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Introduction: Deep brain stimulation (DBS) is a promising therapy for treatment-

resistant major depressive disorder (MDD). MDD involves the dysfunction of a

brain network that can exhibit complex nonlinear neural dynamics in multiple

frequency bands. However, current open-loop and responsive DBS methods

cannot track the complexmultiband neural dynamics inMDD, leading to imprecise

regulation of symptoms, variable treatment e�ects among patients, and high

battery power consumption.

Methods: Here, we develop a closed-loop brain-computer interface (BCI) system

of predictive neuromodulation for treating MDD. We first use a biophysically

plausible ventral anterior cingulate cortex (vACC)-dorsolateral prefrontal cortex

(dlPFC) neural mass model of MDD to simulate nonlinear and multiband neural

dynamics in response to DBS. We then use o	ine system identification to

build a dynamic model that predicts the DBS e�ect on neural activity. We next

use the o	ine identified model to design an online BCI system of predictive

neuromodulation. The online BCI system consists of a dynamic brain state

estimator and a model predictive controller. The brain state estimator estimates

the MDD brain state from the history of neural activity and previously delivered

DBS patterns. The predictive controller takes the estimated MDD brain state as the

feedback signal and optimally adjusts DBS to regulate the MDD neural dynamics

to therapeutic targets. We use the vACC-dlPFC neural mass model as a simulation

testbed to test the BCI system and compare it with state-of-the-art open-loop

and responsive DBS treatments of MDD.

Results: We demonstrate that our dynamic model accurately predicts nonlinear

and multiband neural activity. Consequently, the predictive neuromodulation

system accurately regulates the neural dynamics in MDD, resulting in significantly

smaller control errors and lower DBS battery power consumption than open-loop

and responsive DBS.

Discussion: Our results have implications for developing future precisely-tailored

clinical closed-loop DBS treatments for MDD.

KEYWORDS

closed-loop neuromodulation, deep brain stimulation, brain-computer interface, major
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1. Introduction

Major depressive disorder (MDD) is one of the most disabling
and costly neuropsychiatric disorders. The global prevalence of
MDD is estimated to be 163 million (James et al., 2018). Moreover,
more than 30% of MDD patients are treatment-resistant, meaning
they do not respond to medication or psychotherapy (Rush et al.,
2006;Mrazek et al., 2014). The total global annual economic burden
of treatment-resistant MDD is estimated at over 900 billion US
dollars based on patient-per-year cost (Mrazek et al., 2014). Deep
brain stimulation (DBS) is a promising therapy for treatment-
resistant MDD (Dandekar et al., 2018; Bergfeld et al., 2022; Fenoy
et al., 2022; Figee et al., 2022; Sheth et al., 2022). DBS works
by surgically implanting an electrode into a specific brain region
and delivering electrical stimulation pulses through the electrode
to regulate abnormal neural activity and thus alleviating MDD
symptoms. Several DBS targets have been proposed for MDD, e.g.,
the subcallosal cingulate gyrus (SCG) (Mayberg et al., 2005; Lozano
et al., 2008), the lateral habenula (LHb) (Sartorius et al., 2010), the
ventral anterior internal capsule/ventral striatum (VC/VS) (Malone
et al., 2009), the medial forebrain bundle (MFB) (Schlaepfer et al.,
2013), and the orbitofrontal cortex (OFC) (Rao et al., 2018).

Current DBS treatment forMDD ismostly open-loop, meaning
that a fixed pattern of stimulation is continuously delivered without
guidance from real-time treatment effects. Early open-label studies
have shown that open-loop DBS is promising in alleviating MDD
symptoms (Mayberg et al., 2005; Lozano et al., 2008; Malone et al.,
2009; Sartorius et al., 2010; Schlaepfer et al., 2013). However,
more recent randomized double-blind clinical trials have shown
that open-loop DBS has variable and inconsistent treatment effects
among patients (Dougherty et al., 2015; Bergfeld et al., 2016;
Holtzheimer et al., 2017; Ramasubbu et al., 2020). Moreover,
in addition to inter-subject response heterogeneity (Figee and
Mayberg, 2021), MDD symptoms and DBS effects can change
dynamically over time within a patient depending on the patient’s
psychiatric state (Williams, 2017; Scangos et al., 2021b). Open-loop
DBS delivers fixed stimulation over time and hence does not track
these dynamics. Thus, open-loop DBS can suffer from imprecise
regulation of symptoms, high battery power consumption, and
possible side effects (Scangos et al., 2021a; Figee et al., 2022).

Personalized DBS targeting (Figee et al., 2022) and closed-loop
DBS (Scangos et al., 2021a) have been proposed to improve open-
loop DBS treatment for MDD. Closed-loop DBS monitors neural
activity in real time, then uses a computer program to analyze
the neural activity and determine the DBS pattern that can best
regulate neural activity. Such a closed-loop DBS system constitutes
a brain-computer interface (BCI) system for neuromodulation
where the computer aims to regulate diseased brain states with
therapeutic purposes (Panuccio et al., 2016; Shanechi, 2019). State-
of-the-art clinical closed-loop DBS system acts in a responsive
manner where a single scalar neural biomarker of mood symptoms
is first identified offline. In online neuromodulation, constant
stimulation is triggered whenever the real-time computed neural
biomarker crosses a pre-defined threshold value. Such responsive
DBS has shown promising clinical treatment results for Parkinson’s
disease (Rosin et al., 2011; Little et al., 2013; Priori et al., 2013;

Swann et al., 2018; Gilron et al., 2021) and epilepsy (Ben-
Menachem and Krauss, 2014; Morrell and Halpern, 2016) and has
motivated its recent use in MDD (Scangos et al., 2021a). While
responsive DBS can track MDD neural activity dynamics to some
extent and has been shown to have rapid and sustained treatment
effects in one pilot clinical study (Scangos et al., 2021a), it still
suffers from several limitations.

First, MDD is a complex neuropsychiatric disorder that likely
involves the dysfunction of a distributed network consisting of
multiple limbic and frontal regions (Mayberg, 1997; Drevets,
2001; Ramirez-Mahaluf et al., 2017; Williams, 2017). Moreover,
within the limbic-frontal network, altered neural spectral activity
at different frequency bands—especially the θ band (3–7 Hz) and
β + low γ band (30–50 Hz)—has been observed in different mood
symptom states (Sani et al., 2018; Bijanzadeh et al., 2022; Xiao et al.,
2023) and after DBS (Rao et al., 2018; Smart et al., 2018; Smith et al.,
2022). This means that using a scalar neural biomarker computed
from a single brain site and a single frequency band (Scangos et al.,
2021a) may not be sufficient for achieving precise MDD symptom
regulation. Second, prior studies have shown that the neural activity
in response to stimulation is dynamic (Bolus et al., 2018, 2021;
Crowther et al., 2019; Stiso et al., 2019; Yang et al., 2021b), meaning
that the present stimulation affects not only the present neural
activity but also the future temporal evolution of neural activity.
The neural responses to stimulation are also state-dependent and
likely to be non-linear for MDD (Scangos et al., 2021a). This
suggests that the simple threshold-crossing strategy in responsive
DBS may not be optimal in regulating the non-linear dynamic
MDD-related neural activity. Third, depending on the pre-defined
threshold value, responsive DBSmay be frequently triggered, which
still consumes much battery power and reduces battery life.

More advanced predictive neuromodulation methods have
been proposed and tested in simulations to address dynamic
neural responses in the context of Parkinson’s disease (Santaniello
et al., 2010; Liu et al., 2011; Su et al., 2019; Zhu et al., 2021)
and epilepsy (Ehrens et al., 2015; Nagaraj et al., 2017). Such
methods first use offline system identification to build a dynamic
model that quantifies the stimulation effect on neural activity
and then use the model to design an online feedback controller
such as a proportional-integral (PI) controller to regulate neural
activity (Su et al., 2019; Zhu et al., 2021). However, these methods
largely regulate neural activity at a single brain site or frequency
band (see Section 4). Our prior work have extended to regulate
neural activity at multiple brain sites and frequency bands using
a linear-quadratic-regulator (LQR) (Yang et al., 2018a, 2021b),
but have only been tested in regulating linear neural dynamics.
Therefore, it remains unknown if predictive neuromodulation
methods can precisely regulate the non-linear and multiband
spectral activity in MDD.

Here, to address the above limitations, we develop a BCI
system of predictive neuromodulation for treating MDD and use a
biophysically plausible non-linear model of MDD as a simulation
testbed to test the system. Within the MDD-related limbic-
frontal network, the reciprocal interaction between the ventral
anterior cingulate cortex (vACC) and the dorsolateral prefrontal
cortex (dlPFC) forms a typified subnetwork that regulates the
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emotion-cognition interaction in MDD (Mayberg, 1997; Fox
et al., 2012). We thus adopt and adjust an established non-
linear vACC-dlPFC neural mass model (Ramirez-Mahaluf et al.,
2017) to simulate the multiband spectral activity in response
to DBS in MDD. The BCI system consists of offline system
identification and online predictive DBS. We first conduct offline
system identification experiments where we use offline data to fit
a dynamic input-output (IO) model that can predict the effect of
DBS (input) on vACC-dlPFC multiband spectral activity (output).
Next, in online neuromodulation experiments, we use the identified
dynamic IO model to design a dynamic brain state estimator and
a model predictive controller (MPC). The brain state estimator
estimates the MDD brain state from the history of spectral activity
and previously delivered DBS. The MPC uses the fitted dynamic
IO model and the estimated MDD brain state to predict the
DBS effects on future spectral activity and adjusts the present
DBS accordingly to regulate the spectral activity to therapeutic
targets with efficient DBS energy. We compare our predictive DBS
method with existing open-loop and responsive DBS using the
vACC-dlPFC neural mass model as the simulation testbed. We
show that in offline system identification experiments, the fitted
dynamic IO model can accurately predict future spectral activity
from the history of DBS and spectral activity. We also show
that in online neuromodulation experiments, our predictive DBS
outperforms open-loop and responsive DBS in regulating non-
linear and multibandMDD spectral activity, achieving significantly
smaller control errors and lower DBS energy. Our results suggest
that the proposed BCI system of predictive neuromodulation
provides a promising computational framework for developing
precisely-tailored clinical closed-loop DBS treatments for MDD.

2. Materials and methods

2.1. The cingulo-frontal neural mass model
for MDD

While MDD is a complex neuropsychiatric disorder whose
disease mechanism is still under investigation (Ressler and
Mayberg, 2007; Drysdale et al., 2017; Lin et al., 2022), prior
studies have provided evidence that MDD can involve the
dysfunction of a distributed network consisting of limbic and
frontal regions (Mayberg, 1997; Drevets, 2001; Williams, 2017).
Among this limbic-frontal network, the reciprocal interaction
between the vACC (part of the limbic system) and dlPFC (part
of the frontal cortex) is hypothesized to play a critical role in
regulating the emotion-cognition interaction in MDD (Mayberg,
1997; Fox et al., 2012). Therefore, we adopt an established
computational vACC-dlPFC model (Ramirez-Mahaluf et al., 2017)
to simulate the neural activity in MDD. We especially adjust the
original model such that the output spectral power dynamics are in
line with the most recent findings in spectral signatures of mood
symptoms (Rao et al., 2018; Sani et al., 2018; Smart et al., 2018;
Scangos et al., 2021a; Smith et al., 2022; Xiao et al., 2023). We then
use the adjusted model as a simulation testbed to evaluate offline
dynamic system identification methods (see Section 2.2.2) and
online neuromodulation techniques (see Sections 2.2.3 and 2.2.4).

The vACC-dlPFC model is a neural mass model (Wilson and
Cowan, 1972) that consists of four neural masses—one excitatory
neural mass and one inhibitory neural mass in each region.
The four neural masses are interconnected with excitatory and
inhibitory projections (Figure 1A) and exhibit non-linear neural
dynamics that are described by the following set of ordinary
differential equations
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Here, t is the continuous time variable, rve (t), rvi (t), rde (t),
rdi (t) represent the neural activity of the vACC excitatory
neural mass, vACC inhibitory neural mass, dlPFC excitatory
neural mass, dlPFC inhibitory neural mass, respectively. τe, τi
are the time constants of excitatory and inhibitory masses,
respectively. φe and φi are non-linear neural activation functions.
The rve (t), rvi (t), rde (t), rdi (t) can be considered as the states
of the ordinary differential system. The input to the vACC-
dlPFC model is Idbs(t), which represents the amplitude of a DBS
current pulse train in practice. Idbs(t) is modeled to directly
drive the vACC excitatory neural mass. The input weight gdbs is
included such that Idbs(t) takes values in the practical range of
[0 10]mA.

The model includes several parameters. φi(·) and φe(·) are
non-linear functions that model the non-linear relationships
between input currents and neural activity. Following the original
model (Ramirez-Mahaluf et al., 2017), φe(x) is taken as the
following S-shape function

φe(x) =











0 , x < 0
20x2 , 0 ≤ x ≤ 1
40
√
x− 0.75 , x > 1

and φi(x) = 4φe(x). G’s describe the effective connection
strength between different types of neural masses. Ii and Ie
are the current inputs from neurons external to the network.
The selection of the above parameters is the same as the
original model (Ramirez-Mahaluf et al., 2017, also see Table 1
for details). fD > 1 represent the MDD state. Same as
the original model, We set fD = 1 for a healthy state
and fD = 1.25 for a severe MDD state that requires DBS
treatment.

The original vACC-dlPFC neural mass model focuses on
investigating the temporal dynamics of raw neural activity
rve (t), r

v
i (t), r

d
e (t), r

d
i (t) and demonstrates that the model shows

interesting non-linear dynamics that are consistent with clinical
findings (Ramirez-Mahaluf et al., 2017). However, recent clinical
findings on neural signatures of mood symptoms have shown
that spectral power dynamics—especially in the θ (3–7 Hz) and
β + low γ (13–50 Hz) bands—are key features that are related to
mood symptoms (Rao et al., 2018; Sani et al., 2018; Smart et al.,
2018; Scangos et al., 2021a; Bijanzadeh et al., 2022; Smith et al.,

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1119685
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fang and Yang 10.3389/fncom.2023.1119685

FIGURE 1

The non-linear vACC-dlPFC neural mass model for MDD. (A) Illustration of model construction. Left: There are two neural masses in each region,

one excitatory neural mass, and one inhibitory neural mass. The four neural masses are interconnected with excitatory and inhibitory connections.

DBS is modeled as the input current to the vACC excitatory neural mass. We take the model input as the DBS amplitude. Middle: The aggregate raw

neural activity of each region is shown in the time domain, whose power spectrum in dB scale is shown below. θ and β + γ bands are shaded. Right:

θ and β + γ power time series in each region are computed using a temporal sliding window. We take the model output as the vACC-dlPFC

multiband (θ and β + γ ) spectral power time series in response to DBS input. The traces show example responses to a constant DBS amplitude of 5

mA, which already exhibit dynamic patterns. (B) The power spectrum of vACC and dlPFC neural activity in healthy and MDD states. (C) The

time-averaged vACC-dlPFC multiband spectral response to di�erent DBS amplitudes. The solid line represents the mean value across 50 trials of

simulation, and the gray shaded area represents the 95% confidence interval. Each averaged spectral response changes non-linearly and di�erently

as the DBS amplitude varies.

2022; Xiao et al., 2023). Therefore, we make two adjustments to
the original vACC-dlPFC model such that we can simulate spectral
power dynamics that are in line with the above clinical findings.
Specifically, we include a linear function Te(·) and two stochastic
noise terms ǫv(t) and ǫd(t) so that we can fully excite the spectral
power dynamics of the model (see Table 1). We then take the
output of the model as the θ and β + low γ band powers of the
aggregate neural activity of the vACC neural masses rv(t) = rve (t)+
rvi (t) and the aggregate neural activity of the dlPFC neural masses
rd(t) = rde (t) + rdi (t) (Figure 1A). r

v(t) and rd(t) can be regarded
as the continuous electrical activity recorded by two electrodes

in clinical practice. The final output of the adjusted vACC-dlPFC
neural mass model is



















yvθ (k) = spectrogramθ (r
v(t)),

yvβ+γ (k) = spectrogramβ+γ (r
v(t)),

ydθ (k) = spectrogramθ (r
d(t)),

ydβ+γ (k) = spectrogramβ+γ (r
d(t)),

(2)

where spectrogramθ (r
v(t)) represent computing the spectrogram

of rv(t) by using the standard Welch method (Welch, 1967) with

a sliding time window of 10 s and a step size of 2 s and then
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TABLE 1 Model parameters in the vACC-dlPFC neural mass model.

Parameters Values or functions

Gee 0.09 s

Gie 0.04 s

Gei 0.0275 s

Gii 0.0075 s

Gx 0.025 s

Ie 0.163

Ii 0.1

τe 20 ms

τi 20 ms

gdbs 0.02

Te(x) 4x− 0.6

ǫv(t) N (0.005, 0.002)

ǫd(t) N (0.005, 0.002)

N (µ, σ ) represents a normal distribution of mean µ and standard deviation σ .

taking the total power in the θ band. The new discrete time step
k represents the 2 s time step in computing the spectrogram.
The other spectrogram operations in Equation (2) have similar
meanings. We collect the above spectral power time sequence into
a single output vector

y(k) = [yvθ (k), y
v
β+γ (k), y

d
θ (k), y

d
β+γ (k)]

′
, (3)

where ·′ represents vector and matrix transpose.
To summarize, the complete vACC-dlPFC neural mass model

is described by Equations (1)–(3). We take the model input
as the DBS current Idbs, and take the model output as the
vACC-dlPFC multiband spectral power time series y(k). Different
from the original model, we focus more on spectral power
dynamics instead of the raw neural activity dynamics (see
Section 4).

With the above setup, the vACC-dlPFC model indeed shows
spectral power characteristics that are in line with clinical findings.
Specifically, without DBS treatment (Idbs = 0), the simulated
MDD state (fD = 1.25) has lower vACC θ power and higher
vACC β + γ power than the simulated healthy state (fD = 1)
(Figure 1B, left panel). This is in line with recent findings in
human intracranial electroencephalography (iEEG) studies that
in some patients, cingulate θ power can decrease (Sani et al.,
2018; Bijanzadeh et al., 2022) and β/γ power can increase (Sani
et al., 2018; Bijanzadeh et al., 2022; Xiao et al., 2023) when mood
symptoms becomeworse. This is consistent with the DBS treatment
effects where cingulate θ power can increase (Smith et al., 2022)
and β/γ power can decrease after DBS (i.e., improved mood
symptoms) (Smart et al., 2018). Similar trends hold in the simulated
dlPFC power (Figure 1B, right panel), which is also consistent
with recent findings in human iEEG that in some patients, frontal
θ power can decrease and β/γ power can increase when mood
symptoms become worse (Sani et al., 2018).

To provide a rough idea of the non-linear dynamic input-
output relationship between the DBS Idbs and the spectral activity

y(k), we first fix Idbs at 5 mA and qualitatively investigate the output
spectral activity y(k). Figure 1A shows that the output spectral
activity y(k) already changes dynamically over time with the simple
constant input. We then sweep Idbs from 0 to 10 mA and show
how the spectral power averaged over time changes as functions of
Idbs (Figure 1C). We see that there exist complex and different non-
linear relationships for each element in y(k). The above facts suggest
that precise regulation of the vACC-dlPFC multiband spectral
activity using DBS is a challenging task. Subsequently, we will
show how the current open-loop and responsive DBS methods
fail to precisely regulate vACC-dlPFC multiband spectral activity
and how we design predictive BCI DBS methods that can address
the challenge.

2.2. BCI system design for predictive
neuromodulation

2.2.1. Overview of the BCI system of predictive
neuromodulation

The BCI system aims to use predictive DBS to regulate the
vACC and dlPFC θ and β + γ powers in the MDD state to follow
therapeutic target values with minimum DBS energy (Figure 2A).
The therapeutic target values are taken as the vACC and dlPFC θ

and β + γ powers in the healthy state. Predictive DBS is a closed-
loop neuromodulation system. The real-time observed spectral
activity, i.e., the vACC and dlPFC θ and β + γ power time series,
is fed into a dynamic brain state estimator, which aggregates the
past DBS input and the past vACC and dlPFC θ and β + γ

powers to estimate the present MDD brain state. The dynamic
nature of the brain state estimator helps address the multiband
spectral power dynamics in the vACC-dlPFC neural mass model.
Then, the estimated MDD brain state is used as feedback by a
model predictive controller (MPC) to adjust the DBS amplitude to
optimally regulate the output neural activity to follow therapeutic
targets with minimum DBS energy. The feedback mechanism in
MPC helps address the non-linearity in the vACC-dlPFC neural
mass model.

The closed-loop neuromodulation system constitutes a BCI
where the vACC-dlPFC neural mass model acts as the “MDD
brain” and the dynamic brain state estimator and MPC act as the
“computer”. For simplicity, we use the term “MDDbrain” to denote
the complete vACC-dlPFC neural mass model in Equations (1)–
(3). The MDD brain and the “computer” interacts in closed loop as
described above. The “computer” does not have explicit knowledge
of the ground-truth vACC-dlPFCmodel of theMDD brain. Rather,
the “computer” can only obtain the output neural activity generated
by the MDD brain. To design the dynamic brain state estimator
and MPC, we identify a simplified linear dynamic input-output
(IO) model to describe the IO dynamics of the MDD brain. The
identification of the simplified linear dynamic model based only
on IO datasets collected offline prior to online neuromodulation
(Figures 2B, C).

We note that in our BCI framework in Figure 2, we use a
continuous-time neural mass model (1) to simulate the state of
the “MDD brain”. We use the standard numerical solver (ode45)
in MATLAB to solve the continuous-time neural mass model with
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FIGURE 2

The BCI system of predictive neuromodulation. (A) The online BCI system consists of the dynamic brain state estimator and the model predictive

controller. The vACC-dlPFC neural mass model simulates the MDD brain. The estimator and controller constitute the “computer”. The design of the

estimator and controller depends on a dynamic IO model fitted in o	ine system identification [see (B, C)]. (B) The training process in o	ine dynamic

system identification. (C) The test process in o	ine dynamic system identification. * stands for therapeutic target.

a discretization time step of 0.1ms, which gives discrete solutions
of the neural mass states rd(t), rv(t). Then, we apply the standard
Welch method on the discrete-time neural mass states to compute
the corresponding discrete spectrograms with a discretization time
step of 2 s, which gives the discrete-time spectral power time series
y(k) (see Equation 2). Here, the discretization time step k represents
multiples of 2 s. y(k) is then used as the feedback signal by the
“computer”. We thus design the entire “computer”, i.e., the brain
state estimator and MPC, with the discretization time step k. Such
discretization follows the conventional signal processing steps in
BCIs using real-world continuous-time brain signals (Liu et al.,
2011; Yang et al., 2018a; Su et al., 2019). The overall BCI system
includes offline dynamic system identification and online predictive
DBS as summarized in Algorithm 1. In the next three sections,
we expand on the details of dynamic system identification, the
dynamic brain state estimator design, and the MPC design.

2.2.2. Dynamic system identification
The design of the dynamic brain state estimator and the MPC

requires a dynamic model that describes the IO relationship of the
MDDbrain.Motivated by our prior work (Yang et al., 2018a, 2021b;

Fang and Yang, 2021, 2022), we build a simplified linear state-space
model

{

x(k+ 1) = Ax(k)+ Bu(k)+ w(k),
y(k) = Cxt + v(k).

(4)

Here, k is the discrete time step. x(k) ∈ R
nx is a multi-

dimensional hidden state that stands for the MDD brain state.
u(k) ∈ R represents the amplitude of the input DBS, i.e., the input
Idbs to the MDD brain (see Equation 1). y(k) ∈ R

ny represents the
vACC and dlPFC θ and β+γ power time series, i.e., the multiband
output of the MDD brain (see Equations 2 and 3). w(k) and
v(k) are noise terms that represent modeling errors and external
disturbances. w(k) and v(k) are modeled as white Gaussian noise

with zero mean and a joint covariance matrixE

[(

wi

vj

)

(w
′
i v

′
j)

]

=
(

Q S

S
′
R

)

δij with δij = 1 if i = j and 0 otherwise, E[·] denoting the

expectation operator.
The model parameters in Equation (4) are the matrices

A,B,C,Q, S,R. The model parameters need to be fitted from IO
data. We use a typical dynamic system identification method
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Offline steps (dynamic system identification):

1. Apply a pre-designed input DBS pattern

{u(1), u(2), ..., u(K)} to the MDD brain and simultaneously

collect the output multiband spectral

activity {y(1), y(2), ..., y(K)}. Based on the dataset

{u(1), u(2), ..., u(K); y(1), y(2), ..., y(K)}, use dynamic system

identification algorithms to fit a dynamic IO model

as in Equation (4).

Online steps (online predictive DBS):

Required: therapeutic target trace y∗(k)

For each time step k:

1. Obtain the output spectral activity y(k) from the

MDD brain.

2. Estimate the MDD brain state x(k) using the

Kalman estimator in Equation (5). The Kalman

estimator is designed based on the offline fitted

dynamic IO model.

3. Solve the MPC problem as in Equation (8) for

{vopt(k), ...., vopt(k+ H)}. The MPC solution depends

on the offline fitted dynamic IO model and the

present

brain state estimate computed in step 2.

4: Set u(k) = vopt(k), use u(k) to stimulate the

MDD brain and move to the next time step k+ 1.

End

Algorithm 1. BCI for predictive neuromodulation.

developed in our prior work (Yang et al., 2018a, 2021b). Specifically,
prior to online neuromodulation, we conduct a separate offline
system identification experiment where we apply a pre-designed
DBS pattern {u(1), u(2), ..., u(K)} to the MDD brain and collect
the output spectral activity {y(1), y(2), .., y(K)}. ({·} represents the
collection of variables). The total training time step is denoted by
K. Here, the input DBS pattern is pre-designed to be a random
time-series, where each u(k) is generated by an independent
uniform distribution over [0 10] mA. We then use the well-
known subspace identification method N4SID (Van Overschee and
De Moor, 2012) to fit A,B,C,Q, S,R from the training IO dataset
{u(1), u(2), ..., u(K); y(1), y(2), .., y(K)} (see Figure 2B).

To test the fitted model, we apply a new random
input to the MDD brain and collect the test IO dataset
{u(1), u(2), ..., u(J); y(1), y(2), .., y(J)}. The total test time step
is denoted by J. For each test time step 1 ≤ jtest ≤ J, we evaluate
the fitted model in terms of their ability to use the past and present
input and output data {u(1), u(2), ..., u(jtest); y(1), y(2), .., y(jtest)} to
predict the future spectral activity y(jtest + 1) (see Section 2.3 for
details).

2.2.3. Dynamic brain state estimator
The dynamic brain state estimator aims to use the past and

present input and output data to estimate the present MDD
brain state. The MDD brain state is represented by the hidden
state x(k) in the dynamic IO model (4). From the dynamic IO
model fitted from offline system identification, we can derive a
Kalman estimator to estimate x(k) from the past and present input

and output data {u(1), u(2), ..., u(k); y(1), y(2), .., y(k)}. The Kalman
estimator takes the following recursive form

{

x̂p(k) = Ax̂(k− 1)+ Bu(k− 1),
x̂(k) = x̂p(k)+ L(y(k)− Cx̂p(k)),

(5)

where x̂p(k) is the Kalman prediction of x(k), x̂(k) is the Kalman
estimation of x(k), and L is the Kalman gain. The Kalman gain L

is a function of the model parameters A,C,Q, S,R and is computed
from

L = PC
′
R−1 − PC

′
(CPC

′ + R)−1CPC
′
R−1, (6)

where P is obtained from solving the algebraic Riccati
equation (Bertsekas, 2012) P = APA

′ + Q − (APC
′ + S)(CPC

′ +
R)−1(CPA

′ + S). We note that by plugging the top prediction
equation into the bottom update equation in (5), the Kalman
estimator can also be compactly written as a single recursion
equation for x̂(k)

x̂(k) = Ax̂(k−1)+Bu(k−1)+L(y(k)−C(Ax̂(k−1)+Bu(k−1))).
(7)

2.2.4. Model predictive controller
Although MPC has been widely used in many modern control

applications (Mayne, 2014), its application in neuromodulation has
not drawn asmuch attention as simpler methods such as responsive
control (e.g., Scangos et al., 2021a), PI control (e.g., Su et al., 2019),
and LQR control (e.g., Yang et al., 2018a). MPC has the advantage
of being predictive of future control effects, and can explicitly take
account of safety constraints of input and states. Therefore, MPC is
especially suited for implementing predictive neuromodulation.

Specifically, at each time step k, MPC solves the following
finite-horizon predictive control problem

minimize
{

v(k), ...., v(k+ H)
}

subject to

H
∑

h=1

‖y(k+ h)− y∗(k+ h)‖2 +

λ‖v(k+ h− 1)‖2

z(k+ h+ 1) = Az(k+ h)+ Bv(k+ h),

y(k+ h) = Cz(k+ h),

z(k) = x̂(k), (8)

0 ≤ v(k+ h) ≤ 10,

∀0 ≤ h ≤ H

where λ is a design parameter to balance regulation performance
and energy saving. In the cost function, we aim to adjust the
input variables {v(k), ...., v(k + H)} in the future H time steps for
achieving two goals. First, to regulate the output y(k+ h) to follow
the predefined therapeutic target y∗(k + h) for MDD treatment;
thus we have the first penalty term. Second, to use minimal input
DBS energy for saving the battery power of the DBS device; thus
we have the second penalty term. In the constraints, we have a
dynamic constraint among the control variables {v(k), ...., v(k +
H)} and output variables {y(k), ...., y(k + H)} as specified by our
offline fitted dynamic IO model in Equation (4). z(k + h) is an
intermediate variable that describes the dynamics in predictive
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control. The initial condition at h = 0, i.e., z(k), is taken as
the brain state estimate at time k as obtained from the Kalman
estimator (Equation 7), i.e., z(k) = x̂(k). The use of the dynamic
constraint enables MPC to predict future control effects and thus
optimizes the present and future control variables for achieving
optimal regulation. Finally, the constraint 0 ≤ v(k+ h) ≤ 10
ensures the DBS amplitude is always within the clinically safe range
of [0 10] mA.

It is well-known that theMPC problem (Equation 8) is a convex
optimization problem (Camacho andAlba, 2013). At each time step
k, the MPC problem (Equation 8) is solved by standard convex
optimization methods (Boyd et al., 2004) with λ = 0.01. The
optimal solution gives the present and future control variables
{vopt(k), ...., vopt(k+T)}. We then set the actual DBS amplitude u(k)
at the present time step as the first optimal solution variable vopt(k).
Next, we move to the next time step k + 1, formulate and solve a
new MPC problem, and set u(k + 1) as the first solution variable
vopt(k+ 1) in the new MPC problem. We iterate the above process
till the end of the online neuromodulation process.

2.3. Simulation experiments, performance
measures, and statistical tests

We conduct comprehensive simulation experiments to test the
BCI system, including the offline dynamic system identification and
online predictive DBS methods. All simulations are implemented
in MATLAB2020b. In all experiments, when generating neural
activity, the vACC-dlPFC neural mass model in Equation (1) is
solved by the standard numerical ordinary differential equation
solver ode45.

2.3.1. O	ine dynamic system identification
experiments

In offline dynamic system identification experiments, we run 50
trials of training and test. In each training trial, the total number
of training time step K is set to be 1500. In each test trial, the
total number of test time steps J is set to 1500. The random input
DBS pattern is generated independently in each trial. We fit a
dynamic IO model (4) in the training set. In the test set, for each
test time step k, we test the fitted model in terms of its ability to use
the past and present data {u(1), u(2), ..., u(k); y(1), y(2), .., y(k)} to
predict the future spectral activity y(k+1). To illustrate the dynamic
property of the model, we implement four types of prediction.

1. Only using the DBS input of the present time step, i.e., u(k), to
predict y(k + 1). This prediction is a static prediction without
considering the spectral activity dynamics and can be derived
from a special case of the fitted IO model (4) with A = 0. The
predictor can be written as

ŷ(k+ 1) = CBu(k). (9)

2. Using the history of DBS inputs {u(1), u(2), ..., u(k)} to predict
y(k+ 1). Based on the fitted dynamic IO model 4, the predictor
can be derived as the following forward recursion

{

x̂(k+ 1) = Ax̂(k)+ Bu(k),
ŷ(k+ 1) = Cx̂(k+ 1),

(10)

with initial condition x̂(1) = 0.
3. Using the full history of both DBS inputs and output spectral

activity {u(1), u(2), ..., u(k); y(1), y(2), .., y(k)} to predict y(k+ 1).
Based on the fitted dynamic IO model (4), the Kalman predictor
can be written as the following:



















x̂(k) = Ax̂(k− 1)+ Bu(k− 1)+ L(y(k)
− C(Ax̂(k− 1)+ Bu(k− 1))),

x̂p(k+ 1) = Ax̂(k)+ Bu(k),
ŷ(k+ 1) = Cx̂p(k+ 1),

(11)

with initial condition x̂(1) = 0.
4. We also evaluate a baseline prediction for comparison where we

keep the output of training and test sets the same but randomly
shuffle the time index of the input. We then use the history
of the shuffled input and intact output to predict y(k + 1)
using the Kalman predictor. Since the time indices of the input
are manually shuffled in the modeling and mismatch with the
time indices of the actual output, the prediction is essentially at
random chance. The prediction error in this case thus provides
an upper bound for the other three prediction methods above.

To quantify the offline system identification performance, we
define the normalized prediction error (NPE) in the test set as

NPE =

√

√

√

√

∑J−1
k=0(y(k+ 1)− ŷ(k+ 1))2
∑J−1

k=0(y(k+ 1)− ȳ)2
, (12)

where J = 1, 500 is the total time step in the test set, ŷ(k+ 1) is the
prediction using one of the methods above, ȳ = 1

J

∑J
k=0 y(k+ 1) is

time average. The denominator essentially uses the time average to
predict y(k + 1). Thus, a useful dynamic IO model and prediction
method should result in a NPE that is less than 1. We compare the
NPEs of the four prediction methods across all 50 trials using the
Wilcoxon signed-rank test.

2.3.2. Online neuromodulation experiments
In online neuromodulation experiments, we test different

neuromodulation methods in terms of their ability to regulate
neural activity to track therapeutic targets. The therapeutic target
is usually selected by the user before real-time BCI operation. The
target variables should be selected as the neural features related to
the MDD symptoms. Recent clinical findings have shown a close
relationship between MDD symptoms and vACC-dlPFC spectral
powers (Rao et al., 2018; Scangos et al., 2021a). Therefore, we select
the vACC and dlPFC powers as the target variables, i.e., we aim
to use the BCI to regulate y(k) to follow its target y∗(k). We first
run a set of experiments with constant therapeutic target values, i.e.,
y∗(k) = y∗, which does not change over time. The selection of the
target value y∗ should be related to the desired therapeutic effect.
In our simulations, the target value of each element of y∗ is taken
as the corresponding vACC and dlPFC power value in the healthy
state. The healthy vACC and dlPFC powers are computed by setting
Idbs = 0 and fD = 1 in the vACC-dlPFC neural mass model (1) and
then computing the spectral power as the same way in Equation (2).
These therapeutic target values of each vACC and dlPFC power are
shown as the constant green lines in Figure 3. A single trial of an
online neuromodulation experiment lasts for K = 450 total time
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FIGURE 3

Therapeutic targets selection for vACC and dlPFC spectral activity.

The therapeutic targets for each spectral activity are taken from the

healthy state and shown in green. The light green region in each

panel represents the corresponding ranges of DBS that can regulate

the spectral activity to its corresponding target.

steps. DBS starts at time step 75 (u(k) = 0 for the first 75 time
steps). We compare three neuromodulation methods.

1. Open-loop neuromodulation uopen(k). Open-loop
neuromodulation uses a fixed constant value for the DBS
amplitude and does not change it over time, i.e.,

uopen(k) = U. (13)

In practice, the open-loop DBS amplitude U is determined
by the clinician for each patient via a trial-and-error method.
From Figure 3, we see that for our non-linear MDD brain, there
is no single constant U that can simultaneously regulate the
four output spectral powers to their individual target values.
Therefore, without loss of generality, in each simulation trial,
we choose U randomly from [1,6] mA that covers the range of
amplitudes that can take at least one of the four output spectral
powers to its target value. This range is also consistent with
the typical open-loop DBS amplitude used for treating MDD in
clinical applications (Rao et al., 2018).

2. Closed-loop responsive neuromodulation ures(k). Responsive
neuromodulation works by first defining a scalar neural
biomarker for mood symptoms and then triggering a constant
DBS whenever the neural biomarker crosses a pre-defined
threshold value. Responsive DBS is the state-of-the-art clinical
closed-loop DBS treatment for MDD (Scangos et al., 2021a).
This state-of-the-art responsive neuromodulation method uses
the γ power of a single iEEG channel at a single limbic region as
the scalar neural biomarker (Scangos et al., 2021a). Therefore, in
our simulations, as an example, we choose to use the vACC β+γ

power of the MDD brain as the neural biomarker in responsive
neuromodulation. Accordingly, the pre-defined threshold value
is set as the target value for vACC β + γ power. As a result, the

responsive neuromodulation strategy is

ures(k) =
{

0, yvβ+γ (k) < yv∗β+γ ,

U, yvβ+γ (k) ≥ yv∗β+γ .
(14)

When DBS is triggered, its amplitude is set the same as in the
open-loop case, which is the method used in current clinical
implementation (Scangos et al., 2021a). It is worth noting that
responsive DBS is not predictive because the threshold-crossing
control strategy is not informed by a dynamic IO model and
cannot predict the DBS effects on future spectral activity; thus, it
is a sub-optimal, short-sighted control strategy.

3. Closed-loop predictive neuromodulation upred(k). We
apply Algorithm 1 in this case. Note that the predictive
neuromodulation does not require a manual choice of a neural
biomarker, the automatically estimated MDD brain state x̂(k)
conceptually plays the role of a multi-dimensional neural
biomarker.

In total, we run 100 trials of online neuromodulation
experiments.

To further test our predictive neuromodulation methods, we
run amore challenging set of online neuromodulation experiments.
The simulation setup is the same as above except that the target
values of vACC and dlPFC powers y∗(k) are now allowed to change
over time. Each target value is set as a stair-shape function (see
Section 3.3 for the time-varying targets).

To quantify the online neuromodulation performance, we first
average the controlled output trace at each time step across the 100
trials

ỹ(k) =
∑N

i=1 yi(k)

N
, (15)

where yi(k) is the controlled output at time step k in trial i and
N = 100 is the total number of trials. We then compute the
normalized control error (NCE) over a fixed time window of length
Kc = 10 time steps.

NCE =

√

√

√

√

∑t0+Kc

k=t0
(ỹ(k)− y∗(k))2

∑t0+Kc

k=t0
y∗(k)2

, (16)

where t0 is the ending time step of the initial transition period
after DBS turns on and is chosen as t0 = 100. We then slide
the time window Kc without overlapping till the end of the online
neuromodulation experiments, which gives us a total number
of 35 realizations for NCE. We compare the NCE of the three
neuromodulation methods across all 35 realizations using the
Wilcoxon signed-rank test.

To quantify the battery consumption of different
neuromodulation methods, we compute the input DBS energy (IE)
similarly to the NCE:

IE =
∑t0+Kc

k=t0
ũ(k)2

Kc
. (17)

We similarly compare the IE of the three neuromodulation
methods using the Wilcoxon signed-rank test.
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2.3.3. Simulations for personalized
neuromodulation

Our primary goal is to use simulations to test our predictive
neuromodulation method in a personalized neuromodulation
framework. In this personalized framework, a given MDD subject
is simulated by fixing fD in the vACC-dlPFC neural mass
model (1) because fD is the key parameter in the model that
determines MDD severity. The default value of fD is fixed at
1.25, representing severe MDD. Then, we conduct dynamic system
identification for this specific subject and fit a personalized
linear state-space model (4). Next, we derive a personalized
brain state estimator (7) and a personalized MPC (Equation 8)
from the personalized linear state-space model. We then use
the personalized brain state estimator and personalized MPC to
form the personalized predictive neuromodulation system. We
finally test the personalized predictive neuromodulation system
in the same subject. Many previous closed-loop neuromodulation
methods for PD and epilepsy have also been designed in a
personalized neuromodulation framework (Santaniello et al., 2010;
Liu et al., 2011; Ehrens et al., 2015; Bolus et al., 2018, 2021; Yang
et al., 2018a; Su et al., 2019).

In our primary set of simulations, we use the personalized
neuromodulation framework to test different neuromodulation
methods within a single MDD subject with fD = 1.25.
Subsequently, if not explicitly mentioned, when we mention
predictive neuromodulation, we mean the above personalized
predictive neuromodulation. The results for this set of simulations
are presented in Sections 3.1–3.3.

In an extended set of simulations, at the very beginning of the
personalized neuromodulation framework, we vary the mainMDD
parameter fD to simulate different subjects with different MDD
severity. We then test if our predictive neuromodulation system
can work in these subjects. In the original vACC-dlPFC neural mass
model (Ramirez-Mahaluf et al., 2017), fD = 1.25 represents severe
MDD that needs DBS treatment and fD = 1.15 represents moderate
MDDwhere drug treatment may already be sufficient. Thus, we use
fD = 1.25 as the default MDD severity point and fD = 1.15 as the
lower limit for theMDD severity point that requires DBS treatment.
Accordingly, we define the MDD severity deviation as

MDDseverity deviation = fD − 1.25

1.25− 1.15
× 100%, (18)

which quantifies the percentage deviation of a given subject from
the default subject. In this set of simulations, we test 9 different
subjects where we uniformly vary the MDD severity deviation
from a large range [−100%, 100%] (corresponding to the fD range
[1.15, 1.35]). We test the personalized predictive neuromodulation
system in each subject and evaluate the regulation performance
using the normalized control error (NCE) in Equation (16).
We then use linear correlation analyses to examine if the NCE
of different subjects significantly changes as the MDD severity
deviation changes.

To gain insights into how the fitted personalized model
affects the regulation performance. We investigate two critical
control-theoretic properties of the fitted personalized model, i.e.,
controllability and observability. Specifically, from a control-
theoretic perspective, the effectiveness of the estimator usually

depends on the observability of the fitted model, and the
effectiveness of the controller usually depends on the controllability
of the fitted model (Wang et al., 2017). We compute the
controllability matrix of the fitted linear state space model (4) as

MC = [A, AB, A2B, . . . , Anx−1B], (19)

and quantify the controllability condition of the fitted model as the
inverse condition number ofMC (Aguirre et al., 2018):

κ(MC) =
σmin(MC)

σmax(MC)
, (20)

where σmax (·) and σmin (·) are the maximum and minimum
singular values of a given matrix. A larger κ(MC) corresponds to a
better controllability condition, i.e., the model requires less energy
to realize precise control (Wang et al., 2017). Similarly, we compute
the observability matrix of the fitted linear state space model (4) as

MO = [C, CA, CA2, . . . , CAnx−1]′, (21)

and quantify the observability condition of the fitted model as the
inverse condition number ofMO (Aguirre et al., 2018):

κ(MO) =
σmin(MO)

σmax(MO)
. (22)

Similarly, a larger κ(MO) corresponds to a better observability
condition, i.e., the brain state estimator requires fewer past
neural activity to estimate the present brain state (Aguirre et al.,
2018). Therefore, we compute the κ(MC) and κ(MO) for each
personalized model. We next use linear correlation analyses to
investigate if κ(MC) and κ(MO) significantly correlate with the
MDD severity deviation across subjects. The results for the
extended simulations and controllability/observability analyses are
presented in Section 3.4.

2.3.4. Simulations for nominal neuromodulation
To investigate the robustness of the neuromodulation

system, we test our predictive neuromodulation method in a
more challenging scenario, i.e., a nominal neuromodulation
framework. In this framework, a nominal MDD subject is
first simulated by fixing fD = 1.25 in the vACC-dlPFC neural
mass model (Equation 1). Then, we conduct dynamic system
identification for this nominal subject and fit a nominal linear
state-space model (Equation 4). Next, we derive a nominal brain
state estimator (Equation 7) and a nominal MPC (Equation 8)
from the identified nominal linear state-space model. Together,
we combine the nominal brain state estimator and nominal MPC
to build the nominal predictive neuromodulation system. We
finally test the nominal predictive neuromodulation system in
new subjects with different MDD severity. Different test subjects
are simulated by only varying the key MDD parameter fD while
keeping the rest vACC-dlPFC model parameters unchanged.
Although any of the vACC-dlPFC model parameters can in
principle vary from one subject to another, our simulations here
focus on the evaluation of regulation performance against one
of the key parameters, i.e., fD that quantifies different MDD
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severity. Note that nominal neuromodulation is conceptually more
challenging than personalized neuromodulation because the same
nominal neuromodulation system needs to be robust enough
to achieve regulation for different test subjects. Such a nominal
neuromodulation framework is usually used to develop and test
robust neural controllers (Westover et al., 2015).

There, we use the nominal neuromodulation framework to test
the robustness of our predictive neuromodulation method. We test
9 different subjects where we uniformly vary the MDD severity
deviation from the range [−20%, 20%]. We apply the nominal
predictive neuromodulation system in each test subject and
evaluate the regulation performance using NCE in Equation (16).
We then use linear correlation analyses to examine if the NCE of
different test subjects significantly changes as the MDD severity
deviation changes. We then examine how the NCE of different test
subjects changes as the MDD severity deviation changes. We also
evaluate the MDD severity deviation boundary where the nominal
predictive neuromodulation system performs no better than the
open-loop neuromodulation system. The results for this set of
nominal neuromodulation simulations are presented in Section 3.5.

3. Results

3.1. Dynamic system identification enabled
the prediction of vACC-dlPFC multiband
spectral activity

In offline dynamic system identification experiments, we
trained and tested the dynamic IO models in terms of predicting
vACC-dlPFC multiband spectral activity. Figure 4A shows the
results in one example test set. In this case, we implemented the
Kalman predictor derived from the trained dynamic IO model,
which predicted the future spectral activity from its own past
(history of output) and the past DBS pattern (history of input).
We achieved good prediction for vACC θ power, vACC β + γ

power, and dlPFC θ power, but not as good for dlPFC β + γ

power (see Section 4). The ability to predict future spectral activity
using the history of both input and output data was key in allowing
the dynamic brain state estimator to accurately estimate the MDD
brain state in subsequent online neuromodulation.

To show that the IO model is indeed using the dynamic
information in spectral activity for achieving good prediction, we
gradually removed the history information from the prediction.
We first removed the history of the output data and only kept
the history of input for prediction. The prediction performance
qualitatively became worse in this case (Figure 4B) but still tracked
the general trend of the dynamics. The ability of only using the
history of input data for prediction allowed the MPC to predict
the DBS effects on future spectral activity, which subsequently
led to accurate control online neuromodulation (see Sections 3.2
and 3.3). We next further removed the history of the input
data and only kept the present input for prediction. This was
essentially a static prediction not informed by the dynamics
of past input and output. In this case, the prediction became
much worse and did not track the spectral activity dynamics
(Figure 4C).

We quantified the above observations in 50 trials of
independent training and testing. We found that the prediction
error using the full history of input and output was significantly
smaller than the other two prediction errors for the vACC θ

power, vACC β + γ power, and dlPFC θ power (first three
panels in Figure 4A, Wilcoxon signed-rank test P < 10−10

for all comparisons). The prediction error was also significantly
smaller than the baseline prediction error using shuffled input,
showing that our dynamic IO model was not overfitted to training
data (first three panels in Figure 4A, Wilcoxon signed-rank test
P < 10−10 for all comparisons). Notably, when only keeping
the history of input data for prediction, the prediction error was
still significantly smaller than the static prediction error and the
baseline prediction error (first three panels in Figure 4A, Wilcoxon
signed-rank test P < 10−10 for all comparisons). By contrast,
the static prediction error stayed close to the baseline prediction
error. These results showed that our dynamic IO model indeed
captured the dynamics in the spectral activity and enabled the
prediction of future spectral activity using the history of output
and input data or using the history of only input data. However,
we noted that in all cases, the prediction for the dlPFC β +
γ band power (the last panel in Figure 4D) was not different
from the baseline prediction, indicating that the dynamics in
dlPFC β + γ band power probably exhibited complex non-
linear dynamics not captured by our linear dynamic IO model
(see Section 4).

3.2. Predictive neuromodulation accurately
regulated the vACC-dlPFC multiband
spectral activity in an energy-e�cient
manner

The offline fitted dynamic IO model enabled us to design
an online predictive neuromodulation system to regulate vACC-
dlPFC multiband spectral activity in MDD. In this set of online
experiments, we used constant therapeutic targets for each spectral
activity, which were set as the spectral powers of the healthy state
(see Figure 3). Figure 5A shows the controlled spectral activities
averaged across 100 independent trials of online neuromodulation.
Each row represents the control result for one spectral power
activity. Taking the vACC β + γ power as an example (the
second row in Figure 5A), before DBS starts, the vACC β + γ

power in the MDD state was far away from the therapeutic target.
Once predictive DBS turns on, the system took all four spectral
activities as feedback and adjusted the DBS amplitude accordingly
in real time (Figure 5E, left panel). The predictive DBS successfully
regulated the vACC β + γ activity to track the therapeutic target
at the steady state, achieving a small control error (NCE was 0.0315
[0.0233, 0.0417], mean and 95% confidence interval, see the second
row in Figure 5D). Similar results held for the other three spectral
activities.

By contrast, the state-of-the-art responsive DBS used a simple
threshold-crossing control strategy that cannot predict the spectral
activity dynamics (Figure 5E, middle panel). Therefore, while the
vACC β + γ power was reduced by responsive DBS toward the
target, it decreased too much to be under the desired target (second
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FIGURE 4

Dynamic system identification enabled the prediction of vACC-dlPFC multiband spectral activity. (A) The prediction of vACC-dlPFC multiband

spectral activity using the full history of input and output data. (B) The prediction of vACC-dlPFC multiband spectral activity using the history of only

input data. (C) The prediction of vACC-dlPFC multiband spectral activity using only the present input. (D) Comparisons of prediction error. In the

boxplot, the middle line inside the box shows the median, box edges show the 25th and 75th percentiles, whiskers represent the minimum and

maximum values and dots show outlier values. Outliers are the points that are more than 1.5 times the interquartile distance, i.e., the box size, away

from the end and beginning of the box. Asterisks indicate significance (***P < 0.0001).

row in Figure 5B), which could translate to over-treatment and side
effects in clinical practice. Thus, responsive DBS did not accurately
regulate the spectral activities, resulting in a larger control error that
was almost three times of the predictive DBS (responsive DBS NCE
0.0919 [0.0850, 0.0974] v.s. predictive DBS NCE 0.0315 [0.0233,
0.0417], Wilcoxon signed-rank test P < 10−10, see the second
row in Figure 5D). Similar results held for the other three spectral
activities.

The open-loop DBS performed the worst among the three
neuromodulation methods because it used a constant DBS
amplitude without the guidance of the real-time spectral activities
(Figure 5E, right panel). As a result, open-loop DBS resulted in
more severe over-treatment of the vACC β + γ power (second
row in Figure 5C); it thus had the largest control error, which
was more than 15 times of predictive DBS (open-loop DBS NCE
0.4633 [0.4651, 0.4680] vs. predictive DBS NCE 0.0315 [0.0233,
0.0417], Wilcoxon signed-rank test P < 10−10, see the second
row in Figure 5D). Similar results held for the other three spectral
activities. Interestingly, we found that the predictive DBS for
dlPFC β + γ power had a relatively large control variance and

was not as good as the other three spectral activities. This was
likely because the dynamic IO model did not predict dlPFC β +
γ as well (the last panel in Figure 4D), hindering the optimal
control of dlPFC β + γ . Nevertheless, the control performance
of responsive DBS for dlPFC β + γ still outperformed responsive
and open-loop DBS (the fourth row in Figure 5), suggesting
the advantage of joint feedback control of all four spectral
activity.

We also took a closer look at the typical vACC and dlPFC
power spectrum before and after DBS treatments (Figure 6). Taking
the vACC power spectrum as an example (first row in Figure 6),
we see that before treatment, the MDD θ power was below the
healthy spectrum and the MDD β+γ power was above the healthy
spectrum. After predictive DBS treatment (Figure 6A), the θ power
was elevated, and the β + γ power was suppressed. Together, the
spectrum after predictive DBS treatment stayed close to the healthy
spectrum, indicating optimal treatment. The change in the β + γ

power appeared small because we used the conventional dB scale
for the vertical axis; readers can refer to Supplementary Figure 1
for a more visible comparison of the β + γ power spectrum
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FIGURE 5

Predictive neuromodulation accurately regulated the vACC-dlPFC multiband spectral activity in an energy-e�cient manner. (A) Online

neuromodulation results using predictive DBS. Each row represents one spectral activity. The solid colored line represents the controlled spectral

activity averaged over 100 trials. The thick dark line represents the therapeutic target. The vertical dashed line represents the time when DBS starts.

(B) Same as (A) but for responsive DBS. (C) Same as (A) but for open-loop DBS. (D) Comparisons of control error for di�erent online

neuromodulation methods. Cyan represents predictive DBS; purple represents responsive DBS; dark red represents open-loop DBS. Each row

represents one spectral activity. The boxplot styles are the same as Figure 4D. (E) Example single-trial trace of controlled DBS amplitude for the

predictive method (left, cyan), responsive method (middle, purple), and open-loop method (right, dark red). The gray shaded area is the DBS

amplitude range where the constant input in open-loop and responsive DBS is chosen from. Specifically, in each simulation trial, one single constant

value U is first chosen from the gray range and then fixed during the neuromodulation process to implement the open-loop and responsive DBS as

in Equations (13) and (14). (F) Comparison of input DBS energy for the predictive method (cyan), responsive method (purple), and open-loop method

(dark red). The boxplot styles are the same as Figure 4D. Asterisks indicate significance (***P < 0.0001).

in linear scale. By contrast, while the responsive DBS elevated
the θ power, it did not elevate it enough to match the healthy
spectrum (possible under-treatment), and the β + γ power was
suppressed too much to be under the healthy spectrum (possible
over-treatment, Figure 6B). Open-loop DBS resulted in even worse
control performance (Figure 6C). Similar results held for the dlPFC
power spectrum.

Finally, we estimated the battery power consumption of each
neuromodulation method by computing the energy of the DBS
input (Figure 5F). We found that predictive DBS resulted in

the smallest DBS energy compared with responsive and open-
loop DBS (Wilcoxon signed-rank test P < 10−10). We also
did another analysis where instead of randomly choosing the
stimulation amplitude U in open-loop and responsive DBS, we
manually chose U to be the mean value of the stimulation
amplitude of predictive DBS. We then re-implemented open-loop
and responsive DBS with this new choice of U. We found that by
doing so, the energy of the open-loop, responsive and predictive
DBS was not significantly different from each other (Wilcoxon
signed-rank test, P > 0.3130, Figure 7B). However, even in this
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FIGURE 6

Changes in vACC and dlPFC power spectrum before and after DBS treatments. (A) Changes in vACC (top) and dlPFC (bottom) power spectrum

before (red) and after (cyan) predictive DBS treatments. The power spectrum in the healthy state is shown in black. The shaded area represents the θ

and β + γ bands that are of interest. (B) Same as (A) but for responsive DBS. (C) Same as (A) but for open-loop DBS.

energy-matched case, the regulation performance of predictive DBS
was significantly better than the open-loop and responsive DBS
(Wilcoxon signed-rank test, P < 10−10, Figure 7A). To summarize,
the predictive neuromodulation method accurately regulated
two-region multiband spectral activity to therapeutic targets,
achieving significantly smaller control error and DBS energy
than state-of-the-art open-loop and responsive neuromodulation
methods.

3.3. Predictive neuromodulation
generalized accurate regulation
performance across time-varying
therapeutic targets

The therapeutic targets may need to change over time
depending on the patient’s clinical needs. Therefore, in this set of
online experiments, we investigated the more challenging problem
of regulating the vACC-dlPFC multiband spectral activity to follow
time-varying therapeutic targets. We found that the predictive
neuromodulation BCI system generalized accurate regulation
performance across time-varying therapeutic targets for vACC θ ,
vACC β +γ and dlPFC θ (Figure 8). Again taking the vACC β +γ

power as an example (second row in Figure 8), the predictive DBS

FIGURE 7

Predictive neuromodulation maintained the best regulation

performance even when using a similar level of input energy. (A)

The normalized control error in the energy-matched case. The

boxplot styles are the same as in Figure 4D. (B) The input energy in

the energy-matched case. The boxplot styles are the same as in

Figure 4D. n.s.,P > 0.05. Asterisks indicate significance

(***P < 0.0001).

accurately regulated vACC β + γ power to track the stair-shape
time-varying therapeutic targets (the second row in Figure 8A,
NCE 0.0269 [0.0245, 0.0413]).
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FIGURE 8

Predictive neuromodulation generalized accurate regulation performance across time-varying therapeutic targets. Figure legends are the same as

Figure 5, except that the therapeutic targets were time-varying in this case [thick black lines in (A–C)]. Asterisks indicate significance (***P < 0.0001).

The responsive DBS regulated vACC β + γ power to stay
around the time-varying therapeutic targets because it nevertheless
used real-time spectral activities as feedback, but cannot achieve
accurate regulation, resulting in control errors that were more
than twice of predictive DBS (the second row in Figures 8B, D,
responsive DBS NCE 0.0687 [0.0533, 0.0959] v.s. predictive DBS
NCE 0.0269 [0.0245, 0.0413], Wilcoxon signed-rank test P <

10−10). Open-loop DBS did not even regulate vACC β + γ power
to stay around the time-varying therapeutic targets because it did
not use real-time spectral activities as feedback, resulting in control
errors that were more than 10 times of predictive DBS (the second
row in Figures 8C, D, open-loop DBS NCE 0.3725 [0.3258, 0.4242]

v.s. predictive DBS NCE 0.0269 [0.0245, 0.0413], Wilcoxon signed-
rank test P < 10−10). Similar results held for vACC θ power and
dlPFC θ power. We note that dlPFC β + γ power had a larger
control variance and was difficult to regulate to follow time-varying
therapeutic targets.

Moreover, predictive DBS led to a significantly smaller
input DBS energy than the other two methods (Figures 8E,
F, Wilcoxon signed-rank test P < 10−10). The above
results show that predictive DBS can generalize the accurate
regulation performance across multiple time-varying therapeutic
targets and significantly outperformed responsive DBS and
open-loop DBS.
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FIGURE 9

Personalized predictive neuromodulation maintained accurate

regulation performance in subjects with di�erent MDD severity. (A)

The normalized control error (NCE) across subjects with di�erent

MDD severity deviations from the default subject. The x-axis is the

MDD severity deviation, where 0% represents the default subject

with fD = 1.25. The boxplot styles are the same as in Figure 4D.
∗∗∗P < 0.0005 when compared with open-loop neuromodulation in

the same subject. The gray line is the linear fit of the medians in

each subject using Pearson’s linear correlation analysis. The

correlation coe�cient R and Pearson’s P-value are indicated in the

upper left corner. (B) The controllability condition of the

personalized model across subjects. Figure conventions are the

same as (A). (C) The observability condition of the personalized

model across subjects. Figure conventions are the same as (A).

3.4. Personalized predictive
neuromodulation maintained accurate
regulation performance in subjects with
di�erent MDD severity

Up to now, we have tested our personalized predictive
neuromodulation system on a single default subject whose MDD
severity parameter was set as fD = 1.25. We further tested
the personalized predictive neuromodulation system in subjects
with different MDD severity (see Section 2.3.3). We tested 9
subjects whose MDD severity deviation from the default subject
had a large range from −100% to 100%. We found that
the personalized predictive neuromodulation system maintained
accurate regulation performance in each subject. In each of the 9
subjects, the normalized control error of personalized predictive
neuromodulation remained significantly smaller than open-loop
neuromodulation (Wilcoxon signed rank test P < 10−10 for
all comparisons, Figure 9A). Further, linear correlation analyses
showed that the NCE did not significantly change with the MDD
severity deviation (Pearson’s correlation coefficient R = 0.0238,
P = 0.9516). This result showed that personalized predictive
neuromodulation successfully maintained accurate regulation
performance in subjects with a wide range of MDD severity.

FIGURE 10

Robustness of the nominal predictive neuromodulation system. The

x-axis is the MDD severity deviation for di�erent test subjects, where

0% represents the nominal MDD severity of fD = 1.25. The boxplot

styles are the same as in Figure 4D. ∗∗∗P < 0.0005 when compared

with open-loop neuromodulation. n.s.: P > 0.5 when compared

with open-loop neuromodulation.

To gain insights into why the personalized predictive
neuromodulation maintained accurate regulation performance, we
next investigated the controllability and observability properties
of the fitted personalized models (see Section 2.3.3). We found
that the inverse condition number of the personalized model’s
controllability matrix, i.e., κ(MC) in Equation (21), was negatively
correlated with the subjects’ MDD severity (Figure 9B). This result
indicated that as the MDD severity increased, the controllability
condition worsened, suggesting that the models became harder
to control. We also found that the inverse condition number
of the personalized model’s observability matrix, i.e., κ(MO) in
Equation (22), was positively correlated with the subjects’ MDD
severity (Figure 9C). This result indicates that as the MDD severity
increased, the observability condition improved, suggesting that
the underlying MDD brain state of the model was easier to
estimate. The estimator and controller worked jointly to form
the entire predictive neuromodulation system. Thus, as the MDD
severity increased, the worse controllability condition and the
better observability condition might counteract each other, keeping
the overall regulation performance at a relatively constant level
(Figure 9A). The investigation of the detailed mechanism of such
counteraction is beyond the scope of this paper and is an interesting
future research direction.

3.5. Investigating the robustness of the
nominal predictive neuromodulation
system

The results so far have evaluated the performance of
the predictive neuromodulation system in a personalized
neuromodulation framework, where neuromodulation system
design and testing were conducted in the same simulated subject. In
this section, we further investigated the robustness of the predictive
neuromodulation system, where a nominal system was designed in
a nominal MDD subject and then tested in subjects with different
MDD severity (see Section 2.3.4). As expected, as the test subject’s
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MDD severity deviated more from the nominal subject, the
control error for the nominal predictive neuromodulation system
increased (Figure 10). However, within the MDD deviation range
of [−15%, 10%], the nominal predictive neuromodulation system
still significantly outperformed the open-loop neuromodulation
(Wilcoxon signed rank test P < 0.0005 for all comparisons).
This result suggests that the nominal predictive neuromodulation
system is robust to the change in subject MDD severity to a
reasonable extent. On the other hand, we also noticed that in test
subjects whose MDD severity was very different from the nominal
value (when MDD deviation was less than −20% or more than
15%), the nominal predictive neuromodulation performed no
better than the open-loop neuromodulation, indicating that the
nominal model fitted in offline system identification might not
adequately work for a wide range of test subjects (see Section 4).

4. Discussion

Over the past decade, there has been much work in
developing model-based closed-loop neuromodulation methods
for neurological and neuropsychiatric disorders (Santaniello et al.,
2010; Liu et al., 2011; Ehrens et al., 2015; Nagaraj et al., 2017;
Bolus et al., 2018, 2021; Yang et al., 2018a, 2021b; Su et al., 2019;
Fang and Yang, 2021, 2022; Zhu et al., 2021). These studies share a
typical framework of first conducting offline system identification
to fit a model, then designing feedback controllers based on the
fitted model, and finally using the controller for online closed-loop
neuromodulation. We also adopted the same framework in this
work. However, prior studies have mainly focused on neurological
disorders such as Parkinson’s disease (PD) (Santaniello et al., 2010;
Liu et al., 2011; Su et al., 2019; Zhu et al., 2021) and epilepsy (Ehrens
et al., 2015; Nagaraj et al., 2017) but not neuropsychiatric disorders
such as MDD. This is likely because a good understanding of the
diseasemechanism ofMDD is still lacking (Mayberg, 1997; Drevets,
2001; Williams, 2017). Recent clinical studies of mood symptoms
have suggested that neural activity from multiple sites and multiple
frequency bands can be related to mood (Kirkby et al., 2018; Rao
et al., 2018; Sani et al., 2018; Smart et al., 2018; Scangos et al., 2021a;
Bijanzadeh et al., 2022; Smith et al., 2022; Xiao et al., 2023). By
contrast, model-based DBS methods for PD and epilepsy usually
assume that the neural activity comes from a local brain region—
e.g., basal ganglia in PD (Santaniello et al., 2010; Liu et al., 2011;
Su et al., 2019; Zhu et al., 2021)—or a single frequency band—
e.g., β band in PD (Su et al., 2019; Zhu et al., 2021). Our prior
work proposes an extension to multi-input multi-output regulation
of brain states (Yang et al., 2018a, 2021b) but was tested in a
general dynamic model that is not tightly connected with MDD.
The study here is unique in the sense that we developed a BCI
system of predictive neuromodulation that regulates the multiband
neural activity for MDD, and specifically showed the accurate
control performance of the system in a biophysically plausible
vACC-dlPFC neural mass model of MDD.

Model-based closed-loop neuromodulation methods for PD
and epilepsy are usually tested in simulations that involve some
model of the disease under consideration (Santaniello et al., 2010;
Liu et al., 2011; Ehrens et al., 2015; Nagaraj et al., 2017; Su et al.,
2019; Zhu et al., 2021). Using simulation validation is a common

practice in developing new neurotechnologies before moving to
clinical experiments (Cunningham et al., 2011; Charles et al., 2014;
Citi et al., 2014; Shapero et al., 2014; Greco et al., 2015; Yang
and Shanechi, 2016; Bolus et al., 2018; Yang et al., 2018a, 2019a,
2021a; Wang et al., 2021; Xu and Wang, 2021). Given MDD is
a complex network-level disorder (Mayberg, 1997; Drevets, 2001;
Williams, 2017), as the prerequisite for clinical implementation,
we also tested our system in a biophysically plausible model of
MDD. We chose to use a well-known vACC-dlPFC neural mass
model of MDD (Ramirez-Mahaluf et al., 2017) because it models
the interaction between key limbic and frontal regions (Mayberg,
1997; Fox et al., 2012). More importantly, the vACC-dlPFC neural
mass model exhibits complex non-linear dynamics such as Hopf
bifurcation and limit cycle that are biophysically meaningful for
MDD (Ramirez-Mahaluf et al., 2017). However, there still exists
a gap between the model in its original form and clinical findings
because the original model focuses on the firing rate activity
dynamics while clinical practice focuses more on spectral activity
dynamics. We thus made several adjustments to the original model
to construct a MDD brain model that takes DBS amplitude as
input and generates multiband spectral activity as the output.
The vACC-dlPFC neural mass model served as a simulation
testbed to test our dynamic system identification and predictive
neuromodulation methods. Within this testbed, we successfully
showed that predictive neuromodulation outperformed open-
loop and responsive neuromodulation for MDD. Our results
also demonstrated interesting non-linear responses and temporal
dynamics in the simulated vACC-dlPFC multiband spectral
activity. Therefore, using such a model as the simulation tested can
take the BCI system of predictive neuromodulation a step further
toward clinical testing.

However, the vACC-dlPFC neural mass model for MDD has
its limitations: it only models a small two-region subnetwork of
a much larger limbic-frontal network that has been shown to
regulate mood (Williams, 2017); it only models spectral powers as
the output signal while more complex network interactions such
as spectral coherence can also be related to mood (Kirkby et al.,
2018); it is a mesoscopic model that models the aggregated activity
of neural masses, which ignores microscopic single neuron spiking
dynamics that are related to mood states (Yang et al., 2018b). With
the advance of the research into the mechanism of MDD, more
precise and detailed computational models can be used to test our
predictive neuromodulation system further. Finally, regardless of
the biophysical model being used, simulations only provide the
first step in developing neuromodulation systems. The ultimate
validation of neuromodulation systems requires carefully designed
clinical experiments and is a critical topic for future investigation.

Despite the above limitations, the vACC-dlPFC model
has indeed revealed important non-linear neural dynamics
underlying MDD (Ramirez-Mahaluf et al., 2017). While the neural
dynamics are non-linear, from a control-theoretic perspective,
linear estimators and controllers have several advantages in
building useful BCI systems for treating MDD. First, the
aggregated mesoscopic neural dynamics originating from non-
linear microscopic non-linear neural activity can show important
linear characteristics. For example, Linear dynamic models have
been shown to be a powerful model to track mesoscopic and
macroscopic neural dynamics such as those seen in population
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firing rates (Petreska et al., 2011; Aghagolzadeh and Truccolo,
2015; Kao et al., 2015; Sani et al., 2021), local field potential (Yang
et al., 2021b), and iEEG (Yang et al., 2019b). Second, a better
approximation of non-linear neural dynamics can be achieved by
increasing the linear model orders, such as the state dimension
in linear state space models (Yang et al., 2019b). Third, directly
using non-linear models to design estimators and controllers may
lead to instability and increased sensitivity to noise (Bertsekas,
2012; Camacho and Alba, 2013; Fang and Yang, 2022). Thus, linear
models are amenable to designing stable and robust estimators and
controllers, leading to their frequent use in designing closed-loop
neuromodulation in PD and epilepsy (Ehrens et al., 2015; Su et al.,
2019). Due to the above reasons, we chose to identify a simplified
linear dynamic IO model to capture these spectral activity
dynamics. In our simulations, we successfully used the dynamic
linear state-space model to predict the non-linear dynamics in the
vACC-dlPFC neural mass model and subsequently used the model
to design the dynamic brain state estimator and MPC. We found
that the linear dynamic model enabled accurate offline prediction
and online control for three of the spectral activities, significantly
outperforming the state-of-the-art responsive DBS. This can be
explained by two reasons. First, responsive DBS cannot predict
future brain activity to make stimulation adjustments accordingly.
Second, responsive DBS uses a simple threshold-crossing control
strategy designed in an ad-hoc manner without adopting optimal
control methods. Thus, responsive DBS did not precisely regulate
the neural activity to its target values. On the other hand, we found
that our methods performed worse for the dlPFC β + γ power.
This is likely because the dlPFC β + γ power involves complex
non-linear dynamics that are not captured by the linear model.
Therefore, one future direction is develop non-linear and adaptive
IO models (Ahmadipour et al., 2021; Fang and Yang, 2021, 2022;
Yang et al., 2021a) to help improve the prediction and control of
non-linear spectral activity dynamics in MDD.

We tested two ways of implementing our predictive
neuromodulation system, i.e., the personalized and nominal
frameworks. The personalized framework fits a personalized
model for each subject, and we found the corresponding predictive
neuromodulation systemmaintained accurate control performance
in subjects with a large range of MDD severity differences. Fitting
a personalized model for each subject may increase the burden
of data collection in practice and interrupt treatment (Westover
et al., 2015; Yang and Shanechi, 2016). By contrast, the nominal
framework uses a single nominal model for all subjects, which
removes the need to fit a different model for each subject but at the
cost of reduced robustness; it can only maintain satisfactory control
performance within a limited range of MDD severity deviations.
Indeed, a single nominal model may not be sufficient to describe
all the complex neural dynamics across a large number of subjects
since different subjects have different neuronal physiology and
connectivity (Ferrat et al., 2018). One promising way of combining
the benefits of the two frameworks is to develop adaptive
neuromodulation systems that can automatically use personalized
data to adapt the nominal model during the neuromodulation
process (Yang et al., 2019a; Zhu et al., 2021; Fang and Yang, 2022),
which is an important future research direction.

The future clinical implementation and application of our
predictive neuromodulation system require solving several critical
challenges. First, selecting the most effective network neural

features that are related to MDD symptoms is still an open
problem. Recent studies have indicated that some mood-related
neural features can be common across patients, but some can
be personalized (Kirkby et al., 2018; Sani et al., 2018; Bijanzadeh
et al., 2022; Xiao et al., 2023). Future work can use the proposed
multiband modeling framework for aggregating different types
of neural features for the best estimate of MDD brain states.
Second, based on the personalized mood-related neural features,
the corresponding therapeutic targets can also be personalized in
different patients. For example, we may identify the range of mood-
related neural features that correspond to relieved symptoms for
a given patient. Clinicians can then set the therapeutic target to
be within this range. Third, building a dynamic IO model for
predicting multiband neural responses to DBS in MDD patients is
key in enabling predictive control. Our prior work has built such
models in non-human-primate experiments (Yang et al., 2021b).
Extending and testing such models for humans and especially for
MDDpatients is a critical future direction (Shanechi, 2019). Fourth,
in online neuromodulation experiments, many factors—such as
neural plasticity, patient movements, and environmental noise—
can lead to real-time unknown disturbances that can severely
degrade DBS control performance or even lead to instability. Thus
the predictive neuromodulation BCI system should incorporate
robust and adaptive components to address noise, disturbance, and
non-stationarity in the neural activity dynamics (Bolus et al., 2021;
Fang and Yang, 2021, 2022; Zhu et al., 2021), which is another
important future direction. Finally, in terms of the clinical criteria
for evaluating neuromodulation BCI systems, the criteria for
current open-loop DBS are usually based on clinical questionnaire
scores such as the Montgomery-Åsberg Depression Rating Scale
(MADRS) (Mayberg et al., 2005; Holtzheimer et al., 2017) and
the Hamilton Depression Rating Scale (HDRS) (Mayberg et al.,
2005; Holtzheimer et al., 2017). However, the registration of these
scales takes time and cannot be obtained continuously over time.
BCI systems can identify neural biomarkers of mood symptoms
and monitor the neural biomarkers continuously over time. Thus,
the quantitative changes in the neural biomarkers can provide
another criterion that can supplement the clinical questionnaire
scores (Shanechi, 2019). The dynamic brain state estimator in
our framework provides a framework for identifying such neural
biomarkers. In our simulations, we used the changes in mood-
related neural features to quantify the treatment effect. Future work
should investigate if the combined changes in neural biomarkers
and clinical questionnaire scores can better reflect the treatment
outcomes.

5. Conclusion

With the goal of improving current open-loop and responsive
neuromodulation treatments for MDD, we develop a new BCI
system of predictive neuromodulation. We then comprehensively
test the system using a simulation testbed that incorporates a
biophysically plausible vACC-dlPFC neural mass model of MDD.
Our results show that the proposed predictive neuromodulation
system can accurately predict the non-linear and multiband neural
dynamics in MDD and precisely regulate the diseased neural
dynamics to therapeutic targets, significantly outperforming open-
loop and responsive neuromodulation methods. Our results have
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implications for building future clinical closed-loop BCI systems
for treating MDD.
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