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Object detection and grasp detection are essential for unmanned systems working in

cluttered real-world environments. Detecting grasp configurations for each object in

the scene would enable reasoning manipulations. However, finding the relationships

between objects and grasp configurations is still a challenging problem. To achieve

this, we propose a novel neural learning approach, namely SOGD, to predict a

best grasp configuration for each detected objects from an RGB-D image. The

cluttered background is first filtered out via a 3D-plane-based approach. Then two

separate branches are designed to detect objects and grasp candidates, respectively.

The relationship between object proposals and grasp candidates are learned by

an additional alignment module. A series of experiments are conducted on two

public datasets (Cornell Grasp Dataset and Jacquard Dataset) and the results

demonstrate the superior performance of our SOGD against SOTA methods in

predicting reasonable grasp configurations “from a cluttered scene.”
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1. Introduction

Automated object grasping is essential and challenging to robots or unmanned systems

working in real-world cluttered scenarios. As a core component of autonomous grasping, grasp

detection, which outputs themost possible grasp configuration for themanipulator, has attracted

great attention from both academic and industrial communities. Existing methods often predict

a series of possible grasp configurations based on the input images (Depierre et al., 2018; Zhang

et al., 2019; Wang et al., 2021; Yu et al., 2022b). When encountered with a cluttered scene, which

is a common case in our daily life, we humans often identify the target object first and then

determine the best pose to grab the object. This provides two kinds of benefits: (1) we can easily

explain why the predicted grasp configuration is the best, and (2) our efforts will be focused on

the object area instead of the cluttered background to make a better decision. However, most

previous studies do not have a strong ability to model the relationship between the target objects

and the predicted grasp configurations. In order to make grasp detection more accurate and

reasonable, we investigate the problem of simultaneous object detection and grasp detection,

where the best grasp configuration is predicted for each detected object in the cluttered scene.

Since object manipulation is performed in a 3D space, using a 3D representation for grasp

detection is a natural way. A grasp candidate is a 6-DOF gripper pose g =
(

x, y, z, rx, ry, rz
)

,

g ∈ SE (3), with the 3D position and rotation angles along each axis of the gripper. Methods

based on this 3D representation (Pas et al., 2017; Liang et al., 2019) often generate a large

number of candidates and then evaluate whether it is a good grasp according to a specific

criterion. These methods are easy to understand but often suffer efficiency problems due to 3D

operations. Motivated by the superior performance of deep learning technology on detection
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or segmentation tasks (Cheon et al., 2022; Huang et al., 2022; Khan

et al., 2022), image-based deepmodels have become popular for grasp

detection (Chu et al., 2018; Zhang et al., 2019; Dong et al., 2021; Yu

et al., 2022a). These methods often use a rectangle representation

g =
(

x, y, h,w, θ
)

, where
(

x, y
)

is the center pixel location of a grasp

candidate,
(

h,w
)

are height and width of the gripper, and θ is the

rotation of the gripper. This representation is widely used in end-to-

end deep networks. Some other studies (Wang et al., 2019, 2022) also

used a score map with the same size as the image to represent the

quality of grasp configurations at each pixel.

A number of existing grasp detection methods are inspired by

object detection (Zhou et al., 2018; Zhang et al., 2019; Park et al.,

2020). These two problems share a similar output, which consists of a

regression of a rectangle (a grasp configuration for grasp detection

or a bounding box for object detection) and a classification score

(quality of the grasp or confidence in the predicted category). Thus,

one straightforward way for designing a grasp detection model is

to modify it from an object detector. For example, Zhang et al.

(2019) propose an ROI-based grasp detection method which is a

modification from Faster R-CNN. They use the region proposal

network (RPN) to generate graspable proposals and an ROI-pooling

layer to extract features for each proposal. Then grasp configurations

and corresponding successful rates are estimated with the local

features. However, grasp detection differs from object detection in

the additional prediction of orientation. To predict the orientation

of the gripper, serval existing methods (Chu et al., 2018; Dong

et al., 2021; Yu et al., 2022a) convert this regression problem into a

classification problem by discretizing continuous angles into angle

anchors. This makes orientation prediction much more convenient

but will also cause a loss of accuracy. To overcome this short back,

other studies (Park et al., 2020) use classification and regression

processes to predict the final angles. Another kind of grasp detection

method (Yu et al., 2022b) makes dense predictions at each pixel

and outputs a set of heatmaps representing the grasp configurations

and quality.

To generate more reasoning and human-like grasp candidates,

we investigate the problem of simultaneously detecting objects

and grasp configurations from an RGB-D image and propose

a novel neural learning approach, namely SOGD, for this task.

Our SOGD model takes an RGB-D image as input and outputs a

set of tuples (xo, yo,wo, ho, clso, xg , yg ,wg , hg , θg , sg), representing

the joint prediction of the object detection result and the grasp

detection result. To this end, features extracted by the top

stages of a backbone and feature pyramid network (FPN) are

used for both detection tasks. Two separate detection branches

are designed to detect objects and grasp them, respectively.

The correspondences between object proposals and grasp

candidates are modeled by an alignment module. In addition,

we present a depth-based method to filter out backgrounds in

a cluttered scene. This would enable our detectors to focus on

features from the target objects other than the texture from

the environment.

Our main contributions are summarized as follows:

(1) We propose a novel neural learning approach

to detect target objects and their best grasp

configurations in cluttered environments

simultaneously.

(2) An alignment module is designed to estimate the

correlations between the separately detected objects and

grasp configurations. This module enables our model to predict

more reasonable grasp configurations for each detected object.

(3) A 3D-plane-based pre-processing is presented to filter out

cluttered backgrounds from the RGB-D image.

(4) A series of experiments are conducted on two publicly

available datasets (the Cornell Grasp Dataset and the Jacquard

Dataset). Our method achieves +0.7 to +1.4% improvement

in average accuracy compared with the existing RGB-D-based

grasp detection methods.

2. Related studies

Grasp detection methods can be divided into traditional methods

and learning-based methods. The traditional methods are mainly

divided into the template matching method and the feature point

matching method. The template-based pose estimation algorithm

(Georgakis et al., 2019) needs to build the template of the object in

advance, which can be strongly applicable to objects with regular

shapes and has a good effect on targets without texture. However,

when the object is blocked and the light is insufficient, the matching

will be too low, leading to the failure of prediction. The pose

estimation method based on feature points can extract effective

feature points from images and match them with standard images.

Since descriptors can describe visual features stably and robustly, this

method is not susceptible to illumination. However, this method only

uses the information of feature points in the image, so the utilization

rate of information is very low. If there are not many feature points in

the image, this method will have a high probability of deviation from

the predicted capture rectangle.

Motivated by the superior performance of deep learning

technology (Chhabra et al., 2022; Motwani et al., 2022; Shailendra

et al., 2022; Singh et al., 2022), it has been applied in grasping

detection to improve the accuracy of grasping in recent years.

In order to improve the generalization of 3D models, some grab

detection methods based on 3D reconstruction are proposed.

According to Yang et al. (2021), this method uses 3D reconstruction

to optimize the candidate grasping objects generated by the grasping

suggestion network and improves the grasping accuracy of unknown

objects. According to Jiang et al. (2021), this method uses implicit

neural representation and studies synergies between affordance

and geometry to improve the accuracy of grasping detection.

Sundermeyer et al. (2021) used a 3D point cloud to predict the 3D

points of grasping contact and reduce the dimension from 6-Dof to

4-Dof to make the learning process more convenient. However, the

method based on 3D reconstruction needs a certain amount of time

to build the 3D model, and the real-time capturing will be affected to

some extent.

Since deep learning has shown excellent results in detection and

segmentation tasks, image-based capture detection methods have

become increasingly popular. But different from object detection,

grasp detection needs to predict the angle of the gripper. Therefore,

some of the methods (Chu et al., 2018; Dong et al., 2021; Yu

et al., 2022a) discretized continuous angles into angle anchors and

transformed the regression problem into a classification problem.

However, these methods may cause a lack of accuracy. To solve
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this problem, Park et al. (2020) predicted the final angle using

classification and regression processes. The method provided by

Yu et al. (2022b) intensively predicts that each pixel represents the

heat map of the capture configuration and quality. Zhang et al.

(2018) divided the grasping problem into two separate tasks (object

detection and grab detection) and then integrated them as the

final solution. Yu et al. (2022b) proposed a module that extracts

feature mappings from bidirectional feature pyramid networks,

object detection, and grab detection, and outputs the optimal grab

position and appropriate operational relations. Park et al. (2020)

predicted the boundary box, the category of objects, and the direction

of the grab rectangle and grab configuration using a global feature

map. Ainetter and Fraundorfer (2021) designed an end-to-end CNN-

based network architecture and designed a refinement module to

improve the accuracy of prediction.

Most deep-learning-based methods directly output grasp

candidates without recognizing the target object. They cannot

answer the question that what is the best grasp configuration

for every single object in a cluttered scene. Unfortunately, this

is a common case an unmanned system needs to deal with. To

generate a more reasoning prediction, Zhang et al. (2018) designed a

recognize-and-then-grasp approach, which divides the problem into

two separate tasks (object detection and grasp detection) and then

integrates them as the final solution. Another way is to perform grasp

detection together with object detection or segmentation tasks (Park

et al., 2020; Ainetter and Fraundorfer, 2021; Yu et al., 2022a). For

example, Park et al. (2020) generated a global feature map to predict

the bounding box, the category of an object, the grasp rectangle,

and the orientation of a grasp configuration. Then, non-maximum

suppression is applied to both bounding boxes and grasp rectangles

to filter out unnecessary predictions. The relationship between the

bounding boxes and the grasp rectangles is built via computing the

Intersection over Union (IoU) of the two areas. If the IoU is greater

than a certain threshold, the grasp will be assigned to the detected

object. However, choosing an appropriate threshold is not easy.

When the graspable area is much smaller than the entire object, the

IoU between the grasp rectangle and the bounding box of the object

will be too small. As a result, such a strategy cannot avoid filtering

out possible solutions.

3. Materials and methods

3.1. Problem formulation and
reparameterization

In the process of object grabbing, humans usually first identify

the object to be grabbed in the scene and then select an appropriate

grabbing position for the target object. Whether a grasping pose

is appropriate is directly related to the target object to be grasped.

Motivated by this fact, this study investigates the problem of robotic

manipulation by detecting the target object in the scene and its grasp

position simultaneously.

Given an RGB-D image, the goal of the simultaneous object and

grasp detection is to identify every single object in the scene and

find out a grasp configuration for it. To this end, we formulate the

representation of the simultaneous object and grasp detection det as:

det=
(

od, gd
)

FIGURE 1

An example of our simultaneous object and grasp detection

representation. (A) 11D object and grasp detection representation. (B)

5D object detection representation with location (xo, yo), width wo,

height ho, and the category of the object clso. (C) 6D grasp detection

representation with location (xg, yg), gripper width wg, plate size hg,

orientation θg, and its success rate sg.

od=
(

xo, yo, wo, ho, clso
)

gd=
(

xg , yg , wg , hg , θg , sg
)

The representation consists of two parts: object detection and

grasp detection. Figure 1 shows an example of this representation.

For the object detection part, we use (xo, yo,wo, ho) to represent the

location of a bounding box and clso to represent the category of

the object inside of it. For the grasp detection part, we adopt the

famous 5-dimensional rectangular representation (Lenz et al., 2013),

which consists of the location and orientation (xg , yg ,wg , hg , θg) of

the gripper for a grasp configuration. In addition, we add sg , a value

between 0 and 1, to represent the score of a grasp. The higher sg is,

the greater chance of the grasp being a success.

Similar to Park et al. (2020), we formulate the estimation of

θg as a classification + regression problem instead of a single

regression problem. According to the symmetry of the gripper,

the range of θg is [0,π]. We convert this range into several bins
{

0, π
ka
, 2π
ka
, ...,

(

ka − 1
)

π
ka

}

to be angle anchors, with ka is the number

of bins. The classification problem is to predict a one-vs.-all vector

to determine which bins θg belongs to. The regression problem is to

estimate the angle offset to the anchors.

Inspired by Redmon and Farhadi (2018) and Ge et al. (2021),

we reparametrize the regression problem of (xj, yj,wj, hj, θj) as

estimation of (txj , t
y
j , t

w
j , t

h
j , t

θ
j ) to the location of the grid cell (axj , a

y
j ),

bounding box prior width and height (awj , a
h
j ), and orientation angle

bin aθ
j . The relationship between (xj, yj,wj, hj, θj) and (t

x
j , t

y
j , t

w
j , t

h
j , t

θ
j )

is defined as follows.

xj = σ (txj )+ axj

yj = σ (t
y
j )+ a

y
j

wj = awj × e
twj

Frontiers inComputationalNeuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2023.1110889
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2023.1110889

hj = ahj × e
thj

θj = σ (tθj )×

(

π

ka

)

+ aθ
j

This reparameterization is applied to both the object bounding box

regression and the grasp rectangle regression.

3.2. Overview of the SOGD model

The architecture of our SOGDmodel is shown in Figure 2. It takes

an RGB-D image as input, and outputs the detected object’s bounding

(txo , t
y
o , t

w
o , t

h
o ) and category cls together with the corresponding grasp

position (txg , t
y
g , t

w
g , t

h
g ), orientation tθg , and success rate sg . Our model

consists of five parts: a pre-processing for background removal, a

backbone and a feature pyramid network (FPN) for image feature

extraction, an object detection head, a grasp detection head, and an

alignment module for candidate objects and grasp configurations.

Motivated by Dong et al. (2021), we design a pre-processing

module to remove the background from the cluttered scene.

According to Dong et al. (2021), backgrounds are recognized by an

encoder–decoder network to segment the original image. However,

our module utilizes the priors of the scene that objects to be grabbed

are laid on a 3D plane, such as the surface of a desk. According to this

fact, we categorize pixels on and under the 3D plane as background

and filter them out. We argue that this background removal strategy

is more reasonable and robust than the U-net-based method (Dong

et al., 2021). Details about the 3D-plane-based background removal

are discussed later.

For multi-scale feature extraction, various deep models [e.g.,

Darknet (Wood, 2009) or ResNet (He et al., 2016)] can be utilized.

In this study, ResNet-50 is used as the backbone to release the

computational burden of deep models during feature extraction and

facilitate real-time performance. The very last feature map learned

by different stages (e.g., conv1, conv2, and conv3) is used as multi-

scale features. We denote these feature maps as {C1,C2,C3,C4,C5}.

The stride steps of these feature maps are {2, 4, 8, 16, 32} with respect

to the original image. Only {C3,C4,C5} are used in FPN for feature

fusion and the fused feature maps are denoted as {P3, P4, P5}. Our

feature extraction and fusion module can be formulated as follows:

image_f = BackgroundRemoval
(

image_rgbd
)

Fbackbone = {C3, C4, C5} = ResNet
(

image_f
)

FFPN = {P3, P4, P5} = FPN (Fbackbone)

Inspired by the fact that grasp rectangles are often much small than

the object’s boundaries, we use different prior rectangle sizes for

object detection and grasp detection. The object detection head and

the grasp detection head share a similar structure with the detection

head (Redmon and Farhadi, 2018). The output tensor for object

detection is in the shape ofN×N×ko× (4 + 1+ Co), whereN×N

is the size of the feature map, ko is the number of predicted bounding

boxes, 4 stands for the number of parameters of a bounding box, 1

stands for the channel of confidence, and Co is the number of object

categories. Similarly, the output tensor for grasp detection is in the

shape of N ×N × kg × (5+ Ca + 1), where 5 stands for the location,

width, height, and orientation of a grasp rectangle, Ca is the number

of angle bins, and 1 stand for the successful rate prediction.

3.3. Background removal

Robotic manipulation often encounters a cluttered environment.

The captured RGB-D images include both the target objects to be

grasped and the background surroundings. To achieve an accurate

object and grasp detection, we should focus on the pixels belonging to

the targets. The additional observation on backgrounds may distract

our attention from the targets. Figure 3 presents a quantitative

analysis of this additional information. When the background is

removed, the detection model only needs to learn features from

the target objects and all learned features are valuable for final

manipulation. However, if the RGB-D image encounters a cluttered

background, the model will have to learn features from both

the targets and the background, and distinguish which feature

contributes to the downstream tasks. This will increase the burden

of the model for feature extraction and also increase the number of

parameters to learn task-specific features. According to Dong et al.

(2021), these additional cluttered background pixels will even lead to

a false grasp detection.

To eliminate the cluttered background and let the model focus on

the targets, Dong et al. (2021) adopt an encoder–decoder-based U-net

model to segment the input image into foreground and background.

It is indeed a potential way to filter out the background in an image.

But the U-net model needs to be trained on a large dataset and its

generalizability to new observations is limited. Instead of recognizing

the background in the image domain, we present a background

removal method in 3D space. We assume that objects to be grasped

are laid on a 3D plane (such as the surface of a desk), which is the

common case in robotic manipulation. Under this assumption, pixels

that are up to the 3D plane are defined as the foreground, while pixels

in or under the 3D plane are defined as the background. This could

separate the targets from the cluttered background in most cases. In

the top-left image in Figure 3, the white vertical surface will also be

considered as the foreground using the aforementioned approach.

But this mis-segmentation will not affect the detection of the targets

since the vertical surface is disconnected from the targets.

For the 3D plane estimation, we use a model-based method to

fit the unknown parameters. In 3D spaces, a plane is defined as

aX + bY + cZ + d = 0, with
(

a, b, c, d
)

as the plane parameters.

Given three points, we can fit a plane for it. Since pixels belonging

to the 3D plane are dominant in the image, we adopt a RANSAC-

based method to fit the parameters of the largest 3D plane in the

image. The method achieves its goal by iteratively selecting a random

subset of the original 3D points. The selected subset is assumed to

be inliers and the plane parameters are fitted with respect to these

inlier points. Then all other points are tested against the fitted model.

If a point fits well to the estimated model, it will be considered

as inliers to the model. The fitted 3D plane is reasonably good if

sufficiently many points are classified as inliers. In this study, 3D

coordinates are computed from the depth image with a fixed camera

intrinsic parameter when 3D points are not presented in the dataset.
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FIGURE 2

Outline of our Simultaneous Object and Grasp Detection (SOGD) model. SOGD takes an RGB-D image as input and outputs a series of recognized

objects together with the most appropriate grasp for every single object. It consists of five parts: a pre-processing module to remove background from

the cluttered scene, a backbone (e.g., Darknet or ResNet) and FPN for hierarchical feature extraction, two separate branches for object detection and

grasp detection, and an alignment module to assign a most appropriate grasp for each detected object.

FIGURE 3

Illustration of the unnecessary e�orts spent on the cluttered background during feature extraction. Top lines are original images and foreground images.

Bottom lines are the corresponding histograms of the top images. From the histograms, it can be seen that the additional information which is useless to

target detection will significantly increase when a cluttered background is encountered in the image.

We also applied voxelization to speed up the process and generate a

finer plane.

3.4. Separate object and grasp detection
branches

Object detection and grasp detection are both detection

problems. These two tasks share a similar output in the regression

of location, width and height of a rectangle (as the bounding box

for object detection and the grasp rectangle for grasp detection),

and a confidence score (as the classification for object detection and

the grasp quality for grasp detection). According to observation, we

design two separate detection branches for these two tasks, but the

branches share a similar architecture as shown in Figure 4.

The structure of our two detection branches is motivated by

modern object detectors (Redmon and Farhadi, 2018). The detection

head takes multi-stage outputs from FPN as inputs to detect objects
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FIGURE 4

Structure of the object/grasp detection head. Our object detection head and grasp detection head share a similar structure except for the output

channels. Both heads take {P3,P4,P5} from the FPN as inputs. The output of object detection includes the bounding box and object categories, while the

output of grasp detection has more channels for orientation and grasp score.

or grasp configurations at different scales. In fact, a gripper only needs

to grab a small part of an object to take it up, instead of grabbing

the whole of it. As a result, the detected rectangle for grasp is often

smaller than the bounding box of the object. Thus, we use the same

inputs as modern detectors for object detection and grasp detection,

but a relatively small-scale prior size for grasp detection. This enables

our model to use a same-level semantic feature for both tasks.

Our detection head consists of a convolution set, a 3 ×

3 convolution block, and a 1× 1 convolution layer for prediction. The

multi-stage outputs of FPN are treated as fused features which include

both texture and semantic information extracted from the input

image. The convolution set is designed to learn a task-correlated

feature representation from the texture and semantic information.

Then the 3 × 3 convolution block fuses task-corelated features at

the top and current scales. The 1 × 1 convolution layer is used to

match the number of channels to the final predictions. The number

of channels of outputs for object detection is ko × (4 + 1+ Co),

where ko is the number of predicted bounding boxes for each grid

cell; 4 stands for (txo , t
y
o , t

w
o , t

h
o ), parameters of a bounding box; 1 stands

for the confidence of the prediction; and Co is the number of object

categories. Similarly, the number of channels of output for grasp

detection is kg × (5+ Ca + 1), where kg is the number of predicted

grasp rectangles; 5 stands for (txg , t
y
g , t

w
g , t

h
g , t

θ
g ), parameters of a grasp

rectangle; 1 stands for the score of the grasp configuration; and Ca

is the number of angle bins. The mathematical computation of our

detection head is as follows:

Ftask = {T3,T4,T5} = ConvolutionSet (FFPN)

Ftask_fusion = {TF3,TF4,TF5}

TFi = Convolution (TFi+1 + Ti)

Pro= Conv1×1

(

Ftask_fusion
)

3.5. Alignment between objects and grasp
configurations

The two detection branches make predictions for objects and

grasp configurations separately. To model the correspondence

between detected objects and grasp configurations, we design an

alignment module. Given an object prediction Proo ∈ RN×N×ko and

a grasp prediction Prog ∈ RN×N×kg , the correspondences between all

possible pairs are defined as Procorr ∈ R(N×N×ko)×(N×N×kg). Objects

and grasp configurations are detected at different scales. Generating

correspondences across multi scales would significantly increase the

computational complexity. Thus, we only consider possible object-

grasp pairs within the same scale.

Our alignment module takes the task-correlated features from

object detection head TFo ∈ RN×N×co and grasp detection head

TFg ∈ RN×N×cg as input. Then two 1 × 1 convolution layers

are applied to the features separately, resulting in the outputs of
´
Fo ∈ RN×N×ko×f and

´
Fg ∈ RN×N×kg×f . The two feature maps are

reshaped into a 2D matrix and transpose matrix multiplication is

applied to generate the output Fcorr ∈ R(N×N×ko)×(N×N×kg). Finally,

we use a sigmoid activation function to model the joint possibility of

the detection pairs. The mathematical computation of our alignment

module can be formulated as follows:

´
Fo = Conv1×1 (TFo)

´
Fg = Conv1×1

(

TFg
)

Fcorr = reshape(
´
Fo) • (reshape(

´
Fg))

T

Procorr = sigmoid(Fcorr)
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Though our two detection heads make predictions separately, our

model is forced to learn a better Procorr to model the correlation

between the predictions. At inference, we use two additional

parameters ko and kc to control the number of final predictions.

First, top ko object predictions are selected from Proo, then top kc
correlated grasp predictions are selected and assigned to the detected

objects. If the quality of a grasp prediction is smaller than a threshold,

the grasp prediction will be filtered out from the alignment results. In

this way, our model can be easily extended to multi-object detection

and multi-grasp detection cases.

3.6. Loss function

The loss of our SOGD model consists of three parts: object

detection loss Lo, grasp detection loss Lg , and alignment loss Lcorr .

The loss of object detection is defined as:

Lo = L
reg
o + α × Lclso

L
reg
o =

1

N
reg
o

∑

i

smoothL1
(

tio,t̂
i
o

)

Lclso =
1

Ncls
o

∑

i

Lossfocal

(

clsi,ĉlsi

)

where tio and t̂
i
o are ground truth and predictions for a bounding box,

respectively. We use the smooth L1 loss for regression and focal loss

(Lin et al., 2017) for classification. N
reg
o and Ncls

o are the normalizers.

α is the weight of classification loss.

Similarly, the loss of grasp detection is defined as:

Lg = L
reg
g + β × L

angle
g + γ × Lscoreg

L
reg
g =

1

N
reg
g

∑

i

smoothL1

(

tig ,t̂
i
g

)

L
angle
g =−

∑

i

[

ai log
(

âi
)

+ (1−ai) log
(

1−âi
)]

Lscoreg =−
∑

i

[

si log
(

ŝi
)

+ (1−si) log
(

1−ŝi
)]

where tig and t̂
i
g are ground truth and predictions for a grasp rectangle,

respectively. β and γ are hyperparameters.

The loss of object and grasp alignment is defined as:

Lcorr =−δ×
∑

i

[

pi log
(

p̂i
)

+
(

1−pi
)

log
(

1−p̂i
)]

where pi and p̂i are ground truth and predictions of a candidate pair

for object and grasp, respectively. δ controls the weights of alignment

loss to the total loss.

The total loss function is the summation of the three losses:

L= Lo + Lg + Lcorr

4. Results

To evaluate the performance of our proposed SOGD model

against previousmethods, we test it on two publicly available datasets:

the Cornell Grasp Dataset (Lenz et al., 2013) and the Jacquard Dataset

(Depierre et al., 2018). Our model is designed for the task of grasp

detection, but it also outputs predictions for object detection. Thus,

themetrics used in our experiments consist of two parts. For the grasp

detection task, we use the popular Jaccard Index and angle difference

as metrics, consistent with previous methods (Jiang et al., 2011; Chu

et al., 2018; Kumra et al., 2020; Yu et al., 2022b). A predicted grasp

configuration is considered as correct if and only if the following two

conditions are satisfied.

(1) Jaccard Index of the predicted grasp rectangle and the ground

truth is >0.25. Assuming that b̂g is the predicted grasp rectangle and

bg is the ground truth, Jaccard Index is defined as:

Jaccard Index =

∣

∣

∣
b̂g∩bg

∣

∣

∣

∣

∣

∣
b̂g∪bg

∣

∣

∣

(2) the difference between the predicted orientation angle and the

ground truth is <30◦.

For object detection tasks, we use accuracy instead of the

commonly used mAP as metrics. In this research, object detection

is an additional output only to achieve the final goal of predicting the

most possible grasp for each individual object in a cluttered scene.

Our method only needs to know where the object is, and what kind

of object it is does not matter too much. So, we consider a prediction

as correct if the intersection over union of the predicted bounding

box and ground truth is >0.5.

4.1. Grasp detection results on cornell grasp
dataset

There are 878 images together with the corresponding depth

image and 3D point clouds in the Cornell Grasp Dataset (Lenz et al.,

2013). The resolution of the images is 640× 480. Each image contains

a single graspable object at different positions and orientations. The

dataset is manually annotated with many positive and negative grasp

rectangles. Following previous research (Zhang et al., 2019; Dong

et al., 2021), we use a five-fold cross-validation strategy to evaluate

the performance of our method and report the average detection

accuracy in this section. The reported results include both image-

wise (IW) and object-wise (OW) detection accuracy. In image-wise

experiments, all images are randomly divided into a train set and

a test set. The object in the test set may have been learned during

training but at different poses and views. This is mainly to test

the generalization ability of our method when objects are captured

from multiple points of view. In object-wise experiments, images are

divided according to the object categories. Objects in the test set have

never been seen during training. This is to test the generalization

ability of our method when it faces a new kind of object.

The evaluation of grasp detection accuracy and efficiency are

summarized in Table 1. Our method achieves 98.9 and 98.3%

accuracy on image-wise and object-wise detection tasks, respectively.

Compared with the state-of-the-art RGB-D-based method (Yu et al.,

2022b), our SOGD shows an improvement of +0.7 and +1.2% in
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accuracy. The efficiency of our method is relatively low than SE-

ResUNet (Yu et al., 2022b). In SE-ResUNet, a squeeze-and-excitation

residual network is designed to predict the width and orientation of

the grasp rectangle and the quality of the grasp outputs. It does not

involve the detection of the target object. As a result, the complexity

of SE-ResUNet is smaller than ours and their detection ability is

not strong as ours. Similar results are observed when our SOGD is

compared with Kumra et al. (2020). Compared with the state-of-the-

art RGB-based method (Yu et al., 2022a) and RG-D-based method

(Park et al., 2020), our SOGD shows a similar performance in the

TABLE 1 Grasp detection results on the Cornell Grasp Dataset.

Methods IW/% OW/% FPS Input

Chu et al. (2018) 94.4 95.5 8.3 RGB

Wang et al. (2021) 96.1 95.5 - RGB

Asif et al. (2019) 96.7 - - RGB

Yu et al. (2022a) 98.9 97.8 50.0 RGB

Dong et al. (2021) 96.4 96.5 9.4 RG-D

Song et al. (2020) 95.6 97.1 RG-D

Zhang et al. (2019) 92.3 91.7 25.2 RG-D

Park et al. (2020) 98.6 97.8 62.5 RG-D

Jiang et al. (2011) 60.5 58.3 0.2 RGB-D

Lenz et al. (2013) 73.9 75.6 0.7 RGB-D

Chu et al. (2018) 96.0 96.1 8.3 RGB-D

Kumra et al. (2020) 97.7 96.6 50.0 RGB-D

Yu et al. (2022b) 98.2 97.1 40.0 RGB-D

SOGD (ours) 98.9 98.3 9.6 RGB-D

The best performance of methods within a same kind of input is shown as bold.

image-wise detection task, but a superior performance in the object-

wise detection task. This is mainly because our SOGD not only learns

possible grasp configurations but also the correspondences between

the target object and grasp candidates. In this way, it has the ability

to figure out what is the best grasp configuration for a specific kind

of object. Therefore, when facing new objects, it can benefit from

learned knowledge of the relationship between grasp configurations

and objects.

Visualization of typical grasp detection results is shown in

Figure 5. The three lines in the figure are ground truth annotations,

predicted grasp configurations of our SOGD, and the corresponding

grasp quality predicted by our SOGD. For each detected object, our

model outputs the best grasp rectangle for it. In this experiment, the

quality is not the direct output from the grasp detection branch in

our SOGD model. Our grasp detection branch outputs a score map

for each grasp candidate that can be treated as the quality of the grasp,

as mentioned in a previous study (Yu et al., 2022a,b). But our model

includes an alignment module to learn the correspondences between

predicted objects and grasp configurations. The quality is the product

of the score map and the correspondences. It represents the success

rate of a grasp if there is a detected target object. From the figure,

it can be seen that our SOGD has a good ability in detecting grasp

rectangles and the output quality map is able to provide a clear reason

for the grasp decision.

4.2. Grasp detection results on Jacquard
Dataset

The Jacquard Dataset (Depierre et al., 2018) is collected from a

simulator with CAD models of the ShapeNet dataset. There are 54k

images with 11k different kinds of objects in the dataset. A large

number of samples facilitate ourmodel training. However, we still use

some data augmentation strategies (like random rotation) to increase

FIGURE 5

Typical grasp detection results of our SOGD on the Cornell Grasp Dataset. Top line is ground truth annotation; middle line is the prediction of our SOGD;

and bottom line is the estimated grasp quality of the corresponding detection.
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the robustness of the learned model. The resolution of images in this

dataset is 1,024 × 1,024. We down-sample the original image to a

size of 512 × 512 for both training and testing. Unlike results on the

Cornell Dataset, we report the overall accuracy of the grasp detection

results on the Jacquard Dataset.

Table 2 reports the performance of our SOGD against the state-

of-the-art methods. Our SOGD shows a 99% accuracy on the

Jacquard Dataset, which is higher than both RGB-based and RG-D-

based state-of-the-art methods. Compared with MASK-GD (Dong

et al., 2021), our method achieves a +1.4% performance boost.

MASK-GD also involves pre-processing for background removal.

Background removal is treated as an image segmentation problem

and a deep network is trained for it in MASK-GD. This strategy

has the potential to recognize the foreground targets from the

cluttered scenes, and may also suffer the problem of limited

generalization ability. In addition, our model has an additional

alignmentmodule to learn the relationship between object candidates

and grasp candidates, whileMASK-GD cannot. Compared with other

TABLE 2 Grasp detection results on the Jacquard Dataset.

Methods Accuracy/% Input

Zhou et al. (2018) 91.8 RGB

Zhang et al. (2019) 90.4 RGB

Dong et al. (2021) 97.1 RGB

Zhou et al. (2018) 92.8 RG-D

Zhang et al. (2019) 93.6 RG-D

Dong et al. (2021) 97.6 RG-D

SOGD (ours) 99.0 RGB-D

The best performance of methods within a same kind of input is shown as bold.

grasp detection methods, the improvement of our SOGD is more

significant.

Figure 6 shows some typical grasp detection results of our SOGD

on this dataset. Both the detected grasp configurations and the quality

maps are visualized to give a better understanding of the results.

From the figure, it can be seen that our SOGD can well detect grasp

candidates and outputs a reasonable quality map on this dataset.

4.3. Object detection results

For object detection evaluation, our SOGD model is trained and

tested on the two datasets mentioned earlier. We use the Labelme

tools from MIT to manually annotate bounding boxes and class

labels on the Cornell Dataset. To prevent overfitting, the pre-trained

FIGURE 7

Typical object detection results.

FIGURE 6

Grasp detection results of our SOGD on the Jacquard Dataset. Top line is ground truth annotation; middle line is the prediction of our SOGD; and

bottom line is the estimated grasp quality of the corresponding detection.
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FIGURE 8

Grasp detection results on images with various kinds of backgrounds. (A) SOGD without background removal (BR) on images without background. (B)

SOGD without BR on original images from Jacquard Dataset. (C) SOGD with BR on the original images. (D) SOGD without BR on images with the

background being replaced. (E) SOGD with BR on images with the background being replaced. From left to right the background of the image becomes

more cluttered.

parameters of ResNet-50 are fixed for the backbone and several data

augmentation strategies are involved, such as rotation, translation,

flip, random crop, and illumination change. Typical experimental

results are shown in Figure 7. From the figure, it can be seen that

after removing the background boundaries foreground objects are

much easier to detect, releasing the burden of the object detection

branch and resulting in more accurate bounding box predictions. In

our experiments, though we pay more attention to the prediction

accuracy of where the object is, the classification confidence of

our SOGD is almost above 0.75 on the two datasets. The above-

mentioned observations show that our SOGD model has a good

performance in detecting objects from a cluttered scene, especially

in identifying the boundaries of the objects.

4.4. Discussion on background removal

From the results in Tables 1, 2, it has already been seen that

our SOGD has superior performance than existing methods without

background removal (Zhang et al., 2019; Kumra et al., 2020; Yu

et al., 2022b). But to investigate how much the background removal

contributes to this performance boost, we conduct an ablation

study on this pre-processing. The Jacquard Dataset is used in this

experiment since it provides a ground truth mask for foreground

target objects. With this mask, we generate two additional types of

images from the original dataset to test the performance of our SOGD

on it. The first one is to filter out backgrounds with the ground

truth mask. The second one is to fill the background with a cluttered

background. To achieve this, we download a number of images from

the Internet as the background image datasets and randomly choose

one to replace the background images from the Jacquard Dataset.

We provide a comparison among five types of grasp detection

configurations: (1) SOGD without background removal on images

with background filtered out, (2) SOGDwithout background removal

on the original image, (3) SOGD with background removal on

the original image, (4) SOGD without background removal on

images with background being replaced, and (5) SOGD with

background removal on images with background being replaced.

Typical results are shown in Figure 8. The background of the

scene in Figure 8 becomes more cluttered from left to right. From

the figure, we observe that the predicted grasp configurations

will be much better when the background is removed from

the image.

5. Conclusion and future study

This study is focused on the problem of grasp detection

from an RGB-D image. Unlike previous methods, we solve this

problem by simultaneously detecting the target object and the

corresponding grasp configurations. This is motivated by the fact

that when grabbing an object, we humans first identify where the

object is and then make a decision on which part of the object

to grab. To this end, a novel neural network SOGD together

with its learning method is proposed. In SOGD, object and

grasp configurations are first detected by two separate branches,

and then the relationship between object candidates and grasp

configurations is learned by an alignment module. The best grasp

configuration is predicted according to the grasp score and its

correspondence to the target object. Our method is tested on two

publicly available datasets. A series of experiments are conducted

and both qualitative and quantitative experimental results are

presented. The results demonstrate the validity and practicability of

our method.

To deal with grabbing in a cluttered scene, a pre-processing

for background removal is designed. Unlike previous methods

where background removal is treated as an image segmentation

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2023.1110889
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Zhang et al. 10.3389/fncom.2023.1110889

problem, we propose to leverage the prior knowledge that objects

to be grabbed are often placed on a 3D plane. Therefore,

we adopt a RANSAC-based plane fitting method to detect the

largest 3D plane in the scene. All pixels laid in or under

the plane are considered background. The experimental results

show that our strategy makes grasp detection more robust in

cluttered environments.

The stacked scene is not considered in this research. In daily life

cases, it is common that objects to be grabbed are laid on top of

each other. This is more challenging for the grasp detection method

because it has to figure out the execution order of the predicted grasp

configurations. This is an interesting topic for our future study. In

addition, the kind of object for model training is limited. It has to

face a large number of unknown objects when the learned model is

deployed to real devices. It is interesting to extend our model with

the life-long learning ability after deployment. We will explain it in

our future study.
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