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In this study, we investigate a new neural network method to solve Volterra and

Fredholm integral equations based on the sine-cosine basis function and extreme

learning machine (ELM) algorithm. Considering the ELM algorithm, sine-cosine

basis functions, and several classes of integral equations, the improved model

is designed. The novel neural network model consists of an input layer, a

hidden layer, and an output layer, in which the hidden layer is eliminated by

utilizing the sine-cosine basis function. Meanwhile, by using the characteristics

of the ELM algorithm that the hidden layer biases and the input weights of the

input and hidden layers are fully automatically implemented without iterative

tuning, we can greatly reduce the model complexity and improve the calculation

speed. Furthermore, the problem of finding network parameters is converted

into solving a set of linear equations. One advantage of this method is that not

only we can obtain good numerical solutions for the first- and second-kind

Volterra integral equations but also we can obtain acceptable solutions for

the first- and second-kind Fredholm integral equations and Volterra–Fredholm

integral equations. Another advantage is that the improved algorithm provides the

approximate solution of several kinds of linear integral equations in closed form

(i.e., continuous and di�erentiable). Thus, we can obtain the solution at any point.

Several numerical experiments are performed to solve various types of integral

equations for illustrating the reliability and e�ciency of the proposed method.

Experimental results verify that the proposed method can achieve a very high

accuracy and strong generalization ability.

KEYWORDS

Volterra-Fredholm integral equations, approximate solutions, neural network algorithm,

sine-cosine basis function, extreme learning machine

1. Introduction

Volterra and Fredholm integral equations have many applications in natural sciences

and engineering. A linear phenomenon appearing in many applications in scientific fields

can be modeled by linear integral equations (Abdou, 2002; Isaacson and Kirby, 2011). For

example, as mentioned by Lima and Buckwar (2015), a class of integro-differential equations,

known as neural field equations, describes the large-scale dynamics of spatially structured
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networks of neurons. These equations are widely used in the

field of neuroscience and robotics, and they also play a crucial

role in cognitive robotics. The reason is that the architecture of

autonomous robots, which are able to interact with other agents

in dealing with a mutual task, is strongly inspired by the processing

principles and the neuronal circuitry in the primate brain.

This study aims to consider several kinds of linear integral

equations. The general form of linear integral equations is defined

as follows:

ǫy(x)+λ

∫ b

a
k1(x, t)y(t)dt+µ

∫ x

a
k2(x, t)y(t)dt = g(x), x ∈ [a, b],

(1)

Where the functions k1(x, t), k2(x, t), and g(x) are known, but

y(x) is the unknown function that will be determined; a and b are

constants; and ǫ, λ and µ are parameters. Notably, we have

(i). Equation (1) is called linear Fredholm integral equation of the

first kind if ǫ,µ = 0 and λ = 1.

(ii). Equation (1) is called linear Volterra integral equation of the

first kind if ǫ, λ = 0 and µ = 1.

(iii). Equation (1) is called linear Fredholm integral equation of the

second kind if µ = 0 and ǫ, λ = 1.

(iv). Equation (1) is called linear Volterra integral equation of the

second kind if λ = 0 and ǫ,µ = 1.

(v). Equation (1) is called linear Volterra–Fredholm integral

equation if µ, ǫ, λ = 1.

Many methods for numerical solutions of Volterra integral

equations, Fredholm integral equations, and Volterra-Fredholm

integral equations have been presented in recent years. Orthogonal

polynomials (e.g., wavelets Maleknejad and Mirzaee, 2005,

Bernstein Mandal and Bhattacharya, 2007, Chebyshev Dastjerdi

and Ghaini, 2012) were proposed for solving integral equations.

The Taylor collocation method (Wang and Wang, 2014), Lagrange

collocation method (Wang and Wang, 2013; Nemati, 2015), and

Fibonacci collocation method (Mirzaee and Hoseini, 2016) were

effective and convenient for solving integral equations. The Sinc-

collocation method (Rashidinia and Zarebnia, 2007) and Galerkin

method (Saberi-Nadjafi et al., 2012) also give good performance

in solving Volterra integral equation problems. However, most

of these traditional methods have the following disadvantage:

they provide the solution, in the form of an array, at specific

preassigned mesh points in the domain, and they need an

additional interpolation procedure to yield the solution for the

whole domain. In order to have an accurate solution, one either has

to increase the order of the method or decrease the step size. This,

however, increases the computational cost.

The neural network has excellent application potential in many

fields (Habib and Qureshi, 2022; Li and Ying, 2022) owing to

its universal function approximation capabilities (Hou and Han,

2012; Hou et al., 2017, 2018). In this case, the neural network is

widely used as an effective tool for solving differential equations,

integral equations, and integro–differential equations (Mall and

Chakraverty, 2014, 2016; Jafarian et al., 2017; Pakdaman et al.,

2017; Zuniga-Aguilar et al., 2017; Rostami and Jafarian, 2018).

Golbabai and Seifollahi presented radial basis function networks

for solving linear Fredholm and Volterra integral equations of the

second kind (Golbabai and Seifollahi, 2006), and they solved a

system of nonlinear integral equations (Golbabai and Seifollahi,

2009). Effati and Buzhabadia presented multilayer perceptron

networks for solving Fredholm integral equations of the second

kind (Effati and Buzhabadi, 2012). Jafarian and Nia proposed

a feedback neural network method for solving linear Fredholm

and Volterra integral equations of the second kind (Jafarian

and Nia, 2013a,b). Jafarian presented artificial neural networks-

based modeling for solving the Volterra integral equations system

(Jafarian et al., 2015). However, the traditional neural network

algorithms have some problems, such as over-fitting, difficulty to

determine hidden layer nodes, optimization of model parameters,

being easily trapped into local minima, slow convergence speed,

and reduction in the learning speed and efficiency of the model

when the input data are large or the network structure is complex

(Huang and Chen, 2008).

Huang et al. (2006a,b) proposed an extreme learning machine

(ELM) algorithm, which is a single-hidden-layer feed-forward

neural network. The ELM algorithm only needs to set the

number of hidden nodes of the network but does not need to

adjust the input weights and bias values, and the output weights

can be determined by the Moore–Penrose generalized inverse

operation. The ELM algorithm provides faster learning speed,

better generalization performance, with least human intervention.

Based on the advantages, the ELM algorithm has been widely

applied to many real-world applications, such as regression

and classification problems (Wong et al., 2018). Many neural

networkmethods based on the improved extreme learningmachine

algorithm for solving ordinary differential equations (Yang et al.,

2018; Lu et al., 2022), partial differential equations (Sun et al.,

2019; Yang et al., 2020), the ruin probabilities of the classical risk

model and the Erlang (2) risk model in Zhou et al. (2019), Lu

et al. (2020), and one-dimensional asset-pricing (Ma et al., 2021)

have been developed. Chen et al. (2020, 2021, 2022) proposed

the trigonometric exponential neural network, Laguerre neural

network, and neural finite element method for ruin probability,

generalized Black–Scholes differential equation, and generalized

Black–Scholes–Merton differential equation. Inspired by these

studies, the motivation of this research is to present the sine-

cosine ELM (SC-ELM) algorithm to solve linear Volterra integral

equations of the first kind, linear Volterra integral equations of

the second kind, linear Fredholm integral equations of the first

kind, linear Fredholm integral equations of the second kind,

and linear Volterra–Fredholm integral equations. In the latest

study, a linear integral equation of the third kind with fixed

singularities in the kernel is studied by Gabbasov and Galimova

(2022), and Volterra integral equations of the first kind on

a bounded interval are considered by Bulatov and Markova

(2022). For more results, we may refer to Din et al. (2022) and

Usta et al. (2022).

In this study, we propose a neural network method based on

the sine-cosine basis function and the improved ELM algorithm

to solve linear integral equations. Specifically, the hidden layer

is eliminated by expanding the input pattern utilizing the sine-

cosine basis function, and this simplifies the calculation to some

extent. Moreover, the improved ELM algorithm can automatically

satisfy the boundary conditions and it transforms the problem
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into solving a linear system, which provides great convenience

for calculation. Furthermore, the closed-form solution by utilizing

this model can be obtained, and the approximate solution

of any point for linear integral equations can be provided

from it.

The remainder of the article is organized as follows. In Section

2, a brief review of the ELM algorithm is provided. In Section

3, a novel neural network method based on the sine-cosine basis

function and ELM algorithm for solving integral equations in the

form of Equation (1) are discussed. In Section 4, we show several

numerical examples to demonstrate the accuracy and the efficiency

of the improved neural network algorithm. In Section 5, concluding

remarks are presented.

2. The ELM algorithm

The ELM algorithm was originated from the single-

hidden-layer feed-forward network (SLFN) and then got

developed into a generalized SLFN algorithm (Huang

and Chen, 2007). The ELM algorithm not only is fully

automatically implemented without iterative tuning but also

tends to the minimum training error. The ELM algorithm

can provide least human intervention, faster learning speed,

and better generalization performance. Therefore, the ELM

algorithm is widely used in classification and regression tasks

(Huang et al., 2012; Cambria and Huang, 2013).

For a data set with N + 1 different training samples (xi, gi) ∈

R × R(i = 0, 1, ...,N), the neural network with M + 1 hidden

neurons is expressed as follows:

oi =

M∑

j=0

βjf (wjxi + bj), i = 0, 1, ...,N, (2)

Where f is the activation function, wj is the input weight of the

j-th hidden layer node, bj is the bias value of the j-th hidden layer

node, and βj is the output weight connecting the j-th hidden layer

node and the output node.

The error function of SLFN is as follows:

e =

N∑

i=0

‖oi − gi‖. (3)

Assuming the error between the output value oi of SLFN and

the exact value gi is zero, the relationship between xi and gi can be

modeled as follows:

M∑

j=0

βjf (wjxi + bj) = gi, i = 0, 1, ...,N, (4)

Where both the input weight wj and the bias value bj are

randomly generated. The equations (4) can be rewritten in the

following matrix form, that is:

Hβ = G, (5)

Where H is the output matrix of the hidden layer, and it is
defined as follows:

H =




f (w0x0 + b0) f (w1x0 + b2) . . . f (wMx0 + bM)

f (w0x1 + b1) f (w1x1 + b2) . . . f (wMx1 + bM)

. . . . . .
. . . . . .

f (w0xN + b1) f (w1xN + b2) . . . f (wMxN + bM)




(N+1)×

(M+1)

,

G =




g0
g1
...

gN


 .

A common minimum norm least-squares solution of the linear

system Equation (5) is calculated by

β̂ = argmin
β

‖Hβ − G‖ = H†G. (6)

3. The proposed method

In this section, we propose a neural network method based on

sine-cosine basis function and extreme learning machine algorithm

to solve linear integral equations. The single-hidden-layer sine-

cosine neural network algorithm consists of three layers: an input

layer, a hidden layer, and an output layer. The unique hidden layer

consists of two parts. The first part uses the cosine basis function as

the basis function and the other part implements the superposition

of the sine basis function. The structure of sine-cosine neural

network method is shown in Figure 1.

FIGURE 1

The structure of sine-cosine neural network method for solving

several kinds of linear integral equations.
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The steps of the sine-cosine neural network method for solving

several kinds of linear integral equations are as follows:

Step 1: Discretize the interval [a, b] into a series of collocation

points � = {a = x0 < x1 < ... < xN = b}, xi = a + b−a
N i, i =

0, 1, ...,N.

Step 2: Construct the approximate solution by using sine-cosine

basis as an activation function, that is

ŷSC-ELM (x) =

M∑

j=0

ajcos
( jπ

b− a
(x− a)

)
+

M∑

j=0

bjsin
( jπ

b− a
(x− a)

)
.

(7)

Step 3: According to different problems and different data sets,

we substitute the trial solution ŷSC-ELM into the Equation (1) to be

solved. Then, we convert this equation into a matrix form:

‖Hβ̂ − G‖ = min
β

‖Hβ − G‖, (8)

Where H = {[haij]N+1,M+1, [hbij]N+1,M+1};β =

(a0, a1, ..., aM , b0, b1, ..., bM)
′
;

haij = ǫcos
(

jπ
b−a

(xi − a)
)
+ λ

∫ b
a k1(xi, t)cos

(
jπ
b−a

(t − a)
)
dt +

µ
∫ xi
a k2(xi, t)cos

(
jπ
b−a

(t − a)
)
dt, i = 0, 1, ...,N, j = 0, 1, ...,M;

hbij = ǫsin
(

jπ
b−a

(xi − a)
)
+ λ

∫ b
a k1(xi, t)sin

(
jπ
b−a

(t − a)
)
dt +

µ
∫ xi
a k2(xi, t)sin

(
jπ
b−a

(t − a)
)
dt, i = 0, 1, ...,N, j = 0, 1, ...,M;

G = (g(x0), g(x1), ..., g(xN))
′
.

Step 4: From the theory of Moore–Penrose generalized inverse

of matrix H, we can obtain the net parameters as

β̂ = H†G = argmin
β

‖Hβ − G‖. (9)

Step 5: Find the connection parameters aj, bj and the number

of neurons M with the smallest MSE as the optimal value. The

corresponding optimal number of neurons M and output weights

aj, bj are, respectively, the optimal number of neurons M and

optimal output weights β̂ .

Step 6: Substitute aj, bj, j = 0, 1, 2, . . . ,M into Equation (7) to

get the new numerical solution.

Some advantages of the single-layer sine-cosine neural network

method for solving integral equations are as follows:

(i) The hidden layer is eliminated by expanding the input pattern

using the sine-cosine basis function.

(ii) The sine-cosine neural network algorithm only needs to

determine the weights of the output layer. The problem could

be transformed into a linear system, and the output weights

can be obtained by a simple generalized inverse matrix, which

greatly improves the calculation speed.

(iii) We can obtain the closed-form solution by using this model,

and most important of all, the approximate solution of any

TABLE 1 Comparison between the exact solution and approximate

solution (Example 1).

x Exact
solution

Approximate
solution

Absolute
error

0.0624 0.99805375164 0.99805375126 3.8610e-10

0.0915 0.99581679479 0.99581679410 6.9084e-10

0.1518 0.98850048763 0.98850048732 3.1110e-10

0.2410 0.97109978660 0.97109978647 1.2768e-10

0.3604 0.93575583912 0.93575583904 7.4031e-11

0.5252 0.86522368172 0.86522368169 2.7006e-11

0.6395 0.80239425533 0.80239425500 3.2675e-10

0.7590 0.72552456965 0.72552456924 4.1422e-10

0.8482 0.66133438071 0.66133438024 4.7606e-10

0.9084 0.61500816934 0.61500816901 3.3012e-10

0.9348 0.59397933431 0.59397933361 6.9796e-10

A B

FIGURE 2

(A) Comparison between exact and SC-ELM solutions for Example 1. (B) Errors of Example 1.
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point for linear integral equations can be given from it. It

provides a good method for solving integral equations.

4. Numerical experiments

In this section, some numerical experiments are performed

to demonstrate the reliability and powerfulness of the improved

neural network algorithm. The sine-cosine neural network method

based on the sine-cosine basis function and ELM algorithm is

applied to solve the linear Volterra integral equations of the first

kind, linear Volterra integral equations of the second kind, linear

Fredholm integral equations of the first kind, linear Fredholm

integral equations of the second kind, and linear Volterra–

Fredholm integral equations.

The algorithm is evaluated with MATLAB R2021a running in

an Intel Xeon Gold 6226R CPUwith 64.0GB RAM. The training set

is obtained by taking points at equal intervals, and the testing set is

randomly selected. The validation set is the set of midpoints V =

TABLE 2 Comparison between the SC-ELMmethod and the LS-SVR

method (Example 2).

x LS-SVR in Guo et al. (2012) SC-ELM

0.1 7.4597e-08 6.8246e-10

0.2 2.7590e-08 3.7957e-10

0.3 5.1917e-09 3.2404e-10

0.4 2.3898e-07 1.6271e-10

0.5 2.4981e-07 9.4236e-11

0.6 3.8031e-08 4.6072e-11

0.7 2.3423e-07 1.9703e-10

0.8 5.2083e-08 2.3283e-10

0.9 2.4366e-07 3.1284e-10

{vi|vi = (xi + xi+1)/2, i = 0, 1, ...,N}, where {xi}
N
i=0 are training

points in the following studies. We use mean square error (MSE),

absolute error (AE), mean absolute error (MAE) and root mean

square error (RMSE) to measure the error of numerical solution.

They can be defined as follows:

MSE =
1

N + 1

N∑

i=0

(y(xi)− ŷ(xi))
2,

AE = |y(xi)− ŷ(xi)|,

RMSE =

[
1

N + 1

N∑

i=0

(y(xi)− ŷ(xi))
2

] 1
2

,

(10)

Where y(xi) denote the exact solution and ŷ(xi) represent the

approximate solution obtained by the proposed algorithm. Note

TABLE 3 Comparison between exact solution and approximate solution

(Example 2).

x Exact
solution

Approximate
solution

Absolute
error

0.0624 0.93950700882 0.93950703293 2.4118e–08

0.0915 0.91256131615 0.91256129442 2.1728e–08

0.1518 0.85916009558 0.85916009819 2.6073e–09

0.2410 0.78584162639 0.78584161623 1.0154e–08

0.3604 0.69739731135 0.69739729287 1.8481e–08

0.5252 0.59143706512 0.59143704802 1.7099e–08

0.6395 0.52755613618 0.52755611864 1.7535e–08

0.7590 0.46813432735 0.46813431582 1.1524e–08

0.8482 0.42818497165 0.42818496663 5.0275e–09

0.9084 0.40316877830 0.40316880212 2.3823e–08

0.9348 0.39266439056 0.39266439284 2.2803e–09

A B

FIGURE 3

(A) Comparison between exact and SC-ELM solutions for Example 2. (B) Errors of Example 2.

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1120516
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fncom.2023.1120516

A B

FIGURE 4

(A) Comparison between exact and SC-ELM solutions for Example 3. (B) Errors of Example 3.

that wj = jπ/(b − a) and bj = −jπa/(b − a)(j = 0, 1, 2, ...,M)

are selected in our proposed method. Moreover, the number M of

hidden neurons that results in minimum mean squared error on

the validation set can be selected.

4.1. Example 1

Consider linear Volterra integral equation of the second kind

(Guo et al., 2012) as

f (x)+

∫ x

0
(x− t)f (t)dt = 1, x ∈ [0, 1], (11)

The analytical solution is f (x) = cos(x).

We train our proposed neural network for 50 equidistant

points in the given interval [0, 1] with the first 12 sine-cosine

basis functions. Comparison between the exact solution and the

approximate solution via our improved neural network algorithm

is depicted in Figure 2A, and the plot of the error function between

them is cited in Figure 2B. As shown in the figures, the mean

squared error is 1.3399 × 10−19, and the maximum absolute error

is approximately 7.4910× 10−10.

Table 1 incorporates the results of the exact solution and the

approximate solution via our proposed neural network algorithm

for 11 testing points at unequal intervals in the domain [0, 1]. The

absolute errors are listed in Table 1, in which we observe that the

mean squared error is approximately 1.6789× 10−19. These results

imply that the proposed method has higher accuracy.

Table 2 compares the proposed method with the LS-SVR

method. The maximum absolute error is approximately 6.8246 ×

10−10. Note that in Guo et al. (2012), the maximum absolute

error shown in Guo et al. (2012) Table 5 is approximately

2.4981 × 10−7. The solution accuracy of the proposed algorithm

is higher.

TABLE 4 Comparison between the exact solution and approximate

solution (Example 3).

x Exact
solution

Approximate
solution

Absolute
error

0.0624 0.0624 0.0624007691887 7.6919e–07

0.0915 0.0915 0.0914990435138 9.5649e–07

0.1518 0.1518 0.1517998073669 1.9263e–07

0.2410 0.2410 0.2410008795702 8.7957e–07

0.3604 0.3604 0.3604013108547 1.3109e–06

0.5252 0.5252 0.5251722711564 2.7729e–05

0.6395 0.6395 0.6395114159462 1.1416e–05

0.7590 0.7590 0.7590451800564 4.5180e–05

0.8482 0.8482 0.8480097658921 1.9023e–04

0.9084 0.9084 0.9084802272880 8.0227e–05

0.9348 0.9348 0.9350743334136 2.7433e–04

4.2. Example 2

Consider the linear Volterra integral equation of the first kind

(Masouri et al., 2010) as

∫ x

0
ex+tf (t)dt = xex, x ∈ [0, 1]. (12)

The analytical solution is f (x) = e−x.

A total of 21 equidistant points in the given interval [0, 1] are

used as the training points, and the neural network adapts the first

10 sine-cosine basis functions. Figures 3A, B shows that the exact

solution and the approximate solution are highly consistent. The

maximum absolute error is approximately 1.3959× 10−6.

Table 3 lists the results of the exact solution and the

approximate solution via our proposed neural network algorithm

in the domain [0, 1]. The mean squared error is approximately
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A B

FIGURE 5

(A) Comparison between exact and SC-ELM solutions for Example 4. (B) Errors of Example 4.

2.5781 × 10−16. These findings provide a strong support for the

effectiveness of our proposed method.

4.3. Example 3

We consider linear Fredholm integral equation of the first kind

(Rashed, 2003) as

∫ 1

0
(x2 + t2)

1
2 f (t)dt =

(1+ x2)
3
2 − x3

3
. (13)

The analytical solution is f (x) = x.

This problem is solved by utilizing our proposed neural

network model in the given interval [0, 1]. We consider 21

equidistant points in the domain [0, 1] with the first six sine-

cosine basis functions to train the model. Comparison between

the exact solution and the approximate solution via our improved

neural network algorithm is depicted in Figure 4A, and the error

plot is depicted in Figure 4B. Note that the mean squared error is

4.5915× 10−8 for these training points.

Table 4 incorporates the results of the exact solution and the

approximate solution via our proposed neural network algorithm

for 11 testing points at unequal intervals in the domain [0, 1].

We observe that the maximum absolute error is approximately

2.7433× 10−4. The results show that this new neural network has a

good generalization ability.

4.4. Example 4

We consider the linear Fredholm integral equation of the

second kind (Golbabai and Seifollahi, 2006) as

f (x)+
1

3

∫ 1

0
e2x−

5t
3 f (t)dt = e2x+

1
3 . (14)

The analytical solution is f (x) = e2x.

TABLE 5 Comparison between the exact solution and approximate

solution (Example 4).

x Exact
solution

Approximate
solution

Absolute
error

0.0624 1.13292184603767 1.13292184381566 2.2220e–09

0.0915 1.20081440808083 1.20081441530638 7.2255e–09

0.1518 1.35472705687431 1.35472706011551 3.2412e–09

0.2410 1.61930978530193 1.61930978804438 2.7425e–09

0.3604 2.05607741480638 2.05607741623227 1.4259e–09

0.5252 2.85879440715296 2.85879441106042 3.9075e–09

0.6395 3.59304488356426 3.59304488863783 5.0735e–09

0.7590 4.56308988310901 4.56308989202265 8.9136e–09

0.8482 5.45427660976895 5.45427661875143 8.9825e–09

0.9084 6.15214006907956 6.15214007048970 1.4101e–09

0.9348 6.48570159972151 6.48570160778124 8.0597e–09

The improved neural network algorithm for the linear

Fredholm integral equation of the second kind has been trained

with 50 equidistant points in the given interval [0, 1] with the first

12 sine-cosine basis functions. The approximate solution obtained

by the improved neural network algorithm and the exact solution

are shown in Figure 5A, and the error function is displayed in

Figure 5B. Especially, the mean squared error is 2.3111 × 10−17,

and the maximum absolute error is approximately 9.8998 × 10−9,

which fully demonstrates the superiority of the improved neural

network algorithm.

Finally, Table 5 provides the results of the exact solution and the

approximate solution via our proposed neural network algorithm

for 11 testing points at unequal intervals in the domain [0, 1]. As

shown in Table 5, themean squared error is approximately 3.1391×

Frontiers inComputationalNeuroscience 07 frontiersin.org



Lu et al. 10.3389/fncom.2023.1120516

10−17, which undoubtedly shows the power and effectiveness of the

proposed method.

Table 6 compares the proposed method with RBF networks.

The maxmium absolute error by our proposed method is

approximately 7.7601× 10−9. Note that in Golbabai and Seifollahi

(2006), the maxmium absolute error shown in Golbabai and

Seifollahi (2006), as shown in Table 1, is approximately 6.7698 ×

10−7. The solution accuracy of the proposed algorithm is higher.

4.5. Example 5

Consider the linear Volterra–Fredholm integral equation

(Wang and Wang, 2014) as

y(x)+

∫ 1

0
ex+ty(t)dt −

∫ x

0
ex+ty(t)dt = e−x − ex(x− 1). (15)

The analytical solution is f (x) = e−x.

TABLE 6 Comparison between the SC-ELMmethod and RBF method

(Example 4).

x RBF in Golbabai and Seifollahi
(2006)

SC-ELM

0.1 4.1721e-07 7.7331e-09

0.2 1.6226e-07 7.7601e-09

0.3 9.9728e-08 7.0314e-09

0.4 5.3328e-07 4.9446e-09

0.5 5.1282e-07 1.7010e-09

0.6 8.8658e-08 9.5548e-11

0.7 3.8239e-07 2.1508e-09

0.8 6.7698e-07 4.8329e-09

0.9 3.3687e-07 1.6513e-09

A total of 50 equidistant points in the given interval [0, 1] and

the first 11 sine-cosine basis functions are considered to train the

neural network model. The comparison images and error images

of the exact solution and the approximate solution are listed in

Figures 6A, B, from which we can see that the mean squared error

is 3.3499× 10−18.

Table 7 shows the results of the exact solution and the

approximate solution via the improved ELMmethod for 11 testing

points at unequal intervals in the domain [0, 1]. As shown in the

table, the maximum absolute error is approximately 2.6673× 10−9,

which reveals that the improved neural network algorithm has

higher accuracy and excellent performance.

We compare the RMSE of our proposed method and the Taylor

collocation method in Wang and Wang (2014). From Table 8,

we can see clearly that our algorithm is more accurate than the

TABLE 7 Comparison between the exact solution and approximate

solution (Example 5).

x Exact
solution

Approximate
solution

Absolute
error

0.0624 0.93950700882 0.93950700692 1.8957e-09

0.0915 0.91256131615 0.91256131348 2.6673e-09

0.1518 0.85916009558 0.85916009332 2.2550e-09

0.2410 0.78584162639 0.78584162475 1.6352e-09

0.3604 0.69739731135 0.69739731026 1.0886e-09

0.5252 0.59143706512 0.59143706314 1.9856e-09

0.6395 0.52755613618 0.52755613446 1.7191e-09

0.7590 0.46813432735 0.46813432542 1.9239e-09

0.8482 0.42818497165 0.42818496954 2.1172e-09

0.9084 0.40316877830 0.40316877665 1.6478e-09

0.9348 0.39266439056 0.39266438843 2.1275e-09

A B

FIGURE 6

(A) Comparison between exact and SC-ELM solutions for Example 5. (B) Errors of Example 5.
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algorithm in the Taylor collocation method. As can be seen from

Table 8, when 5, 8, and 9 points are tested, the RMSEs shown

by the Taylor collocation method in Wang and Wang (2014) are

approximately 4.03 × 10−7, 9.50 × 10−7, and 2.15 × 10−5, but

the RMSEs shown by our proposed method are respectively 1.67×

10−9, 1.78× 10−9, and 1.67× 10−9.

4.6. Example 6

We consider linear the Volterra integral equation of the second

kind (Saberi-Nadjafi et al., 2012).

f (x) +

∫ x

0
(8− 2x2)sin(xt)f (t)dt = −2x+ 4sin(x2)(sin2x

− cos2x)+ (sin2x+ cos2x)(1+ 2xcos(x2)). (16)

The analytical solution is f (x) = sin(2x)+ cos(2x).

A total of 21 equidistant discrete points and the first 11 sine-

cosine basis functions are utilized to construct the neural network

model. The comparison images and error images of the exact

solution and the approximate solution are displayed in Figures 7A,

B. It ia not hard to find that the MSE is 4.2000 × 10−16, and this

implies that the proposed algorithm has higher accuracy.

To verify the effectiveness of our proposed method, we

provide the results of the exact solution and the approximate

solution via the improved ELM method for 11 testing points

at unequal intervals in the domain [0, 1], see Table 9. As shown

TABLE 8 RMSE comparison of Example 5.

N Taylor solution SC-ELM solution

5 4.03e-07 1.67e-09

8 9.50e-07 1.78e-09

9 2.15e-05 1.67e-09

in the table, the maximum absolute error is approximately

2.9539× 10−8, which shows that the proposed algorithm has good

generalization ability.

TABLE 9 Comparison between the exact solution and approximate

solution (Example 6).

x Exact
solution

Approximate
solution

Absolute
error

0.0624 1.1166988736914 1.1166988834032 9.7117e-09

0.0915 1.1652824720246 1.1652824868524 1.4828e-08

0.1518 1.2532239237305 1.2532239421393 1.8409e-08

0.2410 1.3496218317010 1.3496218507822 1.9081e-08

0.3604 1.4112638863693 1.4112639090979 2.2729e-08

0.5252 1.3648462234191 1.3648462529585 2.9539e-08

0.6395 1.2454017480945 1.2454017691674 2.1073e-08

0.7590 1.0513783999948 1.0513784162122 1.6217e-08

0.8482 0.8668485498714 0.8668485662364 1.6365e-08

0.9084 0.7263634857982 0.7263635021492 1.6351e-08

0.9348 0.6613122433253 0.6613122627673 1.9442e-08

TABLE 10 Comparison of the di�erent examples of MSE with di�erent

numbers of training points and hidden neurons.

MSE M = 5,
N = 20

M = 10,
N = 20

M = 10,
N = 100

Example 1 5.4420e-11 3.6233e-17 6.9420e-19

Example 2 2.7384e-09 1.9056e-12 6.3433e-17

Example 3 4.5915e-08 4.4380e-05 4.8435e-06

Example 4 2.8418e-08 4.5969e-16 3.8451e-16

Example 5 1.6398e-10 8.0501e-17 2.0969e-18

Example 6 2.8025e-11 4.2000e-16 4.0548e-19

A B

FIGURE 7

(A) Comparison between exact and SC-ELM solutions for Example 6. (B) Errors of Example 6.
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TABLE 11 Execution time of di�erent examples.

Example t

Example 1 0.3317

Example 2 0.1505

Example 3 0.1080

Example 4 0.3391

Example 5 0.6356

Example 6 0.1683

Table 10 compares theMSE of the numerical solutions obtained

by the SC-ELM model when more training points are added

and different numbers of hidden layer neurons are configured.

From these results, it can be seen that the proposed method can

achieve good accuracy. The calculation time of different examples

is listed in Table 11. These data suggest that our method is efficient

and feasible.

5. Conclusion

In this study, the improved neural network algorithm based

on the sine-cosine basis function and extreme learning machine

algorithm has been developed for solving linear integral equations.

The accuracy of the improved neural network has been checked by

solving a linear Volterra integral equation of the first kind, a linear

Volterra integral equation of the second kind, a linear Fredholm

integral equation of the first kind, a linear Fredholm integral

equation of the second kind, and a linear Volterra-Fredholm

integral equation. The experimental results of the improved ELM

approach with different types of integral equations show that the

simulation results are close to the exact results. Therefore, the

proposed model is very precise and could be a good tool for solving

linear integral equations.

Data availability statement

The original contributions presented in the study are included

in the article/supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Acknowledgments

The authors sincerely thank all the reviewers and the editor for

their careful reading and valuable comments, which improved the

quality of this study.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Abdou, M. A. (2002). Fredholm-Volterra integral equation of the
first kind and contact problem. Appl. Math. Comput. 125, 177–193.
doi: 10.1016/S0096-3003(00)00118-1

Bulatov, M. V., and Markova, E. V. (2022). Collocation-variational approaches to
the solution to volterra integral equations of the first kind. Comput. Math. Math. Phys.
62, 98–105. doi: 10.1134/S0965542522010055

Cambria, E., and Huang, G. B. (2013). Extreme learning machine: trends and
controversies. IEEE Intell. Syst. 28, 30–59. doi: 10.1109/MIS.2013.140

Chen, Y., Wei, L., Cao, S., Liu, F., Yang, Y., and Cheng, Y. (2022). Numerical solving
for generalized Black-Scholes-Merton model with neural finite element method. Digit.
Signal Process. 131, 103757. doi: 10.1016/j.dsp.2022.103757

Chen, Y., Yi, C., Xie, X., Hou, M., and Cheng, Y. (2020). Solution of ruin probability
for continuous time model based on block trigonometric exponential neural network.
Symmetry 12, 876. doi: 10.3390/sym12060876

Chen, Y., Yu, H., Meng, X., Xie, X., Hou, M., and Chevallier, J. (2021). Numerical
solving of the generalized Black-Scholes differential equation using Laguerre neural
network. Digit. Signal Process. 112, 103003. doi: 10.1016/j.dsp.2021.103003

Dastjerdi, H. L., and Ghaini, F. M. M. (2012). Numerical solution of Volterra-
Fredholm integral equations by moving least square method and Chebyshev
polynomials. Appl. Math. Model 36, 3283–3288. doi: 10.1016/j.apm.2011.10.005

Din, Z. U., Islam, S. U., and Zaman, S. (2022). Meshless procedure for highly
oscillatory kernel based one-dimensional volterra integral equations. J. Comput. Appl.
Math. 413, 114360. doi: 10.1016/j.cam.2022.114360

Effati, S., and Buzhabadi, R. (2012). A neural network approach for solving
Fredholm integral equations of the second kind. Neural Comput. Appl. 21, 843–852.
doi: 10.1007/s00521-010-0489-y

Gabbasov, N. S., and Galimova, Z. K. (2022). On numerical solution of one class
of integral equations of the third kind. Comput. Math. Math. Phys. 62, 316–324.
doi: 10.1134/S0965542522020075

Golbabai, A., and Seifollahi, S. (2006). Numerical solution of the second kind
integral equations using radial basis function networks. Appl. Math. Comput. 174,
877–883. doi: 10.1016/j.amc.2005.05.034

Golbabai, A., and Seifollahi, S. (2009). Solving a system of nonlinear
integral equations by an RBF network. Comput. Math. Appl. 57, 1651–1658.
doi: 10.1016/j.camwa.2009.03.038

Guo, X. C., Wu, C. G., Marchese, M., and Liang, Y. C. (2012). LS-SVR-
based solving Volterra integral equations. Appl. Math. Comput. 218, 11404–11409.
doi: 10.1016/j.amc.2012.05.028

Habib, G., and Qureshi, S. (2022). Global Average Pooling convolutional
neural network with novel NNLU activation function and HYBRID

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1120516
https://doi.org/10.1016/S0096-3003(00)00118-1
https://doi.org/10.1134/S0965542522010055
https://doi.org/10.1109/MIS.2013.140
https://doi.org/10.1016/j.dsp.2022.103757
https://doi.org/10.3390/sym12060876
https://doi.org/10.1016/j.dsp.2021.103003
https://doi.org/10.1016/j.apm.2011.10.005
https://doi.org/10.1016/j.cam.2022.114360
https://doi.org/10.1007/s00521-010-0489-y
https://doi.org/10.1134/S0965542522020075
https://doi.org/10.1016/j.amc.2005.05.034
https://doi.org/10.1016/j.camwa.2009.03.038
https://doi.org/10.1016/j.amc.2012.05.028
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fncom.2023.1120516

parallelism. Front. Comput. Neurosci. 16, 1004988. doi: 10.3389/fncom.2022.10
04988

Hou, M., and Han, X. (2012). Multivariate numerical approximation using
constructive L2(R) RBF neural network. Neural Comput. Appl. 21, 25–34.
doi: 10.1007/s00521-011-0604-8

Hou, M., Liu, T., Yang, Y., Zhu, H., Liu, H., Yuan, X., et al. (2017). A new hybrid
constructive neural network method for impacting and its application on tungsten rice
prediction. Appl. Intell. 47, 28–43. doi: 10.1007/s10489-016-0882-z

Hou,M., Yang, Y., Liu, T., and Peng,W. (2018). Forecasting time series with optimal
neural networks using multi-objective optimization algorithm based on AICc. Front.
Comput. Sci. 12, 1261–1263. doi: 10.1007/s11704-018-8095-8

Huang, G. B., and Chen, L. (2007). Letters: Convex incremental extreme learning
machine. Neurocomputing 70, 3056–3062. doi: 10.1016/j.neucom.2007.02.009

Huang, G. B., and Chen, L. (2008). Enhanced random search based
incremental extreme learning machine. Neurocomputing 71, 3460–3468.
doi: 10.1016/j.neucom.2007.10.008

Huang, G. B., Chen, L., and Siew, C. K. (2006a). Universal approximation using
incremental constructive feedforward networks with random hidden nodes. IEEE
Trans. Neural Netw. 17, 879–892. doi: 10.1109/TNN.2006.875977

Huang, G. B., Zhou, H., Ding, X., and Zhang, R. (2012). Extreme learning machine
for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. B Cybern.
42, 513–529. doi: 10.1109/TSMCB.2011.2168604

Huang, G. B., Zhu, Q. Y., and Siew, C. K. (2006b). Extreme learningmachine: theory
and applications. Neurocomputing 70, 489–501. doi: 10.1016/j.neucom.2005.12.126

Isaacson, S. A., and Kirby, R. M. (2011). Numerical solution of linear Volterra
integral equations of the second kind with sharp gradients. J. Comput. Appl. Math. 235,
4283–4301. doi: 10.1016/j.cam.2011.03.029

Jafarian, A., Measoomy, S., and Abbasbandy, S. (2015). Artificial neural networks
based modeling for solving Volterra integral equations system. Appl. Soft. Comput. 27,
391–398. doi: 10.1016/j.asoc.2014.10.036

Jafarian, A., Mokhtarpour, M., and Baleanu, D. (2017). Artificial neural network
approach for a class of fractional ordinary differential equation. Neural Comput. Appl.
28, 765–773. doi: 10.1007/s00521-015-2104-8

Jafarian, A., and Nia, S. M. (2013a). Feedback neural network method for solving
linear Volterra integral equations of the second kind. Int. J. Math. Model. Numer.
Optim. 4, 225–237. doi: 10.1504/IJMMNO.2013.056531

Jafarian, A., and Nia, S. M. (2013b). Using feed-back neural network method for
solving linear Fredholm integral equations of the second kind. J. Hyperstruct 2, 53–71.

Li, Y. F., and Ying, H. (2022). Disrupted visual input unveils the computational
details of artificial neural networks for face perception. Front. Comput. Neurosci. 16,
1054421. doi: 10.3389/fncom.2022.1054421

Lima, P. M., and Buckwar, E. (2015). Numerical solution of the neural field
equation in the two-dimensional case. SIAM J. Sci. Comput. 37, B962-B979.
doi: 10.1137/15M1022562

Lu, Y., Chen, G., Yin, Q., Sun, H., and Hou, M. (2020). Solving the ruin probabilities
of some risk models with Legendre neural network algorithm. Digit. Signal Process. 99,
102634. doi: 10.1016/j.dsp.2019.102634

Lu, Y., Weng, F., and Sun, H. (2022). Numerical solution for high-order
ordinary differential equations using H-ELM algorithm. Eng. Comput. 39, 2781–2801.
doi: 10.1108/EC-11-2021-0683

Ma, M., Zheng, L., and Yang, J. (2021). A novel improved trigonometric
neural network algorithm for solving price-dividend functions of continuous
time one-dimensional asset-pricing models. Neurocomputing 435, 151–161.
doi: 10.1016/j.neucom.2021.01.012

Maleknejad, K., and Mirzaee, F. (2005). Using rationalized Haar wavelet
for solving linear integral equations. Appl. Math. Comput. 160, 579–587.
doi: 10.1016/j.amc.2003.11.036

Mall, S., and Chakraverty, S. (2014). Chebyshev neural network based model
for solving Lane-Emden type equations. Appl. Math. Comput. 247, 100–114.
doi: 10.1016/j.amc.2014.08.085

Mall, S., and Chakraverty, S. (2016). Application of Legendre neural network
for solving ordinary differential equations. Appl. Soft. Comput. 43, 347–356.
doi: 10.1016/j.asoc.2015.10.069

Mandal, B. N., and Bhattacharya, S. (2007). Numerical solution of some classes of
integral equations using Bernstein polynomials. Appl. Math. Comput. 190, 1707–1716.
doi: 10.1016/j.amc.2007.02.058

Masouri, Z., Babolian, E., and Hatamzadeh-Varmazyar, S. (2010). An expansion-
iterative method for numerically solving Volterra integral equation of the first kind.
Comput. Math. Appl. 59, 1491–1499. doi: 10.1016/j.camwa.2009.11.004

Mirzaee, F., and Hoseini, S. F. (2016). Application of Fibonacci collocation method
for solving Volterra-Fredholm integral equations. Appl. Math. Comput. 273, 637–644.
doi: 10.1016/j.amc.2015.10.035

Nemati, S. (2015). Numerical solution of Volterra-Fredholm integral equations
using Legendre collocation method. J. Comput. Appl. Math. 278, 29–36.
doi: 10.1016/j.cam.2014.09.030

Pakdaman, M., Ahmadian, A., Effati, S., Salahshour, S., and Baleanu, D. (2017).
Solving differential equations of fractional order using an optimization technique
based on training artificial neural network. Appl. Math. Comput. 293, 81–95.
doi: 10.1016/j.amc.2016.07.021

Rashed, M. T. (2003). Numerical solution of the integral equations of the first kind.
Appl. Math. Comput. 145, 413–420. doi: 10.1016/S0096-3003(02)00497-6

Rashidinia, J., and Zarebnia, M. (2007). Solution of Voltera integral
equation by the Sinc-collection method. J. Comput. Appl. Math. 206, 801–813.
doi: 10.1016/j.cam.2006.08.036

Rostami, F., and Jafarian, A. (2018). A new artificial neural network structure for
solving high-order linear fractional differential equations. Int. J. Comput. Math. 95,
528–539. doi: 10.1080/00207160.2017.1291932

Saberi-Nadjafi, J., Mehrabinezhad, M., and Akbari, H. (2012). Solving Volterra
integral equations of the second kind bywavelet-Galerkin scheme.Comput.Math. Appl.
63, 1536–1547. doi: 10.1016/j.camwa.2012.03.043

Sun, H., Hou, M., Yang, Y., Zhang, T., Weng, F., and Han, F. (2019). Solving partial
differential equation based on bernstein neural network and extreme learning machine
algorithm. Neural Process. Lett. 50, 1153–1172. doi: 10.1007/s11063-018-9911-8
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