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A computational passage-of-time
model of the cerebellar Purkinje
cell in eyeblink conditioning

Matthew Ricci1†, Junkyung Kim1† and Fredrik Johansson2*

1Carney Institute for Brain Sciences, Brown University, Providence, RI, United States, 2Department of

Experimental Medical Science, Lund University, Lund, Sweden

The cerebellar Purkinje cell controlling eyeblinks can learn, remember, and

reproduce the interstimulus interval in a classical conditioning paradigm. Given

temporally separated inputs, the cerebellar Purkinje cell learns to pause its tonic

inhibition of a motor pathway with high temporal precision so that an overt blink

occurs at the right time. Most models place the passage-of-time representation

in upstream network e�ects. Yet, bypassing the upstream network and directly

stimulating the Purkinje cell’s pre-synaptic fibers during conditioning still causes

acquisition of a well-timed response. Additionally, while network models are

sensitive to variance in the temporal structure of probe stimulation, in vivo findings

suggest that the acquired Purkinje cell response is not. Such findings motivate

alternative approaches to modeling neural function. Here, we present a proof-

of-principle model of the passage-of-time which is internal to the Purkinje cell

and is invariant to probe structure. The model is consistent with puzzling findings,

accurately recapitulates Purkinje cell firing during classical conditioning andmakes

testable electrophysiological predictions.1

KEYWORDS

Purkinje cell, timing, associative learning, eyeblink conditioning, cerebellum

1. Introduction

While long-term potentiation (LTP) and long-term depression (LTD) are often

measurable during memory encoding, the prevailing dominant view that such changes

in synaptic strength entirely explain memory has been challenged by several findings. In

both Aplysia (Chen et al., 2014) and mammalian hippocampal cells (Ryan et al., 2015),

long-term memory does not in all cases require the persistence of changes in synaptic

strength. Furthermore, results from eyeblink conditioning suggests that a single Purkinje

cell can memorize a temporal relationship of hundreds of milliseconds between two inputs

(Johansson et al., 2014).

If a conditional stimulus (CS), such as a tone, is repeatedly followed by a blink-eliciting

unconditional stimulus (US), with a fixed temporal delay (the interstimulus interval or ISI),

a blink response to the CS develops. This conditioned response (CR) occurs just before the

expected US onset for ISIs from 100 ms to seconds (Gormezano and Moore, 1969; Kehoe

and Macrae, 2002). The underlying learning occurs in a specific physiologically defined

microzone of cerebellar cortex which demonstrably controls the eyelid (Yeo et al., 1985a;

Hesslow, 1994a,b; Mostofi et al., 2010; Heiney et al., 2014). Because many and diverse

conditional stimuli may predict the same unconditional stimulus, the association-forming

mechanism should exhibit extensive fan-in, which the Purkinje cell indeed does; its vast

dendritic arbor gets CS input from ∼200,000 parallel fibers (Harvey and Napper, 1991) that

1 All code can be found at https://github.com/mgricci/purkinje.
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FIGURE 1

Simplified neural circuitry. The CS is transmitted via the

mossy/parallel fiber system and the US via the climbing fiber. IO,

inferior olive; cf, climbing fiber; mf, mossy fibers; Pc, Purkinje cell;

Gc, Golgi cell; pf, parallel fibers; GRC, granule cells; DCN, deep

cerebellar nuclei.

come from the tiny and densely packed granule cells (GRC) in the

granular layer of the cerebellar cortex, while it gets US input from a

single climbing fiber (Yeo et al., 1985b; Mauk et al., 1986; Steinmetz

et al., 1989; Hesslow and Yeo, 2002; Figure 1) that contacts the

entire dendritic arbor (Eccles et al., 1967).

Purkinje cells, which are the sole output neurons of the

cerebellar cortex, have high tonic firing rates due to an internal

pacemaker mechanism (Cerminara and Rawson, 2004). Given CS-

US pairings, blink-controlling Purkinje cells learn an adaptively

timed pause response (Hesslow and Ivarsson, 1994; Jirenhed et al.,

2007; Jirenhed and Hesslow, 2011a; Halverson et al., 2015; Ten

Brinke et al., 2015) in their tonic inhibition of a motor pathway

(Hesslow and Yeo, 2002). This learned pause mirrors the known

features of behavioral CRs. It is extinguished during repeated CS

alone presentations and it is rapidly re-acquired (Jirenhed et al.,

2007). The pause is always adaptively timed in that it reaches its

maximal amplitude just before the predicted onset of the US, and

ends shortly after, even if the CS lasts only a few milliseconds or

outlasts the ISI by hundreds of milliseconds (Jirenhed and Hesslow,

2011b; Johansson et al., 2014). In temporal uncertainty paradigms

where mixed trials of different ISIs are used, multiple temporally

locked pause responses to the same CS are learned (Halverson et al.,

2015; Jirenhed et al., 2017). Importantly, learning at the behavioral

level is unreliable or absent with short ISIs (Smith et al., 1969;

Salafia et al., 1980). A similar minimal ISI of 100 ms for effective

conditioning is observed at the level of the single Purkinje cell as

well (Wetmore et al., 2014).

Contemporary modeling is dominated by the idea of the

granular layer network generating a passage-of- time (POT)

representation. (Bullock et al., 1994; Buonomano and Mauk, 1994;

Medina and Mauk, 2000; Hansel et al., 2001; Yamazaki and Tanaka,

2009; Lepora et al., 2010). Before learning, the Purkinje cell is

assumed to fire at its tonic rate due to net zero or net excitation

from the balanced activity of excitatory granule cells and inhibitory

basket/stellate interneurons. In response to a CS drive from the

mossy fibers, time-variance in granule cell (GRC) activity is in

most models assumed to arise from fast and partly lateral feedback

inhibition from Golgi cell interneurons (reviewed in Johansson

et al., 2016). The effect would be a series of random transitions

between activity and quiescence in each granule cell, creating

instantaneous population vectors that represent time. LTD is then

selectively recruited for those GRC-to-Purkinje cell synapses most

activated by the CS around the time of US onset. LTD tips the

balance of afferent activity toward net inhibition near expected US

onset, so that, after learning, the CS alone initiates a well-timed

pause in Purkinje cell firing.

It is challenging to reconcile granule cell POT models with

several empirical results. First, Purkinje cells learned well-timed

pause responses to different ISIs even though the granular layer

network was bypassed (Johansson et al., 2014). Furthermore,

both GABA-ergic interneurons (Johansson et al., 2014) and

glutamatergic AMPA receptors in the molecular layer (Johansson

et al., 2015) could be blocked without disrupting the pause

response. These three puzzling findings are independently difficult

to reconcile with current modeling. Instead, these results suggest

that the precisely timed Purkinje cell activity could depend upon

an internal timing mechanism that measures and stores temporal

duration.

Furthermore, existing POT models require the probe stimulus

to endure for at least as long as the training stimulus. For, as soon

as the probe terminates, afferent activity would shift to its pre-

stimulation conditions and return the net input of the Purkinje cell

to net zero, preventing pause expression. However, after training,

the Purkinje cell and experimental subject can produce a well-

timed pause and overt blink given only the initial (<20 ms) part

of the CS (Svensson and Ivarsson, 1999; Jirenhed and Hesslow,

2011b). Also, Johansson et al. (2014) found that drastically varying

the CS on probe trials (17.5–800 ms, 100–400 Hz) had no effect

on the learned pause. This suggests that the computational process

underlying the CR contains a strong non-linearity which switches

the Purkinje cell from a tonic spiking state to a pause-expressing

state.

Biochemical models that present possible mechanisms for parts

of the phenomena have recently been proposed (Majoral et al.,

2020; Mandwal et al., 2021). Given that the currents and molecules

involved are yet to be elucidated, here we explore a conceptual and

mathematical model of what kind of mechanism could explain all

the phenomena described above.

We see two crucial criteria for the modeling of a Purkinje cell

timing mechanism:

• Physiological: The neural machinery for learning and

expression of conditioned pause responses must be contained

in the Purkinje cell itself.

• Computational: The computational process initiating

expression of a pause response must be gated by a strong

non-linearity or “switch.”
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The model is inspired by a suggested conceptual mechanism

whereby CS onset prompts the Purkinje cell to release a batch

of evolving “recorder units” (Johansson and Hesslow, 2014). The

precise biophysical identity of recorder units does not substantially

affect the abstract theory; the only crucial feature of these units is

that they evolve through different time-encoding states beginning

at CS onset. Each unit contributes to inhibition of the cell at

the interval that it encodes, and the strength of inhibition at any

given time after CS onset is encoded by the quantity of units that

encode the same interval, which increases via repeated exposure

to CS-US pairs. Recorder units thus constitute an intracellular

POT representation. Importantly, this idea satisfies the two above

criteria: the pause mechanism is internal to the Purkinje cell and it

is mediated by a switch.

Below, this theory is instantiated as a computational model

with three parts. A “write” module intracellularly records the

interstimulus interval. The distribution of recorded intervals is

stored in an “archive.” Third, a “read” module translates the

archived intervals into a timed hyperpolarization event. These

states become active only when afferent activity switches the cell

from its passive OFF state to its active ON state. We trained

this model cell with several paradigms typical to the eyeblink

conditioning literature and found:

• Given ISIs ranging from 100 to 500 ms, the cell learns a pause

response with critically timed onset, maximum and offset, as

in Jirenhed et al. (2007) and Johansson et al. (2014).

• After training, the cell produces the learned pause given only

the initial part of the CS, as in Svensson and Ivarsson (1999),

Jirenhed and Hesslow (2011b), and Johansson et al. (2014).

• The learned pause is extinguished by CS-only trials in about as

much time as initial acquisition, as in Jirenhed et al. (2007).

• Alternating ISIs across trials teaches the cell two pauses, as in

Jirenhed et al. (2017).

Additionally, we ran simulations, which, to our knowledge,

have not been tested on the biological Purkinje cell. First, we

tried stimulating the cell with two-part CSs or two-part USs so

that the cell was effectively exposed to two ISIs on each trial. If

the CS consisted of two impulse trains separated by a period of

silence followed by a US, the model cell learned the longer ISI.

If two USs were presented, the model cell learned the shorter ISI.

This contrasts with established models. Next, we tried varying the

intertrial interval (ITI) along with the ISI. We found that time to

pause acquisition in all simulations was a function of both of these

temporal quantities.

The computational model reproduces the surprising findings

in Johansson et al. (2014) and accords well with the conditioning

literature at large. Additionally, the model displays several

behaviors thus far not explained by existing models. We

concentrate on the formal aspects of the model and their empirical

motivation, rather than on biophysics. While many details of the

molecular basis for this phenomenon remain unknown and thus

preclude the latter kind ofmodel, we believe that our computational

simulation and predictions can be informative. Most striking

among the results is a dependency of the number of trials until

pause acquisition on the ISI/ITI ratio. The behavior of this formal

model may help to inform future electrophysiology.

2. Model

2.1. Model structure

The Purkinje cell has two computational goals. First, it must

record or “write” an ISI into memory, here instantiated as an

“archive.” Second, it must “read” this ISI into a well-timed pause

response. As stated above, the Purkinje cell only transitions from

its passive spiking behavior to its active read/write behavior when

some type of switch is activated. Thus, we may formally model the

cell as having two modules (read/write; Figure 2, top vs. bottom

row) which can be in two states (OFF/ON; Figure 2, left vs. right

column).

Before CS stimulation, both the read and write modules are

OFF and the cell spikes at its tonic rate. When pre-synaptic spikes

arrive at the cell, a quantity called “activation energy” (AEwrite

and AEread) begins to increase. When AEwrite reaches a threshold

value, the write module switches to the ON state. A refractory timer

on this switch is then reset so that the cell is insensitive to the CS for

a given period.

When the write module is activated after sufficient CS

stimulation, a batch of “recorder units” is released from a “reserve.”

These units are a formal abstraction meant to stand for whatever

process encodes the POT within the Purkinje cell. The reserve is a

way of imagining these units before the write module is activated.

After some recorder units have been released from the archive, the

reserve begins to replenish at a constant rate. The released recorder

units evolve through states in a way thatmirrors the passage of time.

For example, if they can encode four states, A = 50 ms, B = 100

ms, C = 200 ms, and D = 300 ms, then the POT is represented by

the sequential evolution of the recorder units A → B → C → D.

Units in the reserve encode 0 ms. In the model presented here the

evolving steps are however continuous rather than discrete.

At US onset, the evolution stops and the batch of recorder units

is stored in an “archive.” Again, this archive is simply a way of

imagining the units after their evolution has been terminated by US

onset (unless US onset is too early, for reasons discussed below).

We assume that the evolution of the batch is noisy, so that, when

the evolution stops, there are some units in each state. Thus, the

stored batch is a histogramwhich constitutes an estimate on the ISI.

For example, if the ISI is 200 ms, then there will be some units in

states A, B, and C. We choose to imagine the recording medium as

consisting of many individual “units,” since we want to use a stored

histogram (which displays the frequencies of many elements or

samples) to estimate the ISI. The routine of write/OFF→write/ON

→ store batch is repeated with each CS presentation, as long as

they are spaced far enough apart to respect the refractory timer on

the write module. With each presentation, a batch of recorder units

is released, evolves and is stored in the archive, updating the total

number of recorder units in the archive encoding each time value.

Parallel to the writing process is a reading process, which

is itself gated by a switch mechanism (Figure 2, bottom left).

Whether the read switch is activated depends on the read

module’s own activation energy (AEread) and refractory timer.

When AEread reaches a threshold, the read module transitions

to the ON state (Figure 2, bottom right). The activated reading

module samples a batch of stored recorder units from the archive.

Each recorder unit in this batch contributes a fixed amount
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FIGURE 2

Model diagram. This diagram depicts the flow of events leading to the CR in the model Purkinje cell. (A) The write module’s switch is controlled by

the quantity AEwrite (upper box). AEwrite is increased with each CS spike (blue circle) and is otherwise subject to a passive decay. Only when AEwrite

reaches a threshold (diamond) does the cell transition to the write/ON state. When the switch is activated, a refractory timer (lower box) is reset and

begins to tick downward until it reaches 0. (B) When the write module switches ON, the reserve (tiled boxes, top) continually ejects a batch of

recorder units (tiled boxes, bottom). The reserve is then replenished until at maximum capacity. The ejected recorder units advance in state with the

passage of time until the first US spike (red circle), at which point the batch is stored in the archive. (C) The switch on the read module behaves

exactly as in the write case, but with di�erent parameter values. (D) A constant fraction of the archive (tiled boxes, top) is sampled. Each unit “counts

down” until the time encoded by its state. At this time (diamond), the unit introduces a fixed inhibitory current to the membrane (purple circle).

TABLE 1 Parameters and their values for the formal passage-of-time model.

Parameter τm Vrest Vthreshold Vhyperpolarization Vspike Re Ri Rp τwrite τread

Value 5 ms −70 mV −54 mV −85 mV 10 mV 50 � 2.25×106 � 50 � 70 ms 200 ms

Parameter AE0,write AEread AEthresh,write AEread,write Rmax τreserve q σ λ c

Value 0 0 2 2 1 100 1.25× 10−7

recorder units/ms

40 ms .3 3× 10−2

The membrane potential parameters are set to standard values and to match the empirically observed tonic firing rate of the Purkinje cell.

of inhibition to the cell at a time corresponding to its state.

For instance, if batch is released from the archive at time t

= 0, then a unit in state A will introduce inhibition to the

membrane potential at t = 50 ms. Note that, the more units

there are in a batch encoding a particular time, the greater

the inhibition will be at this time. In this way, the shape of

the archive’s histogram is directly translated into the timecourse

of inhibition.

2.2. Model details

For simplicity, we model the Purkinje cell as a single-

compartment, leaky integrate-and-fire-neuron (Equation 1) whose

parameters are given in Table 1. This simple neural spiking model

is appropriate for our purposes, since the Purkinje cell CR is

postulated to be internally generated and therefore does not rely

on complicated integration of pre-synaptic spikes:
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FIGURE 3

ISI and number of trials determine archive shape. Each curve plots the archive (y-axis, number of units encoding each time step on the x-axis) for

di�erent training durations and ISIs. Colors indicate 20 (red), 40 (magenta), 80 (yellow), 160 (green), 320 (blue), 640 (cyan) training trials. Further

training trials make the archive grow taller. Panels indicate 200 (A), 400 (B), 600 (C), and 800 (D) ms ISIs. Longer ISIs make the archive less peaked.

These di�erent shapes translate into di�erent inhibition profiles via the reading module.

τm
dV

dt
= V(t)− Vrest + ReCS(t)− RiA(t)+ RpP(t). (1)

The membrane potential is controlled by three sources of

current:CS, the 0–1 valued impulse train transmitted by the parallel

fibers with resistance Re; A, internally-generated inhibitory current

by the archive with resistance Re; and, P, internal, excitatory current

generated by the cell’s intrinsic pacemaker, which we model as a

Poisson impulse train with resistance, Rp, and rate, λ. When the

membrane potential reaches a threshold, Vthreshold, the potential

spikes to Vspike and then resets to Vhyperpolarization.

The switches on both the write and read modules are controlled

by a simple exponential growth function controlling activation

energy:

dAEmodule

dt
=

1

τmodule

(

AEmodule − AE0,module

)

+ CS(t) (2)

Here, AEmodule refers to the activation energy on the switch

for either the write or read module. The time constant for each

module’s switch, τmodule, controls the rate at which the energy grows

from its initial value, AE0,module, to a threshold, AEthresh,module. The

binary impulse train CS(t) increments AEmodule by 1 with each

parallel fiber spike.

If the pre-synaptic spikes arriving at the Purkinje cell from CS

stimulation are sufficiently frequent, AEwrite is driven to threshold,

at which point recorder units are released and allowed to evolve.

The write module’s reserve can hold a maximum of Rmax = 1

recorder units, representing 100% fullness. When the write module

switches on, the reserve depletes exponentially with time constant

τreserve and its refractory timer is reset so that it cannot detect the

CS for a fixed interval. As soon as the reserve begins to empty, it

begins to slowly repopulate at a constant rate q. For simplicity, we

assume that the state s of a released recorder unit r is real-valued,

so that a recorder unit can encode any time between CS onset and

US onset up to some maximum granularity 1t.

At the first US spike, the released batch of recorder units is

added to a cumulative archive, unless US onset is <100 ms. If the

first US spike occurs before this time, we assume that the batch

is simply discarded since neither the Purkinje cell pause nor the
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FIGURE 4

Basic CR acquisition. (A) Raster plot of spike times from Simulation 1. Green lines indicate CS onset and o�set. Red line indicates US onset. Probe

trials are marked by red spikes. Probe trials still produce the learned pause. (B) Peristimulus time histogram from Simulation 1. Vertical lines indicate

stimulation times, as in (A). (C) Inhibition caused by the archive on trial 400. Note that the time course of inhibition mimics the shape of the archives

displayed in Figure 3A, o�set by a few tens of milliseconds. This o�set is caused by the time it takes for the read module to detect CS onset and

initiate hyperpolarization. (D) Actual membrane potential during interstimulus period on trial 400. Note the thinning of spikes during the ISI, indicating

a well-timed CR.

overt blink can be learned for ISIs <100 ms. The shape of the

batch, and therefore the shape of the archive, is controlled by the

number of trials and the ISI (Figure 3). For short ISIs >100 ms,

the stored batch will consist mostly of recorder units approximately

encoding the ISI, since noise had little time to take effect. For longer

ISIs, noise overwhelms the evolution of recorder units, effectively

smoothing the histogram and reducing the peak near the ISI.

During the conditioning session, each CS triggers the release of

evolving recorder units, to the extent that those units are available

and have been replenished after previous releases, and the US

freezes their evolution to be stored in a single, persistent archive.

This archive, formally, is a single histogram whose mode is an

estimate of the CS-US interval. Brownian noise is simulated by

repeated blurring of the archive with a Gaussian kernel of standard

deviation σ = 40 ms.

The readmodule acts in parallel to the writemodule.When pre-

synaptic spikes are sufficiently rapid to drive AEread to threshold,

the read module switches to the ON state, and a constant fraction c

of recorder units are sampled from the archive. After activation, the

read module’s refractory timer resets so that reading is deactivated

for a fixed interval. Each unit in the read batch then introduces a

fixed amount of inhibitory current to the membrane at the time

corresponding to its state: if read switches ON at time t = 0 and

the archive contains nr recorder units encoding state s = t1, then

A(t1) = nrcgi. The shape of the stored archive (i.e., the histogram

estimate on the ISI) is thereby directly translated into inhibitory

current.

3. Results

3.1. Simulation 1: The cell learns a
well-timed pause response

First, we trained the model cell with a 200 ms ISI (Figure 4A).

CS stimulation consisted of a 100 Hz impulse train enduring for

300 ms and US stimulation consisted of a 500 Hz impulse train

enduring for 20 ms and beginning at 200 ms. The cell was trained

over the course of 400 trials with an ITI of 15 s. We declared that

trial on which the average spiking rate during the ISI dropped

to below 25% of the pre-training value to be the first CR. In

this simulation, the cell learned the pause response at trial 124.

Additionally, starting after 300 trials, we removed US stimulation

on every 20th trial. On these probe trials (Figure 4A, red spikes),

the cell still produced a pause visually indistinguishable from that

of non-probe trials. An average firing rate, estimated by binning
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FIGURE 5

CR temporal features with varying ISIs. In these plots, colored dots

indicate a temporal feature of the CR (onsets, maxima, o�sets) and

the blue line indicates US onset. Pause maxima occurred shortly

before US onset. Pause onsets always preceding the expected US

and pause o�sets always succeeding the US onset is due to some

recorder units encoding low time steps and others encoding

time-steps longer than the ISI. Bars represent standard errors

measured over ten simulations in which τwrite, τread,Ri, and c varied

randomly.

spikes in windows of 20 ms, averaging across 100 trials, is shown in

Figure 4B. The inhibition created by the archive and its effect on the

cell’s membrane potential are shown in Figures 4C, D, respectively.

Next, we trained the cell on a full battery of ISIs ranging from

150 to 500 ms in increments of 50 ms. All other training parameters

were fixed from the first 200 ms ISI simulation. For this wide range

of ISIs, the cell learned pauses with well-timed onsets, maxima, and

offsets (Figure 5). The timing of these pause features mimics those

found in experimental data (Johansson et al., 2014). By design, the

model cannot learn ISIs <100 ms.

3.2. Simulation 2: The cell response is
invariant to probe CS structure

Next, we stimulated the trained cell with probe CSs enduring

for lengths different from those used during training. Like in

Johansson et al. (2014), we trained a cell with a 100 Hz 200 ms CS

and then probed it with CSs that were altered in either duration

or frequency (Figure 6). Independent of probe CS duration and

frequency, the cell still produced a well-timed CR, albeit possibly

faring worse with the lowest frequency tested (right column, not

tested in vivo). The response invariance arises from the model’s

switch mechanism: a small amount of CS stimulation is sufficient

to trigger the reading of the stored pause information, during

which subsequent afferent parallel fiber activity has little effect. This

simulation demonstrates that the model satisfies the computational

constraint stipulated in the introduction: the learned pause is

expressed on probe trials, independent of CS duration. Seemingly

less robust responses with the lowest frequency tested is presumably

due to insufficient input summing to trigger reading.

3.3. Simulation 3: The pause is extinguished
over many CS-only trials

Because the read module gradually depletes the archive, many

CS-only trials will eventually extinguish the learned pause response.

To demonstrate this behavior, we provided a cell previously trained

on a 200 ms ISI with an additional 400 CS-only trials. The raster

plot in Figure 7 shows the gradual extinction of the pause. This

is in line with experimental data which shows the timescale of

extinction is typically less than or equal to that of acquisition

(Jirenhed et al., 2007).

3.4. Simulation 4: The cell can learn
multiple pauses if trained with di�erent ISIs
on interleaving trials

Jirenhed et al. (2017) found that interleaving trials with

different ISIs teaches the Purkinje cell two CRs so that, given

one probe CS, the cell will pause twice. Our model Purkinje cell

reproduces this behavior (Figure 8) in the case of interleaved 200

and 500 ms ISI trials with a 30 s ITI. However, in this simulation,

both pauses were weaker and took more time to express using

the same detection criterion. This is because only half of the trials

contribute to the learning of each ISI, and those trials which do not

contribute to one ISI still consume the archive by engaging the read

module. As a result, experimental time to acquisition is more than

twice that of the original case, adjusted for ITI. Presumably, this

paradigm could be generalized to more than 2 pauses, as long as the

modes of the archive are well-separated enough to allow for spiking

resumption between the constituent pauses.

Simulations 1–4 have been performed experimentally in vivo.

For simulations 5 and 6, we ran experiments which, to our

knowledge, have not been performed experimentally and are thus

purely predictive.

3.5. Simulation 5: The cell cannot learn
multiple pauses if trained with di�erent ISIs
on the same trials

Next, we tested the outcome of training the model cell with

different ISIs on the same trials. This can be done in two ways. First,

we trained the model cell with two CSs on each trial. One CS began

at t = 0 and ended at t = 100 ms; another began at t = 300 ms

and ended at t = 400 ms. US onset was at 500 ms and lasted for

20 ms. Hence, the cell was effectively exposed to two ISIs on each

trial, 200 and 500 ms. Like previous simulations, both CSs were 100

Hz and the US was 500 Hz. The ITI was 15 s. Whereas, interleaving

two ISIs across trials was found to produce two pause responses in

Simulation 4, providing the cell with twoCSs on each trial produced

only one in an experiment lasting 800 trials (Figure 9A). The cell
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FIGURE 6

The CR is invariant to probe duration and frequency. For all panels, green lines indicate CS onset and o�set and red lines indicate US onset. Left and

middle column; when using 50 or 100 Hz, changing the length of the probe CS to 100, 550, or 50 ms does not a�ect the temporal features of the CR.

The responses are also similar when using di�erent frequencies. Right column: less evident pause responses with 25 Hz CS stimulation.

only learns the longer ISI since the refractory period on the write

switch prevents it from detecting the second CS (Figure 5).

Next, we stimulated the cell with two USs on each trial, one at

200 ms and another at 400 ms, both lasting for 20 ms at 500 Hz. The

CS extended to the offset of the second US. The simulation lasted

for 400 trials with an ITI of 15 s. The cell learned one pause, timed

to the shorter ISI (Figure 9B). Similar to the double CS experiment,

the cell becomes insensitive to further US stimulation after the first

US onset. The difference between the two protocols is that with two

CSs the cell learns the longer of the two effective ISIs and with two

USs the cell learns the shorter effective ISI.

3.6. Simulation 6: Trials to acquisition
depends on ISI and ITI

In vivo, longer ISIs are said to take longer to learn (Jirenhed

and Hesslow, 2011a). However, at the level of the Purkinje cell,

to our best knowledge, this has only been studied while keeping

the ITI constant. Our model predicts that the number of trials

until pause acquisition is affected by several factors. In our model

longer ISIs are harder to learn since noise during writing tends to

flatten the histograms added to the archive, which consequently

takes more trials to build up enough inhibition to cancel spiking.
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FIGURE 7

CR extinction. Green lines indicate CS onset and o�set, and the red

dashed line indicates expected US onset, though no US stimulation

was provided in this simulation. After many CS-only trials, the CR

disappears, though the archive is not empty. It has simply been

reduced enough to permit tonic spiking.

In contrast, short ISIs yield highly peaked histograms and therefore

speed up learning. Further, long ITIs tend to speed up learning since

they allow the reserve to replenish fully and release a maximum

number of recorder units during subsequent reading. Short ITIs,

on the other hand, do not allow for full replenishment, so that

fewer recorder units are released and the archive grows more

slowly.

To investigate how these factors precisely affect our model cell,

we ran two parallel experiments. In one experiment, we fixed the

ITI at 15 s and trained the cell on ISIs ranging from 100 to 1,000 ms

in steps of 10 ms. For the other experiment, we used the same range

of ISIs, but also varied the ITI so that ITI/ISI = 80 for each ISI. In

the first experiment, trials to acquisition increased monotonically

and approximately linearly with ISI (Figure 10, red line). However,

when the ITI/ISI ratio was held constant, the hindering effect of

noise due to increasing ISI was canceled out by the accelerating

effect of the increased ITI, resulting in a flat trials-to-acquisition

curve (Figure 10, blue line). This effect has not yet been tested in

the Purkinje cell, though it has been observed in other behavioral

experiments (Gibbon, 1977). The finding illustrated in Figure 10

suggests that trials to acquisition T is given roughly by T = 8,000

(ISI/ITI).

4. Discussion

This purely formal model recapitulates the behavior of the

Purkinje cell during eyeblink conditioning. The model cell

learns a pause response with characteristically timed onset,

maximum and offset. Extinction of the pause is also similar

to in vivo data. Further, the model obeys the two desiderata

stipulated in the introduction: the POT representation makes

no use of the upstream network and pause response learning

and expression machinery is gated by a switch. Obeying

these criteria is what permits the model to replicate more of

the data. The obvious limitation of the model is that it is

agnostic as to possible biochemical implementations. Yet, these

proof-of-principle simulations could inspire electrophysiological

experimentation and biochemical modeling.

One of the greatest strengths of this model is that, to our

knowledge, it is the first to capture the fact that the Purkinje cell

pause response, once learned, is remarkably robust to changes in

the parameters of the CS. As noted in the introduction, the time

course of the response is determined by the initial part (<20 ms)

of the CS. Once an animal has been trained with a particular

CS duration (e.g., 400 ms), a very brief CS or sometimes even a

single impulse delivered to the mossy fibers, can elicit a well-timed

Purkinje cell pause (Jirenhed and Hesslow, 2011b). Network timing

models would need the dramatically different inputs to the network

to cause similar patterns of activity in it. Further, even short-lasting

input delivered directly to the immediate Purkinje cell afferents,

bypassing the network, is sufficient to elicit the full pause response

(Johansson et al., 2014). Our model recapitulates this phenomenon

well since CS activity is not directly translated into Purkinje spiking,

but rather acts as a trigger to retrieve stored information. While

we cannot point to a specific biochemical implementation we here

show an example of what kind of mechanism could explain the data

in principle.

Additionally, our model makes several non-obvious and

testable predictions. The main reason that the first two predictions

are important to test empirically is that we believe that the results

would differentiate between our type of model and other current

models. First, if the Purkinje cell is presented with complex inputs,

effectively experiencing two different ISIs on the same trial, it will

only learn one ISI. In simulation 5, the cell only learns the longest

ISI when there are two sequential CSs on the same trial. In the first

test there is parallel fiber input between t = 0 and t = 100 ms, and

then between t = 300 ms and t=400 ms. The US onset is at t =

500 ms. Our model cell learns the longer trace ISI of 500 ms. This

is presumably not the outcome of such a protocol in customary

models where the POT representation lies in granule cell firing.

Our interpretation of these models is that the outcome would be

either no learning or possibly some learning of the shorter ISI if

there is some sustained granule cell firing after the second CS. In

the second test there is parallel fiber input between t = 0 and t =

400 ms with one US at t = 200 ms and a second US at t = 400 ms.

Here, our model cell only learns the shorter ISI (200 ms) even when

the CS extends to the later US. Again, this contrasts with established

models where our interpretation is that the Purkinje cell will learn

both ISIs.

Finally, our model predicts that it could be possible to decrease

the trials to acquisition for a single neuron’s response by increasing

the intertrial interval, a counterintuitive phenomenon hitherto only

observed at the behavioral level in other conditioning paradigms

(Gibbon, 1977; Gallistel and Gibbon, 2000; Ward et al., 2013).

In information theory, the CS can be viewed as informative to

the extent that it reduces uncertainty regarding the timing of

the next US. If the ISI increases proportionally to the ITI, the

ISI/ITI ratio does not change and hence the amount of information

conveyed by CS onset does not change (Ward et al., 2013). It

should be noted that the intertrial intervals used in the behavioral

conditioning experiments where this effect occurs are often much

longer, hours or even days. However, our model makes the
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FIGURE 8

A bimodal pause. (A) Green lines indicate CS onset and o�set, the red line indicates US onset, and red spikes indicate probe trails. In this simulation,

the cell learned two ISIs, one timed to 200 ms and another timed to 500 ms. The CR consists of two pauses with an intervening resumption of spiking

between 200 and 400 ms. (B) The bimodal CR is evident from the average firing rate plot, created in the same manner as described in Simulation 1.

FIGURE 9

(A) With 2 CSs per trial, only one CR develops. Green lines indicate the CS onsets and o�sets; red line indicates US onset. A CR appears beginning at

around 400 ms and terminates shortly after the US. If the cell had learned the second ISI, the pause would begin later in the trial. (B) With 2 USs per

trial, only one CR develops. Red lines indicates the first and second US onsets. Spiking resumes shortly after the first US since only the shorter ISI is

learned.

counterintuitive prediction that the phenomenon will occur within

a single conditioning session.

In contrast, by standard learning theory accounts, close

temporal contiguity determines the strength of the CS-US

association. Indeed, in contemporary neuroscientific models of

learning where the encoding mechanism is alterations of synaptic

strength, presenting fewer CS-US pairings should unequivocally

weaken the associative bond, not strengthen it, as is the case in our

model. We believe that this difference is an additional reason that

our model could be highly informative if experimentally evaluated.

In our view, the empirical data encourages a conceptual re-

imagining of cerebellar timing and we believe that the current

work could inspire experimental designs to investigate intracellular

mechanisms. The major outstanding limitation of the model is

clearly that we do not yet know what form these mechanisms

could take. For this reason, our aim is not to replace other

contemporary models, but merely provide alternative thinking.

At this point we can only speculate. For illustrative purposes,

we would like to note that molecular computation can occur

and does occur. For example, DNA incorporates sophisticated

pointer arithmetic and sequences encoding complex objects (e.g.,

an eye) or even “syntactic” concepts (e.g., dorsal or ventral).

Artificially writing data into the metabolome shows the potential

power of small-molecule information systems (Kennedy et al.,

2019). Moreover, Bonnet et al. (2013) have built transistors out

of proteins, “transcriptors,” which can be used to build logic gates

capable of allowing a cell to detect when it was impinged upon

by some stimulus. Note that, for simplicity, we have supposed
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FIGURE 10

ITI a�ects trials to acquisition. Red line indicates trials to acquisition

in experiment in which ISI varied and ITI was fixed at 15 s; blue line

indicates trials to acquisition in experiments in which the ISI varied,

but ITI was fixed at 80 times the ISI. Otherwise, the red line increases

linearly due to the e�ect of noise on long ISIs and the inability of the

reserve to completely replenish in 15 s. The blue line, on the other

hand, is constant, since the increased noise of long ISIs is

compensated for an increased ITI. Bars represent standard errors

measured over ten simulations in which τwrite, τread,Ri, and c varied

randomly.

that recorder units can assume a continuum of states, encoding

elapsed time from release. A protein-based model would suppose

that recorder units can assume, say, four conformational states.

Though the model’s learned histogram would be much coarser

in this case, it would not substantially change our model. A

much smoother histogram could be learned by a model whose

recorder units are polynucleotides. In this case, the number of

configurations of a recorder unit would be exponential in the

number of nucleotides, affording a compact, expressive symbol.

There is, however, no known naturally-occurring method for

storing acquired information in polynucleotides, though some

artificial methods have been proposed (Kording, 2011; Choi et al.,

2022).

Empirically in vivo data has suggested the involvement of the

metabotropic glutamate receptor 7 (mGluR7) on Purkinje cell

dendrites (Johansson et al., 2015), consistent with a switch-like

trigger for the response. A metabotropic switch could explain

the insensitivity to the temporal structure of the probe CS after

conditioning and explain why there is a refractory period, because

once the receptor is activated its trimeric G-protein disassociates.

The split Gβγ dimer is capable of activating postsynaptic inhibition

via Kir3 channels (Dascal, 1997; Whorton and MacKinnon, 2013),

providing possible means for the hyperpolarization causing the

pause response. The time course could be regulated over hundreds

of ms by regulators of G-protein signaling (RGS proteins) as in

the temporal regulation of photoreceptors returning to resting state

(Krispel et al., 2006) and prolonged inhibition in hippocampal

neurons (Xie et al., 2010). Purkinje cell modeling by Majoral et al.

(2020) and Mandwal et al. (2021) incorporate these components

in biochemical cascades, showing that they could replicate part of

the phenomena. Until there are more empirical findings on the

involvedmechanisms, we here aimed at presenting a general model,

exploring what is computationally feasible.

Importantly, we do not suggest that intracellular passage-

of-time representations have to replace network representations

(Bullock et al., 1994; Buonomano and Mauk, 1994; Medina and

Mauk, 2000; Hansel et al., 2001; Yamazaki and Tanaka, 2009; Lepora

et al., 2010). For instance, multiple dimensions and timescales

of plasticity distributed across the cerebellar circuit (see e.g.,

Antonietti et al., 2017) could be concurrently operational in order

to enable timed behavior.

The findings of Chen et al. (2014), Johansson et al. (2014), and

Ryan et al. (2015) among others may call for a re-imagining of the

neural basis of learning and memory. The model outlined above

is a computational proof-of-principle for a learning mechanism

inspired by this work, in the case of eye-blink conditioning.

Formally, the model in many ways resembles earlier population

models of timing, though here a population of neurons has been

replaced with a set of abstract units within the neuron. The model

makes several straightforward but non-trivial predictions, which

can be tested electrophysiologically. Most importantly, a complete

understanding of the Purkinje cell learning phenomenon will

require insight from molecular biology, in order to illuminate the

structure of the learningmechanism this paper attempts to formally

describe.
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