135.9 74.4 116.2 96.1 147.3 74.1 117.3 73.7 104.8 104.5 138.5 50.7 61.0 77.2 109.4

The best results are highlighted in bold.
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TABLE 3 Comparisons of average prediction errors on CMU-MoCap in both short-term and long-term prediction.

Millisecond 80 ms 160 ms 320 ms 400 ms 560 ms 1,000 ms

DMGNN 13.6 24.1 47.0 58.8 77.4 112.6

LTD 9.3 17.1 33.0 40.9 55.8 86.2

MSR 8.1 15.2 30.6 38.6 53.7 83.0

PGB 7.6 14.3 29.0 36.6 50.9 80.1

Ours 7.1 13.2 26.8 34.1 47.6 72.4

The best results are highlighted in bold.

TABLE 4 Ablations on architecture.

80 ms 160 ms 320 ms 400 ms 560 ms 1,000 ms Average

Only prediction model 10.8 23.7 48.4 59.4 77.6 110.6 55.08

Without SAB 10.2 22.3 47.5 58.3 77.5 110.1 54.31

Without CMM 9.9 22 47.7 58.5 77.2 109.5 54.13

Without bone length loss function 10.4 22.6 47.9 58.8 77.3 110.2 54.53

Full model 9.6 21.7 46.5 57.9 77.2 109.4 53.71

We check the output of the prediction model only. Compare the full model and the full model without the key model we presented such as SAB, CMM, and the bone length constraint. The best

results are highlighted in bold.

TABLE 5 Results comparsion of di�erent number m of “CT-GCL” cascade, which mentioned in Figure 3.

80 ms 160 ms 320 ms 400 ms 560 ms 1,000 ms Average

m= 4 10.1 22.1 47 58.8 77.6 110.2 54.30

m= 5 9.5 21.6 46.6 58.2 77.4 109.7 53.83

m= 6 9.6 21.7 46.5 57.9 77.2 109.4 53.71

m= 7 9.8 21.8 46.7 58.3 77.4 109.6 53.93

After the experiment, we finally set the test range at 4–7. The best results are highlighted in bold.

TABLE 6 Results comparsion of di�erent numbers of SAGCLs in a SAGCB.

SAGCLs 80 ms 160 ms 320 ms 400 ms 560 ms 1,000
ms

Average

4 10.7 23.7 48.8 60.2 78.5 111.7 55.60

5 10.5 23.7 48.4 59.8 77.9 110.8 55.18

6 10.8 23.7 48.4 59.4 77.6 110.6 55.08

7 10.9 23.9 48.6 60.0 78.1 111.2 55.45

8 11.3 24.3 49.2 60.8 78.7 112.0 56.05

After the experiment, we finally set the test range at 4 to 8. The best results are highlighted in bold.

5.4.2. CMU − MoCap
Table 3 shows the comparisons of average value on CMU-

MoCap. Our method significantly outperforms the comparison

methods in both short-term and long-term prediction. The error

of our method is reduced by nearly 10% compared with ST-DGCN

in 1,000 ms prediction.

5.5. Ablation study

To further analyze our model, we performed the following

ablation studies on Human3.6m. We conduct the following

comparative experiments to analyze the impact of each module of

our model.

As shown in Table 4, we tested the performance of the

predictive model alone using the ground truth to evaluate the effect

of the fine-tuned model. In the case of only the forecasting model,

both long-term and short-term predictions have performance

degradation. The average prediction error went from 53.71 to 55.08.

Experiments show that the fine-tuning module adjusts the initial

prediction by time dependence and bone constraint, making the

predicted motion sequence closer to the actual value. We also

tested the impact of several key modules in the framework, such

as SAB, CMM, and bone length loss function. The average error of

melting the above key modules has risen to 54.31, 54.13, and 54.53,

respectively.

Our results show that the bone length loss function has themost

significant impact on the model, which verifies the problem of the

GCN-based method in predicting the deformation of the human

body. Our method uses SAB and bone constraints to strengthen the

extraction of bone information by GCN layers, making our results

better than the current method. The CMMmodule has also played
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a positive role in fine-tuning modules to avoid discontinuous

information in the future to destroy the aggregation of temporal

information in T-GCN.

As shown in Table 5, keeping the output of the predictionmodel

constant, we conduct ablations about the cascaded layers m from 4

to 7 in the fine-tuning model. The results show that the fine-tuned

model has the best performance whenm= 6.

Table 6 shows the comparison of different numbers of SAGCLs

in a SAGCB. We regard the prediction model and fine-tuning

model as two independent modules. And we only consider the

results of the prediction model in this experiment. The results

showed that five SAGCLs achieved the most accurate results at 80

ms. However, in the long-term error comparison, six SAGCLs have

more advantages. Considering the average error, we use six SAGCLs

to obtain the most accurate initial prediction.

6. Discussion

In the previous section, we compared our method with state

of the art. Using SAB and bone length constraint, our method

has a strong spatial interactive relationship capture ability. Thus,

our method has a significant advantage in some motions with

large movements, such as a result of action “walking dogs” and

“sitting down” in Tables 1, 2. As shown in Table 3, using a fine-

tuning model to adjust the initial prediction in the time domain.

Our model has a strong ability to capture time dependence so that

the performance of the model is more than 10% compared with

the latest method by 1,000 ms. As shown in Table 4, CMM also

enhances this performance.

On the other hand, there are also some shortcomings in our

model. Our model is based on the two-stage training method. We

need to pre-training a prediction model and then train a fine-

tuning model, which undoubtedly increases our training time and

complexity. What is more, our fine-tuning model is largely limited

by predictive models, which means that the correction capacity of

fine-tuning models is limited. We still do not do well in long time

prediction. As shown in Table 2, we still have a lot of room for

improvement in long-term predictions.

7. Conclusion

We propose a two-stage forecasting framework, including

prediction and fine-tuning models. In the prediction model, we

first transform the observed pose data into the frequency domain

using DCT. Before the transformed pose data flows through the

GCN, the interaction information between joints is enhanced by

the spatial attention mechanism. Then we use IDCT to restore the

generated future poses to the time domain. In the second stage, we

add the bone length error as a loss function to train the fine-tuning

model better, whichmakes the corrected pose sequence closer to the

natural human motion. What is more, we use CMM to improve the

T-GCN in the fine-tuning model, making the regenerated motion

sequences more coherent on the timeline. Extensive experiments

show that fine-tuning the model plays a positive role in improving

the results of the predictive model. Our work outperforms previous

work on commonly used datasets.
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