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Flexible intentions: An Active
Inference theory

Matteo Priorelli and Ivilin Peev Stoianov*

Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Padua,

Italy

We present a normative computational theory of how the brain may support

visually-guided goal-directed actions in dynamically changing environments. It

extends the Active Inference theory of cortical processing according to which the

brain maintains beliefs over the environmental state, and motor control signals

try to fulfill the corresponding sensory predictions. We propose that the neural

circuitry in the Posterior Parietal Cortex (PPC) compute flexible intentions—or

motor plans from a belief over targets—to dynamically generate goal-directed

actions, and we develop a computational formalization of this process. A

proof-of-concept agent embodying visual and proprioceptive sensors and an

actuated upper limb was tested on target-reaching tasks. The agent behaved

correctly under various conditions, including static and dynamic targets, di�erent

sensory feedbacks, sensory precisions, intention gains, and movement policies;

limit conditions were individuated, too. Active Inference driven by dynamic and

flexible intentions can thus support goal-directed behavior in constantly changing

environments, and the PPC might putatively host its core intention mechanism.

More broadly, the study provides a normative computational basis for research on

goal-directed behavior in end-to-end settings and further advances mechanistic

theories of active biological systems.

KEYWORDS

Active Inference, sensorimotor control, Posterior Parietal Cortex, intentions, Predictive

Coding

1. Introduction

Traditionally, sensorimotor control in goal-directed actions like object-reaching is

viewed as a sensory-response mapping involving several steps, starting with perception,

movement planning in the body posture domain, translation of this plan in muscle

commands, and finally movement execution (Erlhagen and Schöner, 2002). However,

each of these steps is hindered by noise and delays, which make the approach unfeasible

to operate in changing environments (Franklin and Wolpert, 2011). Instead, Predictive

Coding or “Bayesian Brain” theories propose that prior knowledge and expectations over

the environmental and bodily contexts provide crucial anticipatory information (Rao and

Ballard, 1999). Under this perspective, motor control begins with target anticipation and

motor planning even before obtaining sensory evidence. Here, we take on this view and

extend an increasingly popular Predictive Coding based theory of action, Active Inference

(Friston et al., 2010), with the formalization of flexible target-dependent motor plans.

Moreover, based on extensive neural evidence for the role of the PPC in goal coding and

motor planning (Snyder et al., 2000; Galletti et al., 2022), we propose that this cortical

structure is the most likely neural correlate of the core intention manipulation process.

In primates, the dorsomedial visual stream provides critical support for continuously

monitoring the body posture and the spatial location of objects to specify and guide actions,

and for performing visuomotor transformations in the course of the evolving movement
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(Cisek and Kalaska, 2010; Fattori et al., 2017; Galletti and Fattori,

2018). The PPC, located at the apex of the dorsal stream,

is also bidirectionally connected to frontal areas, motor and

somatosensory cortex, placing it in a privileged position to set goal-

directed actions and continuously adjust motor plans by tracking

moving targets and posture (Andersen, 1995; Gamberini et al.,

2021) in a common reference frame (Cohen and Andersen, 2002).

Undoubtedly, the PPC plays a crucial role in visually-guided motor

control (Desmurget et al., 1999; Filippini et al., 2018; Gamberini

et al., 2021)—with the specific subregion V6A involved in the

control of reach-to-grasp actions (Galletti et al., 2022)—but its

peculiar role is still disputed. The most consistent view is that

the PPC estimates the states of both body and environment and

optimizes their interactions (Medendorp and Heed, 2019). Others

see the PPC as a task estimator (Haar and Donchin, 2020) or as

being involved in endogenous attention and task setting (Corbetta

and Shulman, 2002). Its underlying computational mechanism is

not fully understood, especially as regards the definition of goals

in motor planning and their integration within the control process

(Shadmehr and Krakauer, 2008). For example, the prevailing

Optimal Feedback Control theory defines motor goals through

task-specific cost functions (Todorov, 2004). Neural-level details of

motor goal coding are becoming increasingly important in light of

the growing demand for neural interfaces that provide information

about motor intents (Gallego et al., 2022) in support of intelligent

assistive devices (Velliste et al., 2008; Srinivasan et al., 2021).

Intentions encode motor goals—or plans—set before the

beginning of motor acts themselves and could be therefore viewed

as memory holders of voluntary actions (Andersen, 1995; Snyder

et al., 1997; Lau et al., 2004; Fogassi et al., 2005). Several cortical

areas handle different aspects of this process: the Premotor cortex

(PM) encodes structuring while the Supplementary Motor Area

(SMA) controls phasing (Gallego et al., 2022). In turn, the PPC

plays a role in building motor plans and their dynamic tuning, as

different PPC neurons are sensitive to different intentions (Snyder

et al., 2000). Notably, intention neurons respond not only when

performing a given action but also during its observation, allowing

observers to predict the goal of the observed action and, thus, to

“read” the intention of the acting individual (Fogassi et al., 2005).

Motor goals have also been observed down the motor hierarchy,

which is an expression of Hierarchical Predictive Coding in the

motor domain (Friston et al., 2011).

To investigate how neural circuitry in the PPC supports

sensory-guided actions through motor intentions from a

computational point of view, we adopted the Active Inference

theory of cognitive andmotor control, which provides fundamental

insights of increasing appeal about the computational role and

principles of the nervous system, especially about the perception-

action loop (Friston and Kiebel, 2009; Friston et al., 2010; Bogacz,

2017; Parr et al., 2022). Indeed, Active Inference provides a

formalization of these two cortical tasks, both of which are viewed

as aiming to resolve the critical goal of all organisms: to survive in

uncertain environments by operating within preferred states (e.g.,

maintaining a constant temperature). Accordingly, both tasks are

implemented by dynamic minimization of a quantity called free

energy, whose process generally corresponds to the minimization

of high- and low-level prediction errors, that is, the satisfaction of

prior and sensory expectations. There are two branches of Active

Inference appropriate to tackle two different levels of control.

The discrete framework can explain high-level cognitive control

processes such as planning and decision-making, i.e., it evaluates

expected outcomes to select actions in discrete entities (Pezzulo

et al., 2018). In turn, dynamic adjustment of action plans in the

PPC matches by functionality the Active Inference framework in

continuous state space (Friston et al., 2011, 2012). In short, this

theory departs from classical views of perception, motor planning

(Erlhagen and Schöner, 2002), and motor control (Todorov, 2004),

unifying and considering them as a dynamic probabilistic inference

problem (Toussaint and Storkey, 2006; Kaplan and Friston, 2018;

Levine, 2018; Millidge et al., 2020). The biologically implausible

cost functions typical of Optimal Control theories are replaced

by high-level priors defined in the extrinsic state space, allowing

complex movements such as walking or handwriting (Friston,

2011; Adams et al., 2013).

In the following, we first outline the background computational

framework and then elaborate on movement planning and

intentionality in continuous Active Inference. Our most critical

contributions regard the formalization of goal-directed behavior

and the processes linking dynamic goals (e.g., moving visual

targets) with motor plans through the definition of flexible

intentions. We also investigate a more parsimonious approach

to motor control based solely on proprioceptive predictions. We

then provide implementation details and a practical demonstration

of the theoretical contribution in terms of a simulated Active

Inference agent, which we show is capable of detecting and

reaching static visual goals and tracking moving targets. We also

provide detailed performance statistics and investigate the effects of

system parameters whose balance is critical to movement stability.

Additionally, gradient analysis provides crucial insights into the

causes of the movements performed. Finally, we discuss how

intentions could be selected to perform a series of goal-directed

steps, e.g., a multi-phase action, and illustrate conditions for

neurological disorders.

2. Computational background

We first outline the computational principles of the underlying

probabilistic and Predictive Coding approach and provide

background on variational inference, free energy minimization,

Active Inference, and variational autoencoders necessary to

comprehend the following main contribution.

2.1. The Bayesian brain hypothesis

An interesting visual phenomenon, called binocular rivalry,

happens when two different images are presented simultaneously

to each eye: the perception does not conform to the visual input but

alternates between the two images. How and why does this happen?

It is well-known that priors play a fundamental role in driving

the dynamics of perceptual experience, but dominant views of the

brain as a feature detector that passively receives sensory signals

and computes motor commands have so far failed to explain how

such illusions could arise.
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In recent years, there has been increasing attention to a radically

new theory of the mind called the Bayesian brain, according to

which our brain is a sophisticated machine that constantly makes

use of Bayesian reasoning to capture causal relationships in the

world and deliver optimal behavior in an uncertain environment

(Doya, 2007; Hohwy, 2013; Pezzulo et al., 2017). At the core of

the theory is the Bayes theorem, whose application here implies

that posterior beliefs about the world are updated according to the

product of prior beliefs and the likelihood of observing sensory

input. In this view, perception is more than a simple bottom-

up feedforward mechanism that detects features and objects from

the current sensorium; rather, it comprises a predictive top-down

generative model which continuously anticipates the sensory input

to test hypotheses and explain away ambiguities.

According to the Bayesian brain hypothesis, this complex task is

accomplished by Predictive Coding, implemented through message

passing of top-down predictions and bottom-up prediction errors

between adjacent cortical layers (Rao and Ballard, 1999). The

former are generated from latent states maintained at the highest

levels, representing beliefs about the causes of the environment,

while the latter are computed by comparing sensory-level

predictions with the actual observations. Each prediction will then

act as a cause for the layer below, while the prediction error

will convey information to the layer above. It is thanks to this

hierarchical organization and through error minimization at every

layer that the cortex is supposed to be able to mimic and capture

the inherently hierarchical relationships that model the world. In

this view, sensations are only needed in that they provide, through

the computation of prediction errors, a measure of how good the

model is and a cue to correct future predictions. Thus, ascending

projections do not encode the features of a stimulus, but rather

how much the brain is surprised about it, considering the strict

correlation between surprise and model uncertainty.

2.2. Variational bayes

Organisms are supposed to implement model fit or error

minimization by some form of variational inference, a broad

family of techniques based on the calculus of variations and used

to approximate intractable posteriors that would otherwise be

infeasible to compute analytically or even with classical sampling

methods like Monte Carlo (Bishop, 2006). Under the Bayesian

brain hypothesis, we can assume that the nervous systemmaintains

latent variables z about both the unknown state of the external

world and the internal state of the organism. By exploiting a prior

knowledge p(z) and the partial evidence p(s) of the environment

provided by its sensors, it can apply Bayesian inference to improve

its knowledge (Ma et al., 2006). To do so, given the observation s,

the nervous system needs to evaluate the posterior p(z|s):

p(z|s) =
p(z, s)

p(s)
(1)

However, directly computing such quantity is infeasible due to

the intractability of the marginal p(s) =
∫

p(z, s)dz, which involves

integration over the joint density p(z, s). What does the variational

approach is approximating the posterior with a simpler to compute

recognition distribution q(z) ≈ p(z|s) through minimization of the

Kullback-Leibler (KL) divergence between them:

DKL[q(z)||p(z|s)] =

∫

z
q(z) ln

q(z)

p(z|s)
dz (2)

The KL divergence can be rewritten as the difference between

log evidence ln p(s) and a quantity L(q) known as evidence lower

bound, or ELBO (Bishop, 2006):

DKL[q(z)||p(z|s)] = ln p(s)−

∫

z
q(z) ln

p(z, s)

q(z)
dz = ln p(s)− L(q)

(3)

Since the KL divergence is always nonnegative, the ELBO

provides a lower bound on log evidence, i.e., L(q) ≤ ln p(s).

Therefore, minimizing the KL divergence with respect to q(z) is

equivalent to maximizingL(q), which at its maximum corresponds

to an approximate density that is closest the most to the real

posterior, depending on the particular choice of the form of q(z).

In general, few assumptions are made about the form of this

distribution—a multivariate Gaussian is a typical choice—with a

trade-off between having a tractable optimization process and still

leading to a good approximate posterior.

2.3. Free energy and prediction errors

How can Bayesian inference be implemented through a

simple message passing of prediction errors? Friston (2002, 2005)

proposed an elegant solution based on the so-called free energy,

a concept borrowed from thermodynamics and defined as the

negative ELBO. Accordingly, Equation (3) can be rewritten as:

F(z, s) = −L(q) = DKL[q(z)||p(z|s)]−ln p(s) =

∫

z
q(z) ln

q(z)

p(z, s)
dz

(4)

Minimizing the free energy with respect to the latent states z—

a process called perceptual inference—is then equivalent to ELBO

maximization and provides an upper bound on surprise:

z = argmin
z

F(z, s) (5)

In this way, the organism indirectly minimizes model

uncertainty and is able to learn the causal relations between

unknown states and sensory input, and to generate predictions

based on its current representation of the environment. Free energy

minimization is simpler than dealing with the KL divergence

between the approximate and true posteriors as the former

depends on quantities that the organism has access to, namely the

approximate posterior and the generative model.

To this concern, it is necessary to distinguish between the latter

and the real distribution producing sensory data, called generative

process, which can be modeled with the following non-linear

stochastic equations:

s = g(z)+ ws

ż = f (z)+ wz

(6)

Where the function g maps latent states or causes z to observed

states or sensations s, the function f encodes the dynamics of the
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system, i.e., the evolution of z over time, while ws and wz are noise

terms that describe system uncertainty.

Nervous systems are supposed to approximate the generative

process by making a few assumptions: that (i) under the mean-

field approximation the recognition density can be partitioned into

independent distributions: q(z) =
∏

i q(zi), and that (ii) under the

Laplace approximation each of these partitions is Gaussian: q(zi) =

N (µi,5
−1
i ), where µi represents the most plausible hypothesis—

also called belief about the hidden state zi - and 5i is its precision

matrix (Friston et al., 2007). In this way, the free energy does not

depend on z and simplifies as follows:

F(µ, s) = − ln p(µ, s)+ C = − ln p(s|µ)− ln p(µ)+ C (7)

Where C is a constant term. A more precise description of the

unknown environmental dynamics can be achieved by considering

not only the 1st order of Equation 6 but also higher temporal orders

of the corresponding approximations: µ̃ = {µ,µ′,µ′′, ...}—called

generalized coordinates (Friston, 2008; Friston et al., 2008). This

allows us to better represent the environment with the following

generalized model:

s̃ = g̃(µ̃)+ ws

Dµ̃ = f̃ (µ̃)+ wµ

(8)

Where D is the differential (shift) operator matrix such that

Dµ̃ = {µ′,µ′′, ...}, s̃ denotes the generalized sensors, while g̃ and

f̃ denote the generalized model functions of all temporal orders.

Note that in this system, the sensory data at a particular dynamical

order s[d]—where [d] is the order—engage only with the same

order of belief µ[d], while the generalized equation of motion, or

system dynamics, specifies the coupling between adjacent orders.

Such equations are generated from the generalized likelihood and

prior distributions, which can be expanded as follows:

p(s̃|µ̃) =
∏

d

p(s[d]|µ[d])

p(µ̃) =
∏

d

p(µ[d+1]|µ[d])
(9)

As defined above, these variational probability distributions are

assumed to be Gaussian:

p(s[d]|µ[d]) =
5s

√

(2π)L
exp

(

−
1

2
ε[d]s

T
5sε

[d]
s

)

p(µ[d+1]|µ[d]) =
5µ

√

(2π)M
exp

(

−
1

2
ε[d]µ

T
5µε[d]µ

) (10)

Where L and M are the dimensions of sensations and internal

beliefs, respectively with precisions 5s and 5µ. Note that the

probability distributions are expressed in terms of sensory and

dynamics prediction errors:

ε[d]s = s[d] − g[d](µ[d]) (11)

ε[d]µ = µ[d+1] − f [d](µ[d]) (12)

The factorized probabilistic approximation of the dynamic

model allows easy state estimation performed by iterative gradient

descent over the generalized coordinates, that is, by changing the

belief µ̃ over the hidden states at every temporal order:

˙̃µ−Dµ̃ = −∂µ̃F(µ̃, s̃) (13)

Gradient descent is tractable because the Gaussian variational

functions are smooth and differentiable and the derivatives are

easily computed in terms of generalized prediction errors, since the

logarithm of Equation (7) vanishes the exponent of the Gaussian.

The belief update thus turns to:

˙̃µ = Dµ̃+
∂ g̃

∂µ̃

T

5̃sε̃s +
∂ f̃

∂µ̃

T

5̃µε̃µ −D
T5̃µε̃µ (14)

It is crucial to keep in mind the nature of the three components

that compose this update equation: a likelihood error computed at

the sensory level, a backward error arising from the next temporal

order, and a forward error coming from the previous order. These

terms represent the free energy gradients relative to the belief µ[d]

of Equation (11) for the likelihood, andµ[d+1] andµ[d] of Equation

(12) for the dynamics errors.

In short, by making a few plausible simplifying assumptions,

the complexity of free energy minimization reduces to the

generation of predictions, which are constantly compared with

sensory observations to determine a prediction error signal. This

error then flows back through the cortical hierarchy to adjust

the distribution parameters accordingly and minimize sensory

surprise—or maximize evidence—in the long run.

2.4. Active Inference

Describing the relationship between Predictive Coding and

Bayesian inference still does not explain why has the cortex evolved

in such a peculiar way. The answer comes from the so-called

free energy principle (FEP), regard to which the Bayesian brain

hypothesis is supposed to be a corollary. Indeed, learning the causal

relationships of some observed data (e.g., what causes an increase

in body temperature) is insufficient to keep organisms alive (e.g.,

maintaining the temperature in a vital range).

The FEP states that, for an organism to maintain a state

of homeostasis and survive, it must constantly and actively

restrict the set of latent states in which it lives to a narrow

range of life-compatible possibilities, counteracting the natural

tendency for disorder (Friston, 2012)—hence the relationship with

thermodynamics. If these states are defined by the organism’s

phenotype, from the point of view of its internal model they are

exactly the states that it expects to be less surprising. Thus, while

perceptual inference tries to optimize the belief about hidden causes

to explain away sensations, if on the other hand the assumptions

defined by the phenotype are considered to be the true causes of

the world, interacting with the external environmentmeans that the

agent will try to sample those sensations that make the assumptions

true, fulfilling its needs and beliefs. Active inference becomes a self-

fulfilling prophecy. In this view, there is no difference between a

desire and a belief: we simply seek the states in which we expect to

find ourselves (Friston et al., 2010; Buckley et al., 2017).
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For achieving a goal-directed behavior, it is then sufficient

to minimize the free energy also with respect to the action (see

Equation 7):

a = argmin
a

F(µ, s) (15)

Given that motor control signals only depend on sensory

information, we obtain:

ȧ = −∂aF(s̃, µ̃) = −
∂F

∂ s̃

∂ s̃

∂a
= −

∂ s̃

∂a

T

5̃sε̃s (16)

Minimizing the free energy of all sensory signals is certainly

useful, as every likelihood contribution will drive the belief update;

however, it requires the knowledge of an inverse mapping from

exteroceptive sensations to actions (Baltieri and Buckley, 2019),

which is considered a "hard problem" being in general highly

non-linear and not univocal (Friston et al., 2010). In a more

realistic scenario, only proprioception drives the minimization of

free energy with respect to the motor signals; this process is easier

to realize since the corresponding sensory prediction is already

in the intrinsic domain. Control signals sent from the motor

cortex are then not motor commands as in classical views of

Optimal Control theories; rather, they consist of predictions that

define the desired trajectory. Under this perspective, proprioceptive

prediction errors computed locally at the spinal cord serve two

purposes that only differ in how these signals are conveyed. They

drive the current belief toward sensory observations—happening

to realize perception—like for exteroceptive signals. But they also

drive sensory observations toward the current belief by suppression

in simple reflex arcs that activate the corresponding muscles—

thus happening to realize movement (Adams et al., 2013; Parr and

Friston, 2018; Versteeg et al., 2021).

In conclusion, perception and action can be seen as two sides of

the same coin implementing the common vital goal of minimizing

entropy or average surprise. In this view, what we perceive never

tries to perfectly match the real state of affairs of the world, but

is constantly biased toward our preferred states. This means that

action only indirectly fulfills future goals; instead, it continuously

tries to fill the gap between sensations and predictions generated

from our already biased beliefs.

2.5. Variational autoencoders

Variational Autoencoders (VAEs) belong to the family of

generative models, since they learn the joint distribution p(z, s)

and can generate synthetic data similar to the input, given a prior

distribution p(z) over the latent space. VAEs use the variational

Bayes approach to capture the posterior distribution p(z|s) of

the latent representation of the inputs when the computation

of the marginal is intractable (Goodfellow et al., 2016). A VAE

is composed of two probability distributions, both of which are

assumed to be Gaussian: a probabilistic encoder corresponding to

the recognition distribution q(z|s), and a generative function p(s|z)

called probabilistic decoder computing a distribution over the input

space given a latent representation z (Figure 3C):

q(z|s) = N (z|µφ ,6φ)

p(s|z) = N (s|µθ ,6θ )
(17)

Although VAEs have many similarities with traditional

autoencoders, they are actually a derivation of the AEVB algorithm

when a neural network is used for the recognition distribution

(Kingma and Welling, 2014). Unlike other variational techniques,

the approximate posterior is generally not assumed to be factorial,

but since the calculation of the ELBO gradient ∇φLθ ,φ(s) is

biased, a method called reparametrization trick is used so that it is

independent of the parameters φ. This method works by expressing

the latent variable z by a function:

z = r(ǫ,φ, s) (18)

Where ǫ is an auxiliary variable independent of φ and s. The

ELBO L̃θ ,φ(s) for a single data point can thus be expressed as:

L̃θ ,φ(s) = −DKL[q(z|s)||p(z)]+
1

M

M
∑

m

log p(s|zm) (19)

Which can be minimized through backpropagation. Here, the

KL divergence can be seen as a regularizer, while the second RHS

term is an expected negative reconstruction term that depends on

all themth components of the latent variable z.

3. A framework for flexible intentions

In what follows, we develop a computational theory of

the circuitry controlling goal-directed actions in a dynamically

changing environment through flexible intentions and discuss

its putative neural basis in the PPC and related areas. We first

elaborate on intentionality in Active Inference, then provide a

proof-of-concept agent endowed with visual input. The theory

is exemplified and assessed in the following sections through

simulations of visually-guided behaviors. The theoretical work is

motivated by basic research showing the critical role of the PPC

in goal-directed sensorimotor control through intention coding

(Andersen, 1995; Desmurget et al., 1999; Galletti and Fattori, 2018)

and extends previous theoretical and applied research on Active

Inference (Friston et al., 2009; Pio-Lopez et al., 2016; Lanillos and

Cheng, 2018; Limanowski and Friston, 2020) and VAE-based vision

support (Rood et al., 2020; Sancaktar et al., 2020). The simulations

are inspired by a classical monkey reaching task (Breveglieri et al.,

2014).

3.1. Flexible intentions

State-of-the-art implementations of continuous Active

Inference have proven to successfully tackle a wide range of

tasks, from oculomotion dynamics (Adams et al., 2015) to the

well-known mountain car problem (Friston et al., 2009). Most

simulations involve reaching movements in robotic experiments,

where several strategies have been tried for designing goal states,
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FIGURE 1

Functional architecture and cortical overlay. The process starts with the computation of future intentions h (not explicitly represented in the figure) in

the PPC under the coordination of frontal and motor areas. In the middle of the sensorimotor hierarchy, the PPC maintains beliefs µ over the latent

causes of sensory observations sp and sv , and computes proprioceptive and visual predictions through the somatosensory and dorsal visual pathways

(for simplicity, we have omitted the somatomotor pathway and considered a single mechanism for both motor control and belief inference). The

lower layers of the hierarchy compute sensory prediction errors εsp and εsv , while the higher layers compute intention prediction errors Ei; both are

propagated back toward the PPC, which thus integrates information from multiple sensory modalities and intentions. Free energy is minimized

throughout the cortical hierarchy by changing the belief about the causes of the current observation (perception) and by sending proprioceptive

predictions from the motor cortex to the reflex arcs (action). An essential element of this process is the computation of gradients ∂gp and ∂gv by

inverse mappings from the sensations toward the deepest latent states. In this process, intentions act as high-level attractors and the belief

propagated down to compute sensorimotor predictions embeds a component directing the body state toward the goals.

which are expressed in terms of an attractor embedded in the

system dynamics. However, there seem to be a few issues regarding

biological plausibility. First, the goal state is usually static and the

agent is not able to deal with continuously changing environments,

expecting that the world will always evolve in the same way

(Baioumy et al., 2020). For dynamic goals, one has to use low-level

information of sensory signals (e.g., a visual input about a moving

target) directly into the high-level dynamics function (Friston,

2011). Second, when goals are specified in an exteroceptive

domain, one uses sensory predictions to obtain a belief update

direction through backpropagation of the corresponding error

(Oliver et al., 2019; Sancaktar et al., 2020). In this case, the same

generative model that produces predictions and compares them

with the actual observations, has to be duplicated into the system

dynamics to further compare the belief with the desired cue. In

other words, two specular mechanisms are used for the same

model, with additional concerns when the latter can be changed

by learning.

A common question seems to be behind these two similar

issues: how does dynamic sensory information get available for

generating high-level dynamic goals? The same inference process

of environmental causes should be at work for the same signal flow,

and a goal state should be computed locally without information

passed inconsistently. How then to design a flexible exteroceptive

attractor that avoids implausible scenarios?

Although the high-level latent state could be as simple as

encoding body configurations only, an agent could also maintain

a dynamically estimated belief over moving objects in the scene. An

intention can then be computed by exploiting this new information

to compute a future action goal in terms of body posture, so

that the attractor—either defined in the belief domain or at the

sensory level—is not fixed but depends on current perceptual and

internal representations of the world (but also on past memorized

experiences). This intention may also depend on priors generated

from higher-level areas (Friston et al., 2011), so that the considered

belief is located at an intermediate level between the generative

models that produce sensory predictions, and the ones that define

its evolution over time. In a non-trivial task, its dynamics may

be generally composed of several contributions and not restricted

to a single intention: we thus propose to decompose it into a set

of functions, each one providing an independent expectation that

the agent will find itself in a particular state. The belief is then
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constantly subject to several forces of two natures: one from lower

hierarchical levels—proportional to sensory prediction errors—that

pulls it toward what the agent is currently perceiving, and one from

lateral or higher connections—which we call intention prediction

errors—that pulls it toward what the agent expects to perceive in

the future.

As shown in Figure 1, from a neural perspective the PPC

is the ideal candidate for a cortical structure computing beliefs

over bodily states and flexible intentions: on one hand, being at

the apex of the Dorsal Visual Stream (DVS) and other sensory

generative models, and on the other linked with motor and frontal

areas that produce continuous trajectories and plans of discrete

action chunks. The PPC is known to be an associative region

that integrates information from multiple sensory modalities and

encodes visuomotor transformations—e.g., area V6A is thought

to encode object affordances during reaching and grasping tasks

(Fattori et al., 2017; Filippini et al., 2017). Moreover, evidence

suggests that the PPC encodes multiple goals in parallel during

sequences of actions, even when there is a considerable delay

between different goals (Baldauf et al., 2008).

In short, the agent constantly maintains plausible hypotheses

over the causes of its percepts, either bodily states or objects

in exteroceptive domains; by manipulating them, the agent

dynamically constructs representations of future states, i.e.,

intentions, which in turn act as priors over the current belief. Thus,

if the job of the sensory pathways is to compute sensory-level

predictions, we hypothesize that higher levels of the sensorimotor

control hierarchy integrate into the PPC previous states of

belief with flexible intentions, each predicting the next plausible

belief state.

3.2. Dynamic goal-directed behavior in
Active Inference

For a more formal definition, we assume that the neural

system perceives the environment and receives motor feedback

through J noisy sensors S comprising multiple domains (most

critically, proprioceptive and visual). Under the VB and Gaussian

approximations of the recognition density, we also assume that the

nervous system operates on beliefs µ ∈ R
M that define an abstract

internal representation of the world. Furthermore, we assume that

the agent maintains generalized coordinates up to the 1st order

resulting from free energy minimization in the generalized belief

space µ̃ = {µ,µ′}.

We then define intentions hk as predictions of target goal states

over the current belief µ computed with the help of K functions

ik(µ) ∈ R
M. Although both belief and intentions could be abstract

representations of the world—comprising states in extrinsic and

intrinsic coordinates—we assume a simpler scenario in which the

intentions operate on beliefs in a common intrinsic motor-related

domain, e.g., the joint angles space. As explained before, we assume

that there are two conceptually different components in both the

belief µ and the output of the intention functions ik. The first

component could represent the bodily states and serve to drive

actions, while the second one could represent the state of other

objects—mostly targets to interact with—which can be internally

encoded in the joint angles space as well (the reason for this

particular encoding will be clear later). These targets could be

observed, but they could also be imagined or set by higher-level

cognitive control frontal areas such as the PFC or PMd (Genovesio

et al., 2012; Stoianov et al., 2016).

For the sake of notational simplicity, we group all intentions

into a single matrixH ∈ R
MxK:

H = i(µ) =
[

i0(µ) . . . iK(µ)
]

=

[

h0 . . . hK

]

(20)

Intention prediction errors eik are then defined as the difference

between the current belief and every intention:

Ei = H − µ =
[

ei0 . . . eiK

]

(21)

In turn, sensory predictions are produced by a set of generative

models g j, one for each sensory modality. We group the predictions

into a prediction matrix P:

P = g(µ) =









g0(µ)
...

gJ(µ)









=









p0
...

pJ









(22)

Note that each term pj is a multidimensional sensory-level

representation that provides predictions for a particular sensory

domain, with its own dimensionality, which we group into a single

quantity for notational simplicity. Sensory prediction errors εsj are

then computed as the difference between sensations from each

domain and the corresponding sensory-level predictions:

E s = S− P =









εs0
...

εsJ









(23)

Under the assumption of independence among intentions and

sensations, we can factorize the joint probability of the generative

model into a product of distributions for each sensory modality and

intention, which expands as follows:

p(µ̃, s) = p(µ)

K
∏

k

p(µ′k|µ) ·

J
∏

j

p(sj|µ) (24)

In the following, we will not consider the prior probability over

the 0th order belief p(µ). The other probability distributions are

assumed to be Gaussian:

p(µ′k|µ) = N (µ′k|f k(µ), γ
−1
k

)

p(sj|µ) = N (sj|g j(µ),π
−1
j )

(25)

Where γ k and π j are, respectively, the precisions of intention k

and sensor j. Here, µ′
k
and f k correspond to the kth component of

the 1st order dynamics function:

f k(µ) = λeik + wµk
(26)

Where λ is the gain of intention prediction errors Ei. Note

that the goal states are embedded into these functions, acting as
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belief-level attractors for each intention, so that the agent expects

to be pulled toward target states with a velocity proportional to the

error. Although the generalized belief allows encoding information

about the dynamics of the true generative process, in the simple

case delineated the agent does not have any such prior. For

example, the agent does not know the trajectory of a moving

target in advance (whose prior, in a more realistic scenario, would

be present and acquired through learning of past experiences)

and will update the belief only relying on the incoming sensory

information. Nevertheless, the agent maintains (false) expectations

about target dynamics, and it is indeed the discrepancy between the

evolution of the (real) generative process and that of the (internal

and biased) generative model that makes it able to implement a

goal-directed behavior.

The prediction errors of the dynamics functions can be grouped

into a single matrix:

Eµ = µ′ − λEi (27)

From Equation (14), we can now compute the free energy

derivative with respect to the belief:

˙̃µ =

[

µ̇

µ̇′

]

= Dµ̃− ∂µ̃F =

[

µ′ + GT(5⊙ E s)+ (F ⊙ Eµ)Ŵ
T

−EµŴT

]

(28)

Here, ⊙ is the element-wise product, G and F enclose the

gradients of all sensory generative models and dynamics functions,

while 5 and Ŵ comprise all sensory and intention precisions:

G =
∂g

∂µ
=









∂g0
...

∂gJ









5 =









π0

...

π J









F =
∂f

∂µ
=

[

∂f 0 . . . ∂f K

]

Ŵ =
[

γ 0 . . . γ K

]

(29)

In the following, we will neglect the backward error in the 0th

order of Equation (28) since it has a much smaller impact on the

overall dynamics, and treat as the actual attractor force the forward

error at the 1st order:

˙̃µ ≈

[

µ′ + GT(5⊙ E s)

−EµŴT

]

=

[

µ′ + ǫs

ǫi

]

(30)

Where ǫs and ǫi, respectively, stand for the contributions (in

the belief domain) of precision-weighted sensory and intention

prediction errors. Considering the 1st order forward error as

attractive force instead of the 0th order backward error results in

simpler computations since there is no gradient of the dynamics

functions to be considered. Further studies are however needed

to understand the relationships between these two forces in

goal-directed behavior. We can interpret γ k as a quantity that

determines the relative attractor gain of intention k, so that

intentions with greater strength have a more significant impact on

the overall update direction; these gains could also be modulated by

projections from higher-levels areas applying cognitive control. In

turn, π j corresponds to the confidence about each sensory modality

j, so that the agent relies more on sensors with higher strength.

Similarly, we can compute control signals by minimizing the

free energy with respect to the actions, expressing the mapping

from sensations to actions by:

∂s

∂a
=

∂µ

∂a
· G

ȧ = −∂aF = −∂aµ
Tǫs

(31)

Where ∂aµ is an inverse model from belief to actions. If motor

signals are defined in terms of joint velocities, we can decompose

and approximate the inverse model as follows:

∂aµ =
∂θ

∂a
·
∂µ

∂θ
=

∂gp

∂a
·

∂µ

∂gp
= 1tG

−1
p (32)

Where θ are the joint angles, the subscript p indicates the

proprioceptive contribution and we approximated ∂agp by a time

constant 1t (Oliver et al., 2019). If we assume that the belief over

hidden states is encoded in joint angles, the computation of the

inverse model may be as simple as finding the pseudoinverse of

a matrix. However, if the belief is specified in a more generic

reference frame and the proprioceptive generative model is a non-

linear function, it could be harder to compute the corresponding

gradient, causing additional control problems like temporal delays

on sensory signals (Friston, 2011). Alternatively, we can consider a

motor control driven only by proprioceptive predictions, so that

the control signal is already in the correct domain and may be

achieved through simple reflex arc pathways (Adams et al., 2013;

Versteeg et al., 2021). In this case, all that is needed is a mapping

from proprioceptive predictions to actions:

ȧ = −∂aFp = −1t · πpεp (33)

Expressing in Equation (31) the mapping from sensations to

actions by the product of the inverse model ∂aµ and the gradient

of the generative models allows the control signals to be defined in

terms of the weighted sensory contribution ǫs, already computed

during the inference process. Such an approach may have some

computational advantages (as will be explained later), but it is

unlikely to be implemented in the nervous system as control

signals are supposed to convey predictions and not prediction

errors (Adams et al., 2013).

Algorithm 1 outlines a schematic description of the flow of

dynamic computations. For simplicity, we used the term "intention"

also when describing the dynamics functions and their precisions,

but one has to keep in mind the difference between the intention

prediction errors Ei, which directly encode the direction toward

target states, and the dynamics prediction errors Eµ, which arise

from the derivation of the corresponding probability distributions.

3.3. Neural implementation

Figure 2 shows a schematic neuronal representation of the

proposed agent, which further extends earlier perceptual inference

schemes (Bogacz, 2017) to full-blown Active Inference. In this

simple model, the intentions consist of a single layer with two

neurons, and the goal states are implicitly defined in the dynamics

functions; however, in a realistic setting the latter would be
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composed of networks of neurons where these states are explicitly

encoded, and non-linear functions could also be used to achieve

more advanced behaviors. Note also that intentions hk and sensory

generative models g j are all part of the same architecture, the only

difference being the location in the cortical hierarchy.

Low-level prediction errors for each sensory modality are

represented by neurons whose dynamics depends on both

observations and predictions of the sensory generative models:

ε̇sj = sj − g j(µ)−
εsj

π j
(34)

Upon convergence of the neural activity, that is, ε̇sj = 0, we

obtain the prediction error computation derived above. In turn, the

internal activity of neurons corresponding to high-level prediction

errors is obtained by subtracting the generated dynamics function

from the 1st order belief:

ε̇µk
= µ′ − f k(µ)−

εµk

γ k

(35)

Input: S, i, g, ∂aµ,Ŵ,5, λ,1t

1: µ,µ′,µ′′,← InitializeBelief ()

2: while t < T do

3: H← i(µ) ⊲ Intentions and sensory predictions

4: P← g(µ)

5: Eµ ← µ′ − λ(H − µ) ⊲ Prediction errors

6: E s ← S− P

7: ǫi ←−EµŴT ⊲ Precision-weighted contributions

8: ǫs ← GT (5⊙ E s)

9: µ̇← µ′ + ǫs ⊲ Belief and action update

10: µ̇′ ← µ′′ + ǫi

11: ȧ←−∂aµ · ǫs

12: µ̃← µ̃+1t
˙̃µ ⊲ Gradient descent

13: a← a+1t ȧ

14: end while

Algorithm 1. Active Inference agent with flexible intentions.

Having received information coming from the top and bottom

of the hierarchy, the belief is updated by integrating every signal:

µ̇ =

J
∑

j

∂g jεsj +

K
∑

k

∂f kεµk
(36)

Which parallels the update formula derived above (Equation

28). Correspondingly, the 1st order component of the belief is

updated as follows:

µ̇′ = −

K
∑

k

εµk
(37)

The belief is thus constantly pushed toward a direction that

matches sensations on one side and intentions on the other. We

adopted the idea that the slow-varying precisions are encoded as

synaptic strengths (Bogacz, 2017), but alternative views consider

them as gains of superficial pyramidal neurons (Bastos et al., 2012).

In any case, they could be dynamically optimized during inference

in a direction thatminimizes free energy—e.g., if a sensorymodality

does not help predict sensations, its weight will decrease. This

is also true for the intention weights: by dynamically changing

during the movement, they can act as modulatory signals that

select the best intention to realize at every moment, which can be

useful for solving simultaneous or sequential tasks. Nonetheless, the

distinction is purely conceptual as the agent does not discriminate

betweenmodulating a future intention or increasing the confidence

of a sensory signal. At the belief level, every element just follows the

rules of free energy minimization.

4. Method

To demonstrate the feasibility of the approach and its capacity

to successfully implement goal-directed behavior in dynamic

environments, we simulated an agent consisting of an actuated

upper limb with visual and proprioceptive sensors that allow it

FIGURE 2

Neuronal representation with two intentions. Small squares stand for inhibitory connections.
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FIGURE 3

Simulation outline. The agent, a simulated 3-DoF actuated upper limb shown in (A) is set to reach one of the nine red circle targets as in the

reference monkey experiment (Breveglieri et al., 2014) outlined in (B). The agent is equipped with a fixed virtual camera providing peripersonal visual

input and a visual model, the decoder gv of a VAE shown in (C) simulating functions of the DVS.

to perceive and reach static and moving targets within its reach.1

Figure 3A shows the size and position of the targets, as well as limb

size and a sample posture. Since the focus here was on theoretical

aspects, we simulated just a coarse 3-DoF limb model moving on

a 2D plane. However, the approach easily generalizes to a more

elaborated limb model and 3D movements. In the following, we

describe the agent, the specific implementation, and the simulated

task. Then, in the Results section we assess the agent’s perceptual

and motor control capabilities in static and dynamic conditions.

The static condition simulated a typical monkey reaching task of

peripersonal targets as in Figure 3 (Breveglieri et al., 2014). In turn,

the dynamic condition involved a moving target that the agent had

to track continuously.

4.1. Delayed reaching task

The primary testbed task is a simplified version of a delayed

reaching monkey task in which a static target must be reached

with a movement that can only start after a delay period

(Breveglieri et al., 2014). Delayed actions are used to separately

1 Python code provided in https://github.com/priorelli/PACE.

investigate neural processes related to action preparation (e.g.,

perception and planning) and execution in goal-directed behavior,

and are thus useful to analyze the two main computational

components of free energy minimization, namely, perceptual

and active inference, which otherwise work in parallel. Delayed

reaching could be implemented using various approaches: the

update of the posture component of the belief dynamics could be

blocked by setting the intention gain λ to zero during inference

(implemented here): in this way, there are no active intentions

and the belief only follows sensory information. Alternatively,

action execution could be temporarily suspended by setting to

zero the proprioceptive precision, so that the agent still produces

proprioceptive predictions but does not trust their prediction

errors: in this scenario, the belief dynamics includes a small

component directed toward the intention, but the discrepancy

produced is not minimized through movement.

Reach trials start with the hand placed on a home button (HB)

located in front of the body center (i.e., the “neck”), and the belief

is initialized with this configuration. Then one of the 9 possible

targets of the reference experiment (Figure 3) is lit red. Follows

a delay period of 100 time steps during which the agent is only

allowed to perceive the visible target and the limb, and the inference

process can only change the belief. After that, the limb is allowed
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to move and the joint angles are updated according to Equation

(38). As in the reference task, upon target reaching the agent stops

for a sufficiently long period, i.e., a total of 300 time steps per

trial. After that, the agent reaches back the HB (not analyzed here).

The simulation included 100 repetitions per target, i.e., 900 trials

in total.

4.2. Body

The body consists of a simulated monkey upper limb composed

of a moving torso attached to an anchored neck, an upper arm,

and a lower arm, as shown in Figure 3. The three moving segments

are schematized as rectangles, each with unit mass, while the

joints (shoulder, elbow) and the tips (neck, hand) as circles. The

proportions of the limb segment and the operating range of the

joint angles were derived from monkey data Macaca mulatta

(Kikuchi andHamada, 2009). The state of the limb and its dynamics

are described by the joint angles θ and their first moment θ̇ .

We assume noisy velocity-level motor control, whereby the motor

efferents a noisily control the first moment of joint angles with

zero-centered Gaussian noise:

θ̇ = a+ wa (38)

4.3. Sensors

The agent receives information about its proprioceptive state

and visual context. Simplified peripersonal visual input sv was

provided by a virtual camera that included three 2D color planes,

each of them 128 x 96 pixels in size. The location and orientation

of the camera were fixed so that the input provided full vision of

peripersonal targets and the entire limb in any possible limb state

within its operating range. The limb could occlude the target in

some configurations.

As in the simulated limb, the motor control system also

receives proprioceptive feedback through sensors sp, providing

noisy information on the true state of the limb (Tuthill and Azim,

2018; Versteeg et al., 2021). We further assumed that sp provides a

noisy reading of the state of all joints only in terms of joint angles,

ignoring other proprioceptive signals such as force and stretch

(Srinivasan et al., 2021), which the Active Inference framework can

natively incorporate.

4.4. Belief

We assume that both the orders of the generalized belief µ̃

comprise three components: (i) beliefs µ̃a over arm joint angles,

or posture; (ii) beliefs µ̃t over the target location represented again

in the joint angles space—i.e., the posture corresponding to the

arm touching the target; and (iii) beliefs µ̃h over a memorized

HB configuration. Thus, µ = [µa,µt ,µh]. Note that the last two

components can be interpreted as affordances, allowing the agent to

implement interactions in terms of bodily configurations (Pezzulo

and Cisek, 2016).

4.5. Sensory model

The sensory generative distribution has two components, one

for each sensory modality: a simplified proprioceptive model gp(µ)

and a full-blown visual model gv(µ):

g(µ) =

[

gp(µ)

gv(µ)

]

(39)

Since the belief is already in the joint angles domain, we

implemented a simple proprioceptive generative model gp(µ) =

Gpµ = µa, where Gp is a mapping that only extracts the first

component of the belief:

Gp =

[

III 0 0
]

(40)

Where 0 and III are respectively 3 x 3 zero and identity

matrices. Note that gp(µ) could be easily extended to a more

complex proprioceptive mapping if the body and/or joint sensors

have a more complex structure and the belief has a richer and

abstract representation.

In turn, the visual generative model gv is the decoder

component of a VAE (see Figure 3C). It consists of one feedforward

layer, two transposed convolutional layers, and two standard

convolutional layers needed to smooth the output. Its latent space

is composed of two elements, representing the joint angles of arm

and target (example in Figure 13). The first component is used

to generate, in the visual output, an arm with a specific joint

configuration, while the second component is used to produce

only the image of the target through direct kinematics of every

joint angle. The VAE was trained in a supervised manner for 100

epochs on a dataset comprising 20.000 randomly drawn body-

target configurations that uniformly spanned the entire operational

space, and the corresponding visual images. The target size varied

with a radius ranging from 5 to 12 pixels.

The proprioceptive gradient ∂gp simplifies to the mapping Gp

itself, while the visual component ∂gv is the gradient of the decoder

computed by backpropagation. Since the Cartesian position of the

target is encoded in joint angles, this gradient implicitly performs a

kinematic inversion. Therefore, predictions P and prediction errors

E s take the form:

P =

[

µa

gv(µ)

]

E s =

[

sp − µa

sv − gv(µ)

]

(41)

Note that defining sensory predictions on both proprioceptive

and visual sensory domains allows the agent to perform efficient

goal-directed behavior also in conditions of visual uncertainty, e.g.,

due to low visibility. Indeed, since the belief is maintained over

time, the agent remembers the last known target position and

can thus accomplish reaching tasks also in case of temporarily

occluded targets.
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FIGURE 4

Multiple intentions. Intention prediction errors of variable strength

(arrow width) controlled by intention precisions point at di�erent

target states. (A) A stronger target attraction (the red circle)

implements the reaching action. (B) A stronger attraction of the

invisible but previously memorized HB implements the

return-to-home action.

4.6. Intentions

Stepping on the proposed formalization (Equation 20), we

define two specific intentions (Figure 4) as follows:

H =
[

it(µ) ih(µ)
]

=

[

Itµ Ihµ
]

=







µt µh

µt µt

µh µh






(42)

Here ht = it(µ) defines the agent’s expectation that the arm

belief is equal to the joint configuration corresponding to the target

to be reached, and it is implemented as a simple mapping It that

sets the first belief component equal to the second one. In turn, the

intention hh = ih(µ) encodes the future belief of the agent that

the arm will be at the HB position. The two intention mappings are

defined by:

It =







0 III 0

0 III 0

0 0 III






Ih =







0 0 III

0 III 0

0 0 III






(43)

The corresponding intention prediction errors are then:

Ei =
[

eit eih

]

=

[

ht − µ hh − µ
]

=







µt − µa µh − µa

0 0

0 0






(44)

These errors provide an update direction respectively toward

the target and HB joint angles. As there is no intention to move the

target or theHB, the second and third components of the prediction

errors will be zero.

4.7. Precisions

Free energy minimization and Predictive Coding in general

heavily depend on precisions modulation. To investigate their role,

we parameterized the relative precisions of each intention and

sensory domain with parameters α and β as follows:

5 =

[

πp

πv

]

=

[

1− α

α

]

Ŵ =
[

γ t γ h

]

=

[

1− β β

]

(45)

The parameter α controls the relative strength of the error

update due to proprioception and vision, while the parameter

β controls the relative attraction by each intention. With these

parameters, the sensory and intention weighted contributions are

unpacked as follows:

ǫs = (1− α) · GT
p εsp + α · ∂gTv εsv (46)

ǫi = −µ′ + λ[(1− β) · eit + β · eih ] (47)

Equation (46) shows the balance between visual and

proprioceptive information. For example, if α = 0 the agent

will only use proprioceptive feedback, while for α = 1 the belief

will be updated only relying on visual feedback. Note that these

are extreme conditions—e.g., the former may correspond to null

visibility—and typical sensory systems provide balanced feedback.

In turn, Equation (47) spells out the control of belief attraction.

The agent will follow the first intention when β = 0, or the second

one when β = 1 (Figure 4). Note that the introduction of a possible

competing reach movement creates a conflict among intentions

aiming to fulfill opposing goals (e.g., for intermediate values of β)

while the agent can physically realize only one of them at a time

(Figure 4). Thus, we assume that the control of intention selection

is realized through mutual inhibition and higher-level bias. Finally,

the parameter λ controls the overall attractor magnitude (see also

Equation 26).

We can also use the precision parameter α to manipulate the

strength of the free energy derivative with respect to the actions as

follows:

ȧ = −1t(1− α) · εsp (48)

Note that by increasing α—i.e., more reliability on vision—

the magnitude of the belief update remains constant, while

action updates decrease because the agent becomes less confident

about its proprioceptive information. Also, one could differentially

investigate the effect of precision strength on belief and action by

directly manipulating the precisions—e.g., visual precision πv may

include different components that follow the belief structure:

πv = [α,πvt ,πvh ] (49)

Where we used the parameter α only for the arm belief. For

example, when α = 0 and πvt > 0, the target belief is updated

using visual input while the arm moves only using proprioception,

a scenario that emulates movement in darkness with a lit target.

5. Results

In the following, we assess the capacities of the intention-driven

Active Inference agent to perceive and perform goal-directed

actions in reaching tasks with static and dynamic visual targets. The

main testbed task was delayed reaching, but we simulated several

other conditions.

Sensorimotor control that implements goal-directed behavior

was investigated in various sensory feedback conditions, including

pure proprioceptive or mixed visual and proprioceptive, in which

the VAE decoder provided support for dynamic estimation of visual

targets and bodily states. The latter is the typical condition of
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performing reaching actions and allows greater accuracy (Keele

and Posner, 1968). In an additional baseline (BL) condition, the

target was estimated by the decoder, but the movement was

performedwithout visual feedback or proprioceptive noise, to allow

comparisons with the typical approach in previous continuous

Active Inference studies, e.g., Pio-Lopez et al. (2016). We also

investigated the effects of sensory and intention precisions, motor

control type, and movement onset policy. Finally, we analyzed the

visual model and the nature of its gradients to provide critical

information about the causes of the observed motor behavior.

Action performance was assessed with the help of several

measures: (i) reach accuracy: success in approaching the target

within 10 pixels of its center, i.e., the hand touching the target; (ii)

reach error: L2 hand-target distance at the end of the trial; (iii) reach

stability: standard deviation of L2 hand-target distance during the

period from target reach to the end of the trial, in successful trials;

(iv) reach time: number of time steps needed to reach the target

in successful trials. We also assessed target perception through

analog measures based on the L2 distance between the target

location and its estimate transformed from joint angles into visual

position by applying the geometric (forward) model. Specifically,

we defined the following measures: (v) perception accuracy: success

in estimating the target location within 10 pixels; (vi) perception

error: L2 distance between the true and estimated target position

at the end of the trial; (vii) perception stability: standard deviation

of the L2 distance between the target position and its estimation

during the period starting from successful estimation until end of

the trial; (viii) perception time: number of time steps needed to

successfully estimate the target position.

Figure 5 illustrates key points of the delayed reaching task.

During the delay period (Figures 5A–C), the posture does not

change since the joint angles only follow the arm belief, which

is kept fixed, while the target belief is attracted by the sensory

evidence and gradually shifts toward it. Whenmovement is allowed

(Figures 5D–F) by setting λ > 0 and β = 0.1, the combined

attractor produces a force that moves the arm belief toward

the target, generating proprioceptive predictions—therefore motor

commands—that let the real arm follow this trajectory. Reaching

performance is summarized in Figure 6. Panels A-D show spatial

statistics of the final hand location (with the corresponding belief)

for each target, separately for reaching with proprioception only or

proprioceptive and visual sensory feedback. Descriptive statistics

revealed an important benefit of visual feedback (Figures 6E–H),

in parallel with classical behavioral observations (Keele and Posner,

1968): reach accuracy was higher (with: 88.28%; without: 83.72%)

and both reach stability and arm belief error were considerably

better with visual feedback as well (stability: 1.35; error: 1.98px)

compared to the condition with only proprioception (stability: 1.78;

error: 2.87px).

5.1. Precision balance

The effects of sensory feedback led to a further systematic

assessment of the effects of sensory and intention precisions α,

πvt and λ (see Equations 45, 49). The assessment was carried out

following the structure of the delayed reaching task. We varied the

above precisions one at a time, using levels shown on the abscissas

in Figure 7, while keeping the non-varied precisions at their default

values. Note that α = 0 corresponds to reaching without visual

feedback, while the conditions α > 0 may be interpreted as

reaching with different levels of arm visibility. We recall that the

baseline condition (BL) performs reaching movements without

visual feedback and proprioceptive noise, i.e., α = 0 and wp = 0.

To obtain a systematic evaluation, each condition was run on a

rich set of 1,000 randomly selected targets that covered the entire

operational space. Finally, we only considered the target-reaching

intention, i.e., β = 0; everything else was the same as in the

main task.

The results are shown in Figure 7. The panels in the left column

show the effect of α compared to the BL agent with noiseless

proprioception. Active Inference with only proprioception (i.e.,

α = 0) has a lower reach accuracy and higher error, while the

best performance is obtained with balanced proprioceptive and

visual input, in corroboration with the observations of the basic

delayed reaching task. In the latter case, the motor control circuitry

continuously integrates all available sensory sources to implement

visually-guided behavior (Saunders and Knill, 2003). However,

accuracy and stability rapidly decrease for excessively high values of

α, due to the discrepancy in update directions between the belief—

which makes use of all available sensory information, including the

more precise visual feedback—and action—which in this case relies

on excessively noisy proprioception. Furthermore, as in the main

experiment, the effects of visual precision are evident in the stability

of the arm belief, which gradually improves with increasing values

(Figure 8): In addition to the reliability of the visual input, this

effect is also a consequence of the smaller action updates due to

the reduced proprioceptive precision.

In turn, the panels in the middle column of Figure 7 reveal the

effects of the attractor gain λ; to remind the reader, the greater the

gain, the greater the contribution of intention prediction errors in

the belief updates. The results show that as the intention gain λ

increases reach accuracy generally improves, and the number of

time steps needed to reach the target decreases. However, beyond

a certain level, the accuracy tends to decrease since the trajectory

dynamics becomes unstable; thus, excessively strong action drag is

counterproductive to the implementation of smooth movements.

Finally, the panels in the right column of Figure 7 show the effects

of the target precision πvt , which directly affects the quality of target

perception. Note that better performances are generally obtained

in terms of accuracy, error, and perception time for values of

πvt higher than the arm visual precision, which corresponds to a

classical effect of contrast on perception, but also means here that

the arm and target beliefs follow different dynamics.

5.2. Motor control

We described earlier two different ways of implementing

motor control in Active Inference: making use of all sensory

information, or proprioception only. The first method requires

significantly more computations since the agent needs to know

the inverse mapping from every sensory domain to compute

the control signals. However, given the assumptions we made,
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FIGURE 5

Dynamics of the delayed reaching task. At trial onset (A) a visual target (red circle) appears, the arm (in blue) is located on the HB position, and the arm

belief (in green) is set at the true arm state. During the delay period, the perceptual inference process gradually drives the target belief (purple circle)

toward the real position (B, C). During this phase, the intention gain λ is set to 0, so that movement is inhibited and the arm belief does not change

given the unchanged proprioceptive evidence. After movement onset, the arm freely follows its belief (D, E) until they both arrive at the goal state (F).

this approach is potentially more stable because it updates both

belief and action with the same information. On the other hand,

a pure proprioception-based control mechanism could produce

potentially incorrect movements because the motor control

commands result from comparing proprioceptive predictions with

noisy observations. Greater cost-effectiveness of the secondmethod

thus might come at the cost of worsened performances, which we

investigate here.

Figure 9 shows a comparison of the two control methods

and the BL agent, evaluated under the same conditions we used

to investigate precision balance, including 1,000 random targets.

Performance was measured in terms of belief and reach stability

and reach accuracy. The results reveal, first, that the expected

decreased belief stability of the full model with respect to the

BL agent (Figure 9C) does not affect hand stability (Figure 9B),

although the proprioceptive noise apparently contributed to

decreased reach accuracy (Figure 9A). More importantly, the

results confirm our expectations that pure proprioception control

has considerably lower reach stability caused by incorrect update

directions of the motor control signals, resulting in a greater

decreased reach accuracy relative to the full model.

5.3. Movement onset policy

We also investigated the effects of movement onset using

several policies, which differ by the duration of the period of pure

perception preceding full Active Inference. One such policy we

investigate here is characteristic of actions performed under time

pressure, in which movement starts along with perception, i.e.,

action is immediate. Another policy that could be considered typical

for acting under normal conditions has movement beginning

with the satisfaction of a certain perception criterion. This policy

dynamically deliberates the onset of movement. Various perception

criteria could be used: here, the action starts when the norm of

the target belief µ̇t remained below a given threshold (i.e., 0.01)

for a certain period (i.e., 5 time steps). These parameters were

arbitrarily chosen in consideration of exploratory delayed reaching

simulations. Finally, we include the previously used delayed action

policy in which movement onset is delayed by a fixed period (here,

100 time steps, sufficient to obtain a precise target estimation).

To obtain systematic observations, each policy was again run on

1,000 randomly selected targets. Measurements included reach

and perception accuracy, motor control stability after reach, target

perception stability, as well as reach time since the beginning of the

trial or after movement onset.

Figure 10 shows the results with the three different policies.

Although the reach error is approximately the same in all tested

conditions, the agent controlled by the immediate policy reached

the target within the lowest total number of time steps: target

perception and intention setting were dynamically computed along

with movement onset. However, if we consider the total task time,

the number of time steps is the highest in this condition, since

the arm belief and the arm itself move along with the slow visual

target estimation. In turn, if the agent starts the movement when

the uncertainty about the target position is already minimized

(either in the dynamic or fixed condition), the movement time

decreases, although if added on top of the perception time results

in slower actions relative to the immediate movement condition.

Finally, we note that target perceptual stability somewhat decreases

for dynamic and fixed policies; this somewhat unexpected result is
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FIGURE 6

Performance of the delayed reaching task. (A–D) Spatial distribution of hand positions (A, C) and corresponding beliefs (B, D) per target at the end of

the reach movements, with (A, B) and without (C, D) visual feedback. Each point represents a trial (100 trials per target). Reach error (E, G) and belief

error (F, H) over time, with (E, F) and without (G, H) visual feedback (bands represent C.I.). The reach criterion of the hand-target distance is visualized

as a dotted line. L2 norm for the hand belief is computed by the di�erence between real and estimated hand positions. Reaching with visual feedback

resulted in a more stable hand belief.

encouraging for dynamic target tracking tasks in which immediate

movement onset is mandatory.

5.4. Tracking dynamic targets

In a second testbed task, the agent was required to track

a smooth-moving target whose initial location was randomly

chosen from the entire operational space. In each trial,

the targets received an initial velocity of 0.1px per step in

a direction uniformly spanning the 0–360◦ range. When

the target reached a border, its movement was reflected.

As in the previous simulations, the belief was initialized

at the HB configuration and the trial time limit was 300

time steps. However, for the agent to correctly follow

the targets, both the belief and action were dynamically
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FIGURE 7

E�ects of precision balance. Reach accuracy (1st row), reach error, i.e., L2 hand-target distance (2nd row), reach time (3rd row), and reach stability

(4th row). Reach performance is shown as a function of arm sensory precision α (left) and attractor strength λ (middle). In turn, perception

performance is shown as a function of target sensory precision πvt (right). Vertical bars represent C.I.

and continuously inferred in parallel, i.e., without a pure

perceptual period.

Figure 11 shows the reach trajectory in dynamic target tracking

for 10 random trials. The left panel shows the evolution over time of

L2 hand-target distance, while the right panel represents the error

between estimated and true target positions. The results suggest

that the agent is generally able to correctly and dynamically estimate

the beliefs over both target and arm for almost every trial, also in

the case of moving targets. In some cases however, mainly when

the target is out of reach, it is temporarily or permanently "lost"

in terms of its belief, which has also the consequences of losing the

target in terms of reach. Further analysis with amore realistic bodily

configuration and visual sensory system—as well as comparisons

with actual kinematic data—should provide further insights into

the capabilities of Active Inference to perform dynamic reaching.

5.5. Free energy minimization

Here we illustrate the dynamics of free energy minimization

in delayed reaching, which is at the heart of continuous Active

Inference. To that aim, we run 10 new reaching trials with static
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FIGURE 8

Belief error and stability—representing the di�erence between real and estimated hand positions—for di�erent values of α. Vertical bars represent C.I.

FIGURE 9

Motor control methods. Reach accuracy (A), reach stability (B), and belief stability (C) for a BL agent and the two di�erent implementations of motor

control, based either on all sensory information (full control) or on proprioception only.

FIGURE 10

E�ects of movement onset policy. Reach error (left), stability (middle), and time (right) across several policies (immediate, dynamic, and fixed delay).

Vertical bars represent C.I.

and dynamic targets and recorded the free energy derivatives with

respect to generalized belief and action.

Figures 12A–F shows the trajectory of the free energy

derivatives with respect to the arm and target components during

delayed reaching of a static target; the two columns show the

trends for the last two joints, i.e., the arm and forearm segments,

that most strongly articulate the reaching action. Note that the

gradients of the free energy with respect to the target belief are
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FIGURE 11

Tracking dynamic targets. Reach (left) and perception (right) error over time for 10 random trials.

rapidly minimized during the initial perceptual phase while the

arm gradients remain still. Upon action execution (indicated by a

vertical line), the arm gradients rapidly change as well, resulting

in updated proprioceptive predictions that drive arm movements.

However, arm movements cause changes in the visuals scene,

resulting in a secondary effect over the just minimized free energy

on target belief. Figures 12G–J goes even deeper, showing a direct

comparison between µ̇, µ′, and the difference µ̇ − µ′, on sample

static (G-H) and dynamic (I-J) targets. We recall that free energy

minimization implies that the two reference frames (the path of

the mode µ̇ and the mode of the path µ′) should overlap at some

point in time, when the agent has inferred the correct trajectory of

the generalized hidden states. This is crucial especially in dynamic

reaching, in which the aim is to capture the instantaneous trajectory

of every object in the scene. The decreasing free energy gradients

(blue lines) show that this aim is indeed successfully achieved in

both static and dynamic tasks.

5.6. Visual model analysis

Here, we provide an assessment of the visual model whose

performance is critical for accurate visually-guided motor control.

To recall, the visual model is implemented with a VAE trained

offline to reconstruct images of arm-target configurations such as

the one in Figure 13A. A critical VAE parameter is the variance

of the recognition (encoder) density 6φ (see Equation 17). We

therefore evaluated its effect on perception and action by training

several VAEs with different variance levels. VAE performance was

assessed on other 10.000 randomly selected configurations that

uniformly sampled the space, with a target size of 5 pixels (the

default condition for the Active Inference tests).

Most critical was the VAE capacity to generate adequate

images of joint arm-target configurations, which we measured

with the help of the L2 norm between visual observations, and

VAE-generated images. To provide more insights on the two

VAE processes, decoding and encoding, we proceeded as follows:

first, decoding was assessed by generating images for given body-

target states such as that in Figure 13B. The decoded images were

compared with the ground truth images produced by applying the

geometric model for the same state of the body target (Figure 13A).

Second, full VAE performance was assessed by computing the

average L2 norm between observed images and their full VAE

reconstruction, i.e., first encoding and then decoding them (as in

Figure 13C). Third, we directly assessed the specific effects of the

recognition density variance on Active Inference using the BL

condition of the delayed reaching task as a measure.

Figure 13D represents the results of the perceptual assessment

tests, showing the L2 norm between the original and generated

images as a function of recognition density variance. As expected,

lower variances generally resulted in lower errors with respect

to both pure decoding and full encoding-decoding. Surprisingly,

however, the accuracy of Active Inference in the reaching task

behaved somewhat differently: the best accuracy was obtained not

for predictions with low variance, but for intermediate variance

levels (Figure 13E). This could be explained by the fact that low-

variance images imply highly non-linear gradients that prevent

correct gradient descent on free energy. On the other hand, as

the variance increases the reconstructed image becomes somewhat

blurred, which helps obtain a smoother gradient that correctly

drives free energy minimization and therefore improves movement

accuracy (more on this in the next section). However, as the

variance continues to increase, the reconstructed images become

too blurry, degrading both belief inference and motor control.

5.7. Visual gradient analysis

To further investigate the cause of the unexpected low variance

issue, we analyzed the consistency of the visual gradient ∂gv of

the decoder for several encoder variance values. To this aim, we

computed the gradients for different reference states over the entire

operational space.

Figures 14A–C reveals that a decoder with intermediate

variance values (green line) causes smaller but smoother gradients,

while a too-low variance (orange line) causes sharp peaks near

the reference point and even incorrect gradient directions in

some cases. Therefore, too low encoder variances seem to

make the decoder prone to overfitting, while higher variance

values help extract a smoother relationship between irregular

multidimensional sensory domains and regular low-dimension

causes. Figures 14D–G further illustrates the arm and target
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FIGURE 12

Free energy minimization. (A–F) Free energy derivative with respect to the 0th and 1st order belief for arm (A–D) and target (E, F). (G–J) Comparison

between the reference frames of the belief—the path of the mode µ̇ and the mode of the path µ′—for sample static (G, H) and dynamic (I, J) trials.

The left/right columns refer to the arm/forearm segments. Trials data are smoothed with a 30 time-step moving average.

gradients relative to a sample reference posture and target location

(the result is similar for other configurations) in both Cartesian and

polar coordinates; the polar plot shows the two joints most relevant

to the reaching action.

The plots reveal greater arm gradients (upper panels) in the

vicinity of the target location; in that subspace, the decoder has

less uncertainty about which direction to choose to minimize the

error. Notably, the gradients tend to compose curved directions,

a characteristic of biological motions. The polar plot provides

critical insights into the causes of the circular pattern: the gradients

are mostly parallel to the horizontal axis, which corresponds

to a movement consisting essentially of pure shoulder rotation.

Thus, they provide a strong driving force on the shoulder almost

throughout the operational space, while the area in which the

elbow is controlled is limited to the vicinity of the target location.

These gradients result in a two-phase reaching of static targets in
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FIGURE 13

Visual model analysis. (A–C) Sample visual observation (A) and its decoding from joint angles (B) and through a complete encoding-decoding

process (C). (D, E) Visual model performance. Quality of perception is measured as the L2 norm between observed and reconstructed images (D) and

accuracy of Active Inference (E), as a function of the recognition density variance 6φ .

which the agent first rotates the shoulder— resulting in a horizontal

positioning—and then starts to rotate the elbow as soon as the

latter enters its attraction area. The same gradients can explain

the linear motion pattern of an arm tracking dynamically moving

targets when the arm is close to the target: in that case, all gradients

provide motion force as explained above. On the other hand, the

gradients of the target belief (bottom panels) behave somewhat

differently: since this belief is unconstrained and can freely move

in the environment, update directions more directly approach the

target in all angular coordinates (see the polar plot to the right).

Yet, linear belief updates in the polar space still translate to curve

directions in the Cartesian space.

6. Discussion

We presented a normative computational theory based on

Active Inference of how the neural circuitry in the PPC and DVS

may support visually-guided actions in a dynamically changing

environment. Our focus was on the computational basis of

encoding dynamic action goals in the PPC through flexible motor

intentions and its putative neural basis in the PPC. The theory is

based on Predictive Coding (Doya, 2007; Hohwy, 2013), Active

Inference (Friston, 2010), and evidence suggesting that the PPC

performs visuomotor transformations (Cisek and Kalaska, 2010;

Fattori et al., 2017; Galletti and Fattori, 2018) and encodes motor

plans (Andersen, 1995; Snyder et al., 1997). Accordingly, the PPC

is proposed to maintain dynamic expectations of both current

and desired latent states over the environment and use them

to generate proprioceptive predictions that ultimately generate

movements through reflex arcs (Adams et al., 2013; Versteeg et al.,

2021). In turn, the DVS encodes a generative model that translates

latent state expectations into visual predictions. Discrepancies

between sensory-level predictions and actual sensations produce

prediction errors sent back through the cortical hierarchy to

improve the internal representation. The theory unifies research

on intention coding (Snyder et al., 1997) and current views that

the PPC estimates the body and environmental states (Medendorp

and Heed, 2019), providing specific computational hypotheses

regarding the involvement in goal-directed behavior. It also extends

some perception-bound Predictive Coding interpretations of the

PPC dynamics (FitzGerald et al., 2015) and provides a more

comprehensive account of movement planning (Erlhagen and

Schöner, 2002), tightly integrated into the overall sensorimotor

control process.

The core novelty with respect to state-of-the-art

implementations in continuous time Active Inference is that

we first considered an internal belief over not only bodily states

but also every object in the scene, where the latter are encoded in

the joint angles space as well, simulating a visuomotor reference

frame that the PPC is supposed to encode. Then, we decomposed

the belief dynamics into a set of independent intentions each

depending on the current belief and predicting the next plausible

state. Such formalization has several advantages. First, since
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FIGURE 14

Visual gradient analysis. Marginal gradients for each joint, i.e., neck (A), shoulder (B), and elbow (C), and for two values of the recognition density

variance 6φ (green/orange line) computed by backpropagating the error between images with di�erent arm configurations (abscissa: joint angle) and

a reference image (whose angle is represented by the red dot on the abscissa). (D–G) Gradients for arm (D, E) and target (F, G) in both Cartesian (D, F)

and joint (E, G) space.

attractors are dynamically generated at each time step, the agent

can also follow moving targets and interact with a constantly

changing environment, in contrast to static reaching tasks where

a desired fixed state is specified in the belief dynamics (Baioumy

et al., 2020). Second, expressing the target position in terms

of a possible joint configuration—either imposed by higher

levels for realizing specific affordances or freely inferred by the

exteroceptive models—results in simple intentions, without the

need to directly use sensory information or duplicating lower-level

generative models, which leads to implausible scenarios (Lanillos

et al., 2020; Sancaktar et al., 2020). It should be however noted

that, although an intrinsic-only attractor is faster and more
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parsimonious, continuous activation of visual low-level attractors

may provide more precise motor control. Indeed, it seems that

motor areas are able, at a certain "neural energy" cost, to interact

with and generate predictions in multiple sensory domains. The

key difference is that in the former a single prediction—which

is already biased toward a future state—is compared with the

sensory input; in the latter, a prediction of the current state is

compared with the desired exteroceptive goal, biasing the belief

through the backpropagated gradient. Further studies are thus

needed to implement low-level attractors in a biologically plausible

way—e.g., intentions could generate through parallel pathways

their own future sensory predictions that are compared with the

observations in the usual way, with a particular intention that can

be viewed as trying to continuously predict the current sensory

input—and analyze the differences between the two modalities.

Last, maintaining different belief components also allows easy

encoding of previously memorized states which can be especially

useful when implementing a sequence of actions, since only the

intention precisions have to be adjusted. Indeed, it seems that the

PPC explicitly encodes and maintains such goals during the whole

unfolding of sequential actions (Baldauf et al., 2008). A specific

goal is selected among other competitive intentions possibly under

the control of the PFC and PMd (Stoianov et al., 2016) and fulfilled

by setting it as a predominant belief trajectory as an attractor with

a strong gain (see Equations 44, 26 and Figure 4). For example, in

a typical reaching task, the goal of reaching a specific visual target

corresponds to the future expectation that the agent’s arm will

be over that target; thus, if the agent maintains a belief over the

latter, the corresponding intention links the expected belief over

the future body posture with the inferred target, expressed in joint

angles, encoding a specific interaction to realize.

We tested the computational feasibility of the theory

on a delayed reaching task—a classical experiment in

electrophysiology—in which a monkey is required to reach

with its hand a visual-spatial target, starting the movement from

an HB (Breveglieri et al., 2014). To do this, we simulated an agent

consisting of a coarse 3-DoF limb model and noisy visual and

proprioceptive sensors (Figure 3A). Simplified proprioceptive

sensors provided a noisy reading of the state of the limb in joint

angles, while visual input was provided by a fixed camera and

consisted of an image of the target and limb. Predictive visual

sensory processing simulating the DVS was implemented with a

VAE trained to infer body state and target location, both in the joint

angles domain (Figure 3C). The limbs were animated at the velocity

level with motor control signals computed by the visually-guided

Active Inference controller. The computational analysis showed,

first and most importantly, that the controller could correctly

infer the position of the visual targets (Figure 5, t = 70), use it

to compute and set motor goals in terms of prior beliefs on the

future body state through intention functions (Figure 5, t = 105),

and perform adequate and smooth reach movements (Figure 5 t =

105–150), with and without visual feedback (Figure 6). The greater

accuracy obtained with visual feedback parallels classical results in

a similar classical behavioral comparison of reaching (Keele and

Posner, 1968).

We then systematically investigated the effects of noise on

various functional components (Figure 7), starting with the balance

of the precision between proprioceptive and visual sensory models:

a noiseless Active Inference agent (BL condition) resulted in the

best performance, with a stable final approach and accuracy only

limited by the quality of the visual target estimation. Among

the noisy conditions, pure proprioceptive control resulted in

the lowest performance, as expected. Motor control driven by

both proprioceptive and visual feedback with balanced precision

between the two domains resulted in improved reach accuracy

and greatly improved arm belief stability (Figure 8). The effect on

accuracy was mainly due to the inclusion of visual information

in the inference process, but also to slower updates of the motor

control signals due to decreased confidence about proprioceptive

input. The increased stability of the arm belief did not improve

movement stability as increasing confidence about visual input

also increased the discrepancy between belief and action updates,

the latter only relying on noisy proprioceptive observations. In

fact, we showed that if we remove the plausibility constraint that

motor control is driven only by proprioceptive predictions and thus

let actions minimize prediction errors from all sensory domains,

the reach performance greatly increases (Figure 9). Nonetheless,

any combination of visual and proprioceptive feedback improved

performance relative to a control driven by feedback from a single

sensory domain. The instability due to the difference in update

directions between belief and action could be balanced by other

mechanisms that we have not considered here. For example, we

assumed that the same pathway is used for both control and

belief inference, but it seems that the motor cortex generates

different predictions depending on the brain areas which it interacts

with: purely proprioceptive predictions for motor control, whose

prediction error is suppressed at the lowest level of the hierarchy,

and rich somatosensory predictions for latent state inference,

which integrates somatic sensations at different hierarchical levels

(Adams et al., 2013). Intention precisions or attractor gains affected

performance as well. First, they affected reach time: as expected,

the greater the gain, the faster the movement. However, fast

movements come at a cost: increased gains generally resulted in

less precise movements and decreased stability during the final

reach period. Finally, higher visual target precisions decreased

perception time and improved perception accuracy but decreased

perception stability.

We also investigated the effects of movement onset policies:

response delay allows investigating perceptual and motor

preparatory processes separately from the motor control and

action execution. We found that delayed response decreased

movement time with respect to a policy that requires an immediate

response (Figure 10), which fits the behavioral pattern (Shenoy

et al., 2013). Apparently, this is due to the need to estimate, in the

latter condition, the target position “on the fly,” and constantly

adapt the intention according to the updated target estimate. The

advantage of allowing some preparatory time becomes clear in

an anecdotal fly-catching task, which results in faster movement

and increased chances of success. This comes with the critical

contribution of PPC neurons that systematically modulate their

activity during the preparatory period (Shenoy et al., 2013), which

here provided specific predictions for the computations performed

in the PPC. Notably, the immediate-response policy allowed the

Active Inference controller to perform actions under dynamic
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environmental conditions, such as tracking moving objects. Free

energy minimization resulted in rapid target detection also in this

case, and maintained subthreshold perception error on moving

targets (Figure 11) which allowed precise tracking after an initial

reaching period.

Intention-driven Active Inference in continuous time largely

compares to classical neural-level hypotheses of motor planning

such as the Dynamic Field Theory (Erlhagen and Schöner, 2002),

with the advantage of stepping on an established Predictive Coding

framework, dynamic approximate probabilistic inference, and end-

to-end sensorimotor control. The Dynamic Field Theory estimates

the parameters of the desired movement—such as movement

direction and target velocity—from sensory and task features

encoding environmental descriptors, which closely compares to

motor goal coding through flexible intentions in our model.

The two theories have in common a dynamic activation of

the internal representations in continuous time, governed by a

dynamic system, but they differ in the nature of the signals and

their coding. Movement descriptors in Dynamic Field Theory are

represented by a dynamically activated multidimensional space,

each encoded on a population of competing neurons, while Active

Inference approximates movement properties with their central

moments (belief) and dispersion (precisions). While population

coding allows a complete description of a probabilistic distribution,

it could be overshot when used to code single magnitudes

(although it is essential when encoding discrete categories). Yet,

such representation allows coding multiple competing targets

on the same population of neurons, while in our scheme each

target should be encoded by a dedicated unit. Notably, the brain

encodes scalar variables using a variety of number coding schemes,

including monotonic and distributed (Stoianov and Zorzi, 2012).

The latter, known as a “mental number line” (Stoianov et al., 2008),

could be an interesting hypothesis to explore also in the context

of feature coding in continuous Active Inference. Currently,

distributed coding is used only in discrete Active Inference and

other probabilistic models to investigate computationally high-

level cognitive functions such as planning, navigation, and control

(Stoianov et al., 2016, 2022; Pezzulo et al., 2018). The two theories

also differ in the nature of the input to their dynamic systems.

In Active Inference, system input encodes generalized prediction

errors, which are integrated into higher-level moments. Instead,

input in Dynamic Field Theory directly encodes state values.

Coding based on prediction errors has the advantage of minimizing

the quantity of transmitted information—hence, energy. Finally,

the theories also differ in scope: Active Inference provides a full

account of the entire sensorimotor control process, while Dynamic

Field Theory describes only movement planning.

6.1. Precision balance and conditions for
disorders

Based on our computational analysis, it becomes clear that

some motor and behavioral disorders could be due to the lack of

proper sensory and intention precisions (Adams et al., 2021). Here,

we illustrate the normal condition and two types of potentially

improper precision balance that could become a causal condition

for neurological disorders. Figure 15A illustrates the condition for

normal functioning, which is such that the contribution of a single

intention to the belief update (which, as a reminder to the reader,

is proportional to the gain of intentions λ) is sufficiently small

with respect to the sensory contribution. In this case, during free

energy minimization, the system dynamics smoothly moves the

belief toward the strongest goal, along with precise tracking of the

true latent state and sensory signal of the limbs, allowing thus to

compute correct motor control errors and perform smooth action

execution. A critical abnormal condition arises when the intention

gain λ is too strong, as illustrated in Figure 15B. In this case, the

belief moves too rapidly toward the goal without being able to

match the proprioceptive observations, which results in computing

incorrect motor control signals. Another abnormal condition is

caused by too close precisions γ k of competitive intentions, which

is likely to result in opposing belief updates and thus prevent

the fulfillment of any of the competing goals (as in Figure 15C).

This situation might manifest in terms of motor onset failure or

oscillatory behavior.

6.2. Neural-level predictions

One peculiarity of Active Inference based theories of motor

control is that proprioceptive predictions are sent through efferents

down to the spinal cord and that specific muscle control signals

are computed at that level by reflex arcs, so that action attempts to

suppress proprioceptive prediction errors (Adams et al., 2013). This

prediction critically differs from competing modern theories such

as the Optimal Control (Todorov and Jordan, 2002), according

to which the efferents convey muscle control signals computed

at the cortical level. A general aspect of Active Inference regards

the dynamic inferential process, which predicts with increasing

precision the internal representation of the sensorium—including

estimation of targets and body posture—starting from noisy priors

that gradually converge to ideal states. This kind of precision trend

should be observed in an experiment with multiple repetitions of

the same action and target, with variability of cell activity encoding

the target and body that gradually decreases in time within

trials. While this prediction is generally shared with Predictive

Coding based theories, classical stimulus-response theories would

predict invariant variability of cell activity across time. Another

general aspect regards coding of prediction errors. In fact, body-

environment transitions involving a change of states and tasks

result in transient bursts of activity in error-conveying cells until

the error is minimized. Prediction errors conveying upstream

information are supposed to be encoded by pyramidal cortical cells

in superficial layers while downstream predictions are encoded by

deep pyramidal neurons (Parr et al., 2022).

In light of the considerations so far, we predict several different

types of correlates that should be found in the PPC related to coding

environment, task, and bodily states. The former two include

correlates of potential spatial targets and selected motor goals,

which indeed have been consistently found in the PPC (Andersen,

1995; Snyder et al., 1997; Filippini et al., 2018). The latter includes

correlates of intention-biased bodily state estimates, which thus

are not precise representations of the true states. To this concern,

Frontiers inComputationalNeuroscience 23 frontiersin.org

https://doi.org/10.3389/fncom.2023.1128694
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Priorelli and Stoianov 10.3389/fncom.2023.1128694

FIGURE 15

Normal and abnormal intention gains and precisions. Arrow widths represent strengths of prediction errors. In normal conditions, the sensory

contribution to free energy minimization is bigger than that of the intentions and there is a clear unambiguous intention to fulfill (A). An abnormally

strong intention gain λ drives the belief away from the true joint states (B). Too close precision levels γ also hinder implementing competing

intentions (C).

a key expected neural correlate of the proposed mechanism in

the PPC includes signals encoding intention prediction errors

between the current belief and future states corresponding to

targets to interact with, both encoded in a visuomotor reference

frame. To investigate this, one can manipulate high-level priors,

e.g., by inducing an abrupt change of the intention, which should

then be observed as a fast decaying change of the corresponding

prediction error. A related hypothesis is that in tasks comprising

several targets—like the classical monkey experiment analyzed

here—each goal generates its own intention and prediction error.

In normal conditions only one intention is selected at a time, and

this behavior should be observed in the relative dynamics between

all the intention prediction errors encoded simultaneously. Finally,

the use of generalized beliefs in Active Inference predicts that the

PPC encodes not only static states but also a detailed estimate of

body dynamics, up to a few temporal orders. Indeed, a body of

literature report motion-sensitive, or Vision-for-Action activity in

the DVS and PPC (Galletti and Fattori, 2018). The validation of

all these correlates will be the subject of further studies with real

monkey experiments similar to the one described in Figure 3B.

6.3. Limitations and future directions

Our focus here was on intention coding in the PPC, which

directly deals with motor plans and motor control. Further

elaborations will extend the theory with higher-level aspects of

cognitive control, including intention structuring (dealt by PM),

phasing (SMA) (Gallego et al., 2022), planning, and goal selection

(HC, PFC) (Stoianov et al., 2016, 2018; Pezzulo et al., 2019).

Motor control operated here in an inner belief space belonging

to the joint angles domain, which is generally suboptimal in the

external Cartesian space. Although a kinematic transformation was

implicitly performed by the VAE, we assumed that neural activity in

the PPC encodes generalized beliefs over targets and body only in a

motor-related domain; however, neural data suggest that neurons

in the motor cortex encode motor trajectories also in extrinsic

coordinates (Cohen and Andersen, 2002; Adams et al., 2013), and

a more realistic model should include representations encoding

states in both intrinsic and extrinsic reference frames. A functional

correlate of the motor cortex should represent future states—which

were defined here implicitly in the intention prediction errors

and dynamics functions—and transform desired trajectories from

Cartesian coordinates to proprioceptive predictions in the intrinsic

state-space. This transformation is different from Optimal Control

planning since the optimization of a classical inverse model reduces

to a more manageable inference problem.

Since our focus was on the theoretical introduction of

intentionality in Active Inference, every analysis was only partially

characterized by a simple reaching task. However, fundamental

properties of the physical model, including geometry, mass, and

friction, strongly influence the resulting motion dynamics—hence

the entire inferential process. This implementation does not adopt

other important neural and biomechanical specificities such as

signal delay and joint friction (Wolpert and Flanagan, 2016),

and just partially covers the three main domains of sensorimotor

learning through a predictive forward control; for example, it

does not fully include reactive, stimuli-driven control such as

obstacle avoidance, although we showed that it can successfully

perform static and dynamic tasks. However, it could be easily

extended to accommodate additional sensory modalities—e.g.,

tactile sensations—with rich generative models such as the VAE

implemented here. Further planned computational analyses will

use a richer belief space, a more realistic physical arm model, and

additional actuators, and expand the complexity of the intention

functions to investigate the capacity of the theory to explain in-

depth neural levels, cognitive, and kinematic phenomena related

to motor learning, motion perception, motor planning, and so

on. Planned future studies with a more articulated agent will also

challenge the theory at the behavioral and neural level against

other empirical findings regarding movement preparation and

motor control, in either delayed or direct response settings. For

example, we will test the model for stimulus-stimulus congruency

and stimulus-response compatibility effects (Kornblum et al.,

1990). As for the former, it is intuitive that a greater sensory
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dimension overlap predicts faster target-belief convergence—thus

faster intention setting. Less intuitive is that stimulus-response

compatibility effects should emerge due to differences in the

dynamic transition from one belief state to another in the

proprioceptive domain. For example, a belief over the effector

state should change more, requiring more time to converge when

reaching a contralateral position than an ipsilateral one.

Although we considered an Active Inference model with

just a single layer of intentions, the structure represented in

Figure 2 could be scaled hierarchically and intermediate goals

could be considered between high-level intentions and low-

level sensory generative models, e.g., by combining discrete

and continuous Active Inference for planning and movement

execution (Friston et al., 2017a,b; Parr et al., 2020; Sajid et al.,

2021). According to the free energy principle, the agent will

then choose goals and subgoals and rely on specific sensory

modalities such that free energy is minimized at every hierarchical

level based on prediction errors coming from the level below.

This formalization will provide an explicit basis for motor

planning, including tasks like object manipulation. Indeed,

although the current implementation performs well on spatial

tasks like reaching in a dynamically changing environment, it

cannot implement composite goals which the brain needs to

handle. On the other hand, an agent that can encode higher-

level goals in a discrete domain and infer policies based on

the expected free energy will be able to dynamically modify

its behavior and react to environmental changes. An extended

implementation of this kind—showing the interplay between

discrete goals and continuous intentions—will be the subject of

future work.
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