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Our previous articles demonstrated how to analyze psychophysical data from

a group of participants using generalized linear mixed models (GLMM) and

two-level methods. The aim of this article is to revisit hierarchical models in

a Bayesian framework. Bayesian models have been previously discussed for

the analysis of psychometric functions although this approach is still seldom

applied. The main advantage of using Bayesian models is that if the prior is

informative, the uncertainty of the parameters is reduced through the combination

of prior knowledge and the experimental data. Here, we evaluate uncertainties

between and within participants through posterior distributions. To demonstrate

the Bayesian approach, we re-analyzed data from two of our previous studies on

the tactile discrimination of speed. We considered di�erent methods to include

a priori knowledge in the prior distribution, not only from the literature but also

from previous experiments. A special type of Bayesian model, the power prior

distribution, allowed us to modulate the weight of the prior, constructed from

a first set of data, and use it to fit a second one. Bayesian models estimated

the probability distributions of the parameters of interest that convey information

about the e�ects of the experimental variables, their uncertainty, and the reliability

of individual participants. We implemented these models using the software Just

Another Gibbs Sampler (JAGS) that we interfaced with R with the package rjags.

The Bayesian hierarchical model will provide a promising and powerful method

for the analysis of psychometric functions in psychophysical experiments.

KEYWORDS

psychophysics, PSE, generalized linear mixed models, Bayesian model, psychometric

functions

1. Introduction

Psychophysical methods are largely used in behavioral neuroscience to investigate the

functional basis of perception in humans and other animals (Pelli and Farell, 1995). Using

a model called the psychometric function, it is possible to test the quantitative relation

between a physical property of the stimulus and its perceptual representation provided

by the senses. This model has a typical sigmoid shape and relates the actual stimulus

intensity (“physics”) on the abscissa to the probability of the response of the observer (i.e.,

perceptual response and “psychology”) on the ordinate, as collected with a forced-choice
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experiment. It is possible to summarize the performance of an

observer by the parameters that are computed by the psychometric

function: the Point of Subjective Equality (PSE), the slope, and the

Just Noticeable Difference (JND) (Knoblauch and Maloney, 2012).

The PSE estimates the accuracy of the response and corresponds

to the stimulus value associated with a probability of response at

chance level (p = 0.50). In two-interval forced-choice experiments,

a deviation of the PSE from the value of the reference stimulus may

indicate a bias, for example, in perceptual illusions (Moscatelli et al.,

2016, 2019). The JNDmeasures the noise of the response; the higher

the JND, the higher the perceptual noise (Prins, 2016). The JND

is an inverse function of the slope parameter of the psychometric

function that is a measurement of the precision of the response. It

is possible to test the slope or the JND of the function to evaluate

the precision (or the noise) of the response.

Typically, generalized linear models (GLMs) are applied to

estimate the parameters of the psychometric functions for each

individual participant (Knoblauch and Maloney, 2012). In our

previous study, we showed the advantages of using generalized

linear mixed models (GLMMs) to estimate the responses of

multiple participants at the population level (Moscatelli et al.,

2012). A fairly comprehensive literature on fitting GLM and

GLMM exists in different programming languages, including R,

Python, andMatlab (Linares and López-Moliner, 2016; Schütt et al.,

2016; Moscatelli and Balestrucci, 2017; Prins and Kingdom, 2018;

Balestrucci et al., 2022).

In GLMM, we distinguish between fixed- and random-effect

parameters (Stroup, 2012). The former, akin to the parameters of

the psychometric function, estimates the effects of the experimental

variables. Typically, the random-effect parameters estimate the

variability across individual participants. In more complex data-

sets, it is possible to account for other sources of unobserved

variation by means of random-effect parameters. Blocking or batch

effects are common examples of other random-effects parameters.

The addition of this random component is the distinguishing

feature of mixed models. For GLMMs, we assume that the random-

effect parameters are normally distributed variables. The goal

is to estimate the variance of that distribution. The larger the

variance, the larger the heterogeneity across participants for a

given parameter. However, the mean (or other central tendencies)

of that distribution can be treated as if fixed effects have been

applied to standard models. The conditional modes of the model

estimating the response of individual participants can be treated as

the fixed effects in standard psychometric functions. For example,

in Balestrucci et al. (2022), we used conditional modes to plot the

model estimates for individual participants.

A natural reinterpretation of the mixed model is the Bayesian

approach, where all parameters are naturally considered as random

variables, each having its own probability distribution (Zhao

et al., 2006; Fong et al., 2010). Bayesian models provide not

only a point estimate but also a probability distribution of the

population parameter. Therefore, a Bayesian approach allows a

natural assessment of the uncertainty in the parameter estimation.

The advantages of the hierarchical Bayesian framework have been

established in different fields in experimental psychology (Gelman

et al., 1995; Rouder et al., 2003) and item response (Fox and Glas,

2001; Wang et al., 2002). To the best of our knowledge, only

a few studies evaluate the use of Bayesian inference for fitting

psychometric functions (Alcalá-Quintana and García-Pérez, 2004;

Kuss et al., 2005; Schütt et al., 2016; Houpt and Bittner, 2018). In

addition to estimating the intercept and the slope of the model, the

flexibility of a Bayesian approach allows the study of uncertainties

of the PSE.

This article is organized as follows. In Section 2, the two-stage

Bayesian hierarchical model is proposed and discussed. Section 2.1

focuses on the description of prior distributions and Section 2.2 is

dedicated to the discussion of the computational aspects. In Section

3, the data from two published experiments are considered. In

Section 3.1, a Bayesian hierarchical model is fitted and compared

with the results of Dallmann et al. (2015), while in Section 3.2, a

Bayesian hierarchical model is fitted and compared with the results

of Picconi et al. (2022). In Section 4, the two studies considered

in Section 3 are jointly analyzed. Two alternative approaches are

proposed. The first one considers the combination of the two

studies with the parameters from the first study used as a prior

distribution. The second approach introduces a parameter, a0,

to quantify the uncertainty (or weight) of the first study that is

considered as historical data—as detailed in Section 2.1. Finally,

in Section 5, a discussion of the model is proposed and the results

obtained are discussed.

2. Model

A typical data-set from a psychophysical experiment includes

repeated responses from more than one participant. Fitting these

types of data with ordinary generalized linear models (GLM)

would produce invalid standard errors of the estimated parameters

because they would treat the errors within the subject in the

same manner as the errors between subjects. A viable approach

to overcome this problem consists of applying a multilevel model

(Morrone et al., 2005; Steele and Goldstein, 2006; Pariyadath and

Eagleman, 2007; Johnston et al., 2008). First, the parameters of the

psychometric function are estimated for each subject. Next, the

individual estimates are pooled to perform the second-level analysis

for statistical inference. Alternatively, it is possible to use the

generalized linear mixed model (GLMM) that accounts separately

for the experimental effects and the variability between participants

using random- and fixed-effect parameters (Moscatelli et al., 2012).

Bayesian methods provide a viable solution for fitting models

of the GLM and GLMM families (Gelman et al., 1995; Rouder

and Lu, 2005). In particular, Kuss et al. (2005) have applied

Bayesian methods for estimating a psychometric function, based

on a binomial mixture model. A Bayesian hierarchical model

is a statistical model written in multiple levels (hierarchical

form) and estimates the parameters using Markov chain Monte

Carlo (MCMC) sampling. Applying a Bayesian hierarchical model

consists of the following processes: (i) model definition, including

specification of parameters and prior distributions in different

levels, (ii) update of the posterior distributions given the data,

(iii) and Bayesian inference to analyze the parameters’ posterior

distributions (McElreath, 2020).

In the current study, we considered data from two-interval

forced-choice discrimination tasks, as mentioned in the two

example data-sets detailed in Sections 3.1 and 3.2. A two-stage

Bayesian hierarchical model has been applied to these data-sets,
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with a probit model for each individual subject at the first stage. Let

X denote the experimental variable (or variables), and let Y be the

response variable that consists of binary responses. Thus Yij = 1

if subject i in trial j perceived a comparison stimulus with value xij
as larger in magnitude (e.g., depending on the specific task, faster,

stiffer, heavier, brighter, etc.) than a reference stimulus. As for the

example data analyzed in this article (speed discrimination task),

Yij = 1 if the subject perceived the comparison as “faster” than a

reference one. The relationship between the response variable and

the experimental variables is defined as:

Yij ∼ Bern(µij) (1)

8−1(µij) = αi + βixij (2)

The model assumed that the forced-choice responses Yij are

independent and identically distributed (i.i.d.) conditional on the

individual parameters (αi,βi). In case of repeatedmeasurement, for

each subject and conditions, Equation (1) can easily be substituted

by

Yij ∼ Binom(µij, nij) (3)

where Yij represents, the number of “faster” responses for subject i

at condition xij.

The function 8−1 in Equation (2) establishes a linear

relationship between the response probability and the predictor

that is fully described by two parameters αi and βi. The probit link

function 8−1 is the inverse of the cumulative distribution function

of the standard normal distribution Z. That is:

µij = P
(

Z ≤ αi + βixij
)

∀i, j

For more details on probit link function refer to Agresti (2002)

and Moscatelli et al. (2012). Other link functions like Logit and

Weibull are also often used in psychophysics (Agresti, 2002; Foster

and Zychaluk, 2009).

In the first stage, the model characterized the behavior of each

individual participant i. The second level defines the model across

all participants, similar to the GLMM described by Moscatelli

et al. (2012). To this end, the second level estimates the overall

effects across subjects by combining individual-specific effects. The

parameters (a, b) describe the overall model and results from the

combination of the subject-specific parameters, taking into account

their uncertainties. Through a Bayesian hierarchical approach, the

second level takes into account the uncertainties of the subject-

specific parameters. It assumes the following distributions:

αi ∼ Norm(a, τα) (4)

βi ∼ Norm(b, τβ ) (5)

a ∼ Norm(µa, σa) (6)

b ∼ Norm(µb, σb) (7)

Appropriate hyperprior distributions for (τα , τβ , σa, and σb)

need to be specified. The precision of the overall model and the

between-subjects variability are gained by the posterior estimates of

the parameters τα and τβ , respectively. In the application in Section

3.1, we will discuss different prior distributions for τα and τβ , which

may be different for each subject or depend on other covariates. The

proposed framework provides a reliable approach to account for the

uncertainty of the fixed effects parameters.

The precision and the accuracy of the response are estimated

by the parameters of the model. The slope parameters βi link the

inverse probit of the expected probability and the covariates x (i.e.,

the stimulus). Therefore, this parameter estimates the precision

of the response, the higher is the estimated value of βi, the

more precise is the response. The interpretation of the location

parameter of the psychometric function depends on the nature of

the psychophysical task. In forced-choice discrimination tasks, as

mentioned in the two examples detailed in Sections 3.1 and 3.2, the

PSE estimates the accuracy of the response. The response is accurate

if the PSE is equal to the value of the reference stimulus. The value

of the PSE relative to observer i, psei is computed from intercept

and slope in Equation (2) as follows:

psei = −
αi

βi
(8)

The PSE corresponds to the stimulus value yielding a response

probability of 0.5, that is, the point at which participants are

equally likely to choose the standard or the comparison stimulus

in response to the task. In the examples mentioned later the PSE

participants are equally likely to choose one stimulus or the other

to the question “which stimulus moved faster?”.

2.1. Prior distribution

According to the Bayesian paradigm, prior distributions

and likelihood constitute a whole decision model. Ideally, a

prior distribution describes the degree of belief about the true

model parameters held by the scientists. If empirical data are

available, then new information can coherently be incorporated via

statistical models, through Bayesian learning. This process begins

by documenting the available expert knowledge and uncertainty. A

subjective prior describes the informed opinion of the value of a

parameter before the collection of data.

Prior distributions as described in the previous paragraph are

non-informative prior distributions. The flexibility of the Bayesian

model allows to modify (Equations 4, 5) by considering, for

example, partition or group of subjects between historical and

current data. We assume that there is one relevant historical study

available. However, the approaches proposed here can in principle

be extended to multiple historical studies. Here, we recall the

method based on the power prior proposed by Ibrahim and Chen

(2000). This has emerged as a useful class of informative priors for a

variety of situations in which historical data are available (Eggleston

et al., 2017).

The power prior is defined as follows Ibrahim and Chen (2000).

Suppose we have two data-sets from the current study and from

a previous study that is similar to the current one, labeled as the

current and the historical data, respectively. The historical data are

indicated as D0 = (n0, y0, x0), while the current data are indicated
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as D = (n, y, x), n, and n0 are the sample size, y and y0 are the

response vectors, respectively n × 1 and n0 × 1 vectors. Finally, x

and x0 are (either n×pmatrix or n0×pmatrix ) the covariates. Let

indicate θ as the vector of parameters, π0(θ) represents the initial

prior distribution for θ before the historical data D0 are observed.

The parameter L(θ |D) indicates a general likelihood function for an

arbitrarymodel, such as for linearmodels, generalized linearmodel,

random-effects model, non-linear model, or a survival model with

censored data. Given the parameter a0, between 0 and 1, the power

prior distribution of θ for the current study is defined as:

π(θ |D0, a0) ∝ L(θ |D0)
a0π0(θ).

This way, a0 represents the weights of the historical data relative

to the likelihood of the current study. According to this definition,

the parameter a0 represents the impact of the historical data on

L(θ |D).

Depending on the agreement between the historical and current

data, the historical data may be down-weighted, reducing the

value of a0. The main question is what value of a0 to use in the

analysis, which means how to assess agreement between historical

and current data and how to incorporate the historical data into

the analysis of a new study. The easiest solution is to establish a

hierarchical power prior by specifying a proper prior distribution

for a0. A uniform prior on a0 might be a good choice, or a

more informative prior would be to take a Beta distribution with

moderate to large parameters. Although a prior for a0 is attractive,

it is much more computationally intensive than the a0 fixed case.

The a0 random case has been extensively discussed (Ibrahim et al.,

1999, 2015; Ibrahim and Chen, 2000; Chen and Ibrahim, 2006).

Another approach, computationally more feasible, is to take a0 as

fixed and elicit a specific value for it and conduct several sensitivity

analyzes about this value or to take a0 as fixed and proceed, for

example, with a model selection criterion.

2.2. Computational aspects

The large improvements in the availability of computational

packages for implementing Bayesian analyzes have allowed the

growth of applications of hierarchical Bayesianmodels. Many of the

available packages permit the implementation of the Monte Carlo

Markov Chain (MCMC) algorithm which saves time by avoiding

technical coding. MCMC sampling is a simulation technique to

generate samples fromMarkov chains that allow the reconstruction

of the posterior distributions of the parameters. Once the posterior

distributions are obtained, then the accurate and unbiased point

estimates of model parameters are gained. Software for the

application of Bayesian models is currently applied in several

different fields (Palestro et al., 2018; Myers-Smith et al., 2019; Zhan

et al., 2019; Dal’Bello and Izawa, 2021; Mezzetti et al., 2022). Gibbs

sampling is an MCMC algorithm that can be implemented with

the software Just Another Gibbs Sampler (JAGS), (Plummer, 2017).

It is possible to interface JAGS with R using the CRAN package

rjags developed by Plummer (2003). The reader may refer to the

following tutorials for fitting hierarchical Bayesian models using

JAGS (or STAN) and R (Plummer, 2003; Kruschke, 2014).

Once the model is defined in JAGS, it is possible to sample

from the joint posterior distributions. The mean of samples from

the posterior distribution of the parameters provides the posterior

estimates of the parameters of interest. From the samples of the

posterior distribution, it is also possible to extract the percentile and

provide the corresponding 95% credible intervals.

As a diagnostic tool to assess whether the chains have converged

to the posterior distribution, we use the statistic R̂ (Gelman and

Rubin, 1992). Each parameter has the R̂ statistic associated with it

(Gelman and Rubin, 1992), in the recent version (Vehtari et al.,

2021); this is essentially the ratio of between-chain variance to

within-chain variance (analogous to ANOVA). The R̂ statistic

should be approximately 1± 0.1 if the chain has converged.

To compare Bayesian models, different indicators can be

adopted (Gelfand and Dey, 1994; Wasserman, 2000; Gelman et al.,

2014). The sum of squared errors is a reasonable measure proposed.

Although log-likelihood plays an important role in statistical

model comparison, it also has some drawbacks, for example, the

dependence on the number of parameters and on the sample

size. A reasonable alternative is to evaluate a model through the

log predictive density and its accuracy. Log pointwise predictive

density (lppd) for a single value yi is defined as Vehtari et al. (2017);

logp(yi|y) = log

∫

p(yi|θ)p(θ |y)dθ

The log pointwise predictive density (lppd) is defined as the sum

and can be computed using results from the posterior simulation

lppd =

n
∑

i=1

logp(yi|y) =

n
∑

i=1

log

∫

p(yi|θ)p(θ |y)dθ

3. Fitting hierarchical bayesian models
to the experimental data

Studies from our research group shed light on the interplay

between slip motion and high-frequency vibrations (masking

vibration) in the discrimination of velocity by touch (Dallmann

et al., 2015; Picconi et al., 2022; Ryan et al., 2022). These and similar

results are discussed in our recent review (Ryan et al., 2021). Using

Bayesian hierarchical models, we combined two of these studies and

evaluated the coherence of our findings across experiments. The

two studies are summarized in Sections 3.1 and 3.2, respectively.

Examples of the R and JAGS files for fitting our data are available

in the following Github repository https://github.com/moskante/

bayesian_models_psychophysics.

3.1. First data-set: The role of vibration in
tactile speed perception

The data-set touch-vibrations was first published by Dallmann

et al. (2015) and it is provided within the CRAN packageMixedPsy.

It consists of the forced-choice responses (i.e., the comparison

stimulus is “faster” or “slower” than a reference) collected in

a psychophysical study from nine human observers and the

corresponding predictor variables. The task is as follows: In two
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separate intervals, participants were requested to compare the

motion speed of a moving surface by touching it and reported

whether it moved faster in the reference or the comparison

stimulus. The speed of the comparison stimulus was chosen among

seven values of speed ranging between 1.0 and 16.0 cm/s. In

two separate blocks, participants performed the task either with

masking vibrations (sinusoidal wave signal at 32 Hz) or without

(control condition). Each speed and vibration combination was

repeated 40 times in randomized order, resulting in a total of 560

trials for each participant.

According to Dallmann et al. (2015), GLMM with a probit

link function was fitted to the data and the results presented

in Supplementary Tables S1, S2 were obtained. Next, the data

were fitted with a hierarchical Bayesian model in JAGS. Let Yh
ij

indicates the number of “faster” responses for subject i at speed

xj. Superscript h indicates the presence or absence of masking

vibrations. That is, h = 0masking vibrations were not present while

h = 1 masking vibrations were present. nhij is the total number of

trials for subject i, speed xj and vibration condition h. The model is

the following:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) (9)

8−1(πh
ij ) = αh

i + βh
i xj h = 0, 1 (10)

The following set of priors are assumed:

αh
i ∼ Norm(ah, τ hα ) (11)

βh
i ∼ Norm(bh, τ hβ ) (12)

τ hα ∼ Gamma(1, 0.001) (13)

τ hβ ∼ Gamma(1, 0.001) (14)

ah ∼ Norm(0, σa) (15)

bh ∼ Norm(0, σb) (16)

σa ∼ Gamma(1, 0.01) (17)

σb ∼ Gamma(1, 0.01) (18)

The model in Equation (10) can be parameterized as follows to

allow focus on parameter PSE and the slope βh
i :

Yh
ij ∼ Binom(πh

ij , n
h
i,j) h = 0, 1 (19)

8−1(πh
ij ) = −psehi ∗ βh

i + βh
i xj (20)

psehi ∼ Norm(PSEh, τ hPSE) (21)

βh
i ∼ Norm(bh, τ hb ) (22)

τ hPSE ∼ Gamma(1, 0.001) (23)

τ hb ∼ Gamma(1, 0.001) (24)

PSEh ∼ Norm(0, σPSE) (25)

bh ∼ Norm(0, σb) (26)

σPSE ∼ Gamma(1, 0.01) (27)

σb ∼ Gamma(1, 0.01) (28)

We used the Greek letter βh
i and the Latin letter bh for the

slope of subject i and the conditional value of slope common to all

FIGURE 1

Posterior estimates of parameters bh (slope). Experiment in Section

3.1.

FIGURE 2

Posterior estimates of parameters PSEh. Experiment in Section 3.1.

subjects, respectively. Similarly, we used the term psehi and PSE
h for

the estimate of the PSE in subject i and the conditional estimate.

In this first example, non-informative prior distributions were

adopted and the hierarchical Bayesian model confirmed the results

obtained with the GLMM, as expected. Supplementary Table S3

presents the posterior estimates of ah and bh as defined in Equations

(9)–(18), while Supplementary Table S4 presents posterior

estimates of PSEh as defined (Equations 19–28). Comparing

Supplementary Table S2 (GLMM) and Supplementary Table S4

(Bayesian model), the PSE estimates result very close and the

uncertainty is very similar with the two model approaches.

Figures 1, 2 show the posterior distribution of the two parameters

of the model bh and PSEh as defined in Equations (21), (22) that

are common to all the subjects. The slope of the model is slightly

higher without masking vibrations (b0, in blue in the figure) as

compared to masking vibrations (b1, in red in the figure). The

difference in PSE is negligible.

We considered the overlap between the posterior distributions

as a measure of similarities and differences between parameters,

where overlapping is defined as the area intersected by the two

distributions. Overlapping was computed as the proportion of the

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2023.1108311
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Mezzetti et al. 10.3389/fncom.2023.1108311

FIGURE 3

Posterior estimates of individual parameters of pseh
i
. The (left) figure

illustrated with red lines represents conditions with masking

vibrations, while the (right) figure illustrated with blue lines

represents conditions without masking vibrations. Experiment in

Section 3.1.

FIGURE 4

Posterior estimates of individual parameters of βh
i
. The (left) figure

illustrated with red lines represents conditions with masking

vibrations while the (right) figure illustrated with blue lines

represents conditions without masking vibrations. Experiment in

Section 3.1.

areas of the histograms belonging to the region shared by the two

distributions. The idea of overlapping as a measure of similarity

among data-sets or clusters is frequently used in different fields

(Pastore and Calcagnì, 2019; Mezzetti et al., 2022).

An effect of vibration is present for the intercept. The overlap

between the distribution of b0 and b1, the slope of the model, is

0.04. The overlap of the posterior distributions of PSE, in presence

of vibration versus absence of vibration, is 0.58. This is consistent

with our GLMM analysis where we found a small (yet significant)

difference in slope but no differences in PSE.

Figures 3, 4 illustrate the posterior distributions of the

parameters of the individual psychometric function, as specified

in Equations (10), (21). It is interesting to notice that between-

subject variability is present for the slope (parameter βh
i ), while

FIGURE 5

Psychometric functions of individual participants from Experiment 1

in conditions without masking vibrations. The scatter plot shows the

observed (dots) versus predicted responses (solid lines) with data

from individual participants illustrated in each panel. Blue lines

correspond to the prediction by GLMM, while red lines correspond

to predictions by the Bayesian model. Experiment in Section 3.1.

subjects show similar behavior in posterior distribution respect to

PSE (parameter psehi ). In fact in Figure 3, the between individual

variability of PSE is quite negligible. Finally, Figures 5, 6 compare

the predictions of the GLMM and of the hierarchical Bayesian

model across the nine participants. The predictions of the two

models are almost identical. To conclude, since we used a non-

informative prior, the outcome of the Bayesian model does not

differ substantially from the GLMM that was used in the original

study.

Different specifications of the prior distributions in Equations

(23), (24) and in Equations (27), (28) were considered, based on

the sum of squared errors and the uncertainties of parameters,

measured with the length of credible intervals. In particular,

alternative specification of Equations (21)–(24) was considered:

psehi ∼ Norm(PSEh, τ iPSE) (29)

βh
i ∼ Norm(bh, τ ib) (30)

τ iPSE ∼ Gamma(1, 0.001) (31)

τ ib ∼ Gamma(1, 0.001) (32)

Specifically, in the model earlier, each subject can have a

different precision in the two parameters of PSE and slope—

i.e., τ iPSE and τ i
b
may have different values depending on the

participant. The previous choice of prior distributions assumed
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TABLE 1 Comparison between the di�erent models in data-set touch-vibrations.

Model E�ects Log likelihood LPPD Sum errors 95% CI of PSE Width CI

GLMM Individual - - -

Overall –284.42 - 0.62 (0.52, 0.59) 0.07

Bayesian 1 Individual –276.23 –14231.6 (1081.1) 0.42

Overall 0.61 (0.49, 0.55) 0.06

Bayesian 2 Individual –278.03 –14323.0 (3.6) 0.41

Overall 0.63 (0.49, 0.50) 0.01

Bayesian 3 Individual –276.29 14163.2 (2.0) 0.40

Overall 0.61 (0.57, 0.61) 0.04

Bayesian 4 Individual –275.86 -14155.8 (2.3) 0.39

Overall 0.61 (0.58, 0.63) 0.05

For each model, we showed the log-likelihood and the LPPD of the model, and the sum or squared errors and length of the Credible Intervals of the PSE. The first two lines refer to the GLMM

as described by Dallmann et al. (2015). The third and the fourth lines show the Bayesian model 1, as specified in Equations (19)–(28). In the fifth and the sixth lines, the Bayesian model 2 is

shown, with a different specification of the prior distributions as in (29)–(32). In the Bayesian model 3, the distribution of τ hα,β ∼ Gamma(1, 0.1) was used, as in (21)–(24). The last two lines

show the Bayesian model 4 with the distribution of τ is τ iα,β ∼ Gamma(1, 0.1). This means that the variability of the PSE and the slope was allowed to be different for each participant.

higher variability between subjects and evidenced a different

outcome in the subject NI as compared to the others with respect

to the intercept and the slope. The alternative specifications of

prior distributions in Equations (29)–(32) provide similar values

with respect to the sum of squared errors, and the length of

credible intervals for the PSE was slightly lower than the model

in Equations (27), (28). Table 1 shows the frequentist approach

(GLMM) and the different specifications of the Bayesian model.

Comparing the models with respect to the uncertainties in

PSE estimation and model fitting, we justify the choice of the

model proposed.

3.2. Second data-set: Tactile speed
discrimination in people with type 1
diabetes

The second data-set, touch-diabetes, includes data from 60

human participants that were tested in a speed discrimination

task similar to the one described in Section 3.1. The experimental

procedure and the results are detailed by Picconi et al. (2022).

Participants were divided into three groups, with 20 participants

per group: healthy controls, participants with diabetes with mild

tactile dysfunction, and participants with diabetes with moderate

tactile dysfunction. The three groups were labeled as controls, mild,

and moderate, respectively. As in touch-vibration, this experiment

consisted of a force-choice, speed discrimination task. In each of the

120 trials, participants were requested to indicate whether a contact

surface moved faster during a comparison or a reference stimulus

interval. For this experiment, a smooth surface consisting of a glass

plate was used. The motion speed of the comparison stimuli were

as chosen pseudo-randomly from a set of five values ranging from

0.6 to 6.4 cm/s, with the speed of the reference stimulus equal to 3.4

cm/s. Participants performed the task with and without masking

vibrations, with masking stimuli consisting of sinusoidal vibrations

at 100 Hz.

As in the original study, we used the GLMM in Equations

(33)–(35) to fit the data across groups and across masking vibration

conditions:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) h = 0, 1 (33)

8−1(πh
ij ) = αh

i + βh
i xj (34)

The response variable Yh
ij is the number of “faster” responses for

subject i at speed xj. The suprascript h = 0 represents conditions

without masking vibrations and h = 1 represents conditions

with masking vibration. The variable nhij is the total number of

trials. Considering two dummy variables for the two groups of

participants with diabetes, mild (indicated with subscript 2) and

moderate (indicated with subscript 3) patients with diabetes, the

individual model with fixed effects is rewritten as:

8−1(πh
ij ) = αh + αh

2 + αh
3 + βhxj + βh

2 xj + βh
3 xj (35)

We used the packages MixedPsy (Balestrucci et al., 2022) and

lme4 (Bates et al., 2015) for model fitting. Supplementary Tables S5,

S6 report results for the frequentist approach (GLMM). The

slope of the model (referred to as tactile sensitivity in the study)

was different across the three groups, with controls performing

significantly better in the task than people with mild and moderate

tactile dysfunctions. The difference between groups was larger

without masking vibrations. As in the first data-set, masking

vibrations reduced the values of the slope across all groups. We

computed the values of PSE for all groups and conditions, see

Supplementary Table S6.We expected no significant change in PSE,

both between masking vibration conditions and between groups.

This is because, in this task, the cues and the sensory noise are the

same in the reference and comparison stimulus.

As in the previous example, we re-analyzed the data with a

Bayesian hierarchical model. Let i indicates subject, j speed, h

masking or no masking, and k indicates group.
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FIGURE 6

Psychometric functions of individual participants from Experiment 1

in conditions with 32 Hz masking vibrations. The scatter plot shows

the observed (dots) versus predicted responses (solid lines) with data

from individual participants illustrated in each panel. Blue lines

correspond to the prediction by GLMM, while red lines correspond

to predictions by the Bayesian model. Experiment in Section 3.1.

Similar to the analysis of the first data-set, the model was

parameterized with respect to the PSE and the slope:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) (36)

8−1(πh
ij ) = −psehi ∗ βh

i + βh
i xj h = 0, 1 (37)

The following prior and hyper-prior distributions are assumed:

psehi ∼ Norm(PSEhk , τ
h
PSE,k) h = 0, 1 k = 1, 2, 3 (38)

βh
i ∼ Norm(bhk , τ

h
β ,k) (39)

τ hPSE,k ∼ Gamma(1, 0.001) (40)

τ h
β ,k ∼ Gamma(1, 0.001) (41)

PSEhk ∼ Norm(0, σPSE) (42)

bhk ∼ Norm(0, σb) (43)

σPSE ∼ Gamma(1, 0.01) (44)

σb ∼ Gamma(1, 0.01) (45)

The mean and the credible intervals of the parameters of the

models bh
k
(slope) and PSEh

k
, as defined in Equations (33)–(45),

are reported in Supplementary Table S7. The results confirmed the

difference in slopes between the groups and between conditions. In

conditions without masking vibrations, the slope was the highest in

controls followed by the mild and moderate groups. The mean of

the slope in controls is higher than the credible intervals of the mild

group. Similarly, the mean of the slope of the mild group is higher

than the credible intervals of the moderate group. The same effect

can be observed in the masking vibration conditions, although the

difference in slope is smaller between the control and mild groups.

In Figure 7, the posterior distributions of the slope of the model

are shown. We can observe the two effects of group (ordered from

controls to moderate) and masking conditions. In particular, the

group with moderate tactile dysfunction (illustrated in blue) is the

one with the lowest values of slope.

In Figure 8, the posterior distributions of the PSE values, as

specified in Equations (36)–(45) are shown. Uncertainties in the

parameters PSEh
k
were comparable between the frequentist and the

Bayesianmodels. This was expected because in this Bayesianmodel,

we used a non-informative prior. Masking vibrations had a large

effect on the slope and a much smaller effect on the PSE. Within

the control group, the overlap between the posterior distributions

of PSE with masking versus no masking is 0.04, and the overlap

between the posterior distribution of the slope between masking

and no masking is < 0.01. This supports our finding that masking

vibration reduced tactile sensitivity. In Figures 9, 10, the posterior

distributions of the individual parameters βi and psei are shown.

Again, it is interesting to notice that the posterior estimates of PSE

have low subject variability. The individual posterior distributions

show a higher overlapping, refer to Figure 10 for an almost perfect

overlapping. Within groups, variability is lower for PSE compared

to posterior distributions of the parameters representing the slopes.

4. Combined analysis of the two
experiments

In this section, we propose two different approaches for

the joint analysis of the two studies. In Section 4.1, the prior

distributions of the parameters relative to the second study are

defined from the data of the first study. In Section 4.2, a model

approach based on the power prior distribution explained in

Section 2.1 was applied to combine the two data-sets touch-

vibrations and touch-diabetes.

The data-set touch-vibrations is considered historical data and

indicated a D0 = (n0, y0, x0), where n0 is the sample size of the

historical data, y0 is the number of “faster” responses the n0 × 1

response vector, in this case number of, x0 is a n0×1 vector of speed.

The data-set touch-diabetes indicated the current study, we restrict

the analysis only to the control group, we discarded the two diabetic

groups because of their reduced tactile sensitivity. Data are denoted

by D = (n, y, x), where n denotes the sample size, y denotes the

n × 1 response vector, the number of “faster” responses, and x the

n× 2 matrix of covariates, indicator of cluster and speed.

4.1. Prior distribution defined on the first
experiment

The two data-sets are jointly analyzed. Equations (33)–(45)

are rewritten incorporating model (Equations 9, 10) in order to

combine the two studies as follows:

Yh
ij ∼ Binom(πh

ij , n
h
i,j) (46)

8−1(πh
ij ) = αh

i + βh
i xj (47)
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FIGURE 7

Posterior distributions of parameters bh
k
from the second stage of the hierarchical model. Experiment in Section 3.2.

FIGURE 8

Posterior distributions of parameters of the second stage of the hierarchical model PSEhk . Experiment in Section 3.2.

Yh
0ij ∼ Binom(πh

0ij, n
h
0i,j) (48)

8−1(πh
0ij) = αh

0i + βh
0ix0j (49)

Because of Weber’s Law, the sensitivity to speed and, therefore,

the slope depends on the value of the stimulus. To address this issue,

to combine the two experiments, we used the conversion factor in

Equation (55).

αh
i ∼ Norm(ah, τ ha ) (50)

βh
i ∼ Norm(bh, τ hb ) (51)

αh
0i ∼ Norm(ah0 , τ

h
a0) (52)

βh
0i ∼ Norm(bh0 , τ

h
b0) (53)

ah ∼ Norm(ah0 , σ
h
a ) (54)

bh ∼ Norm

(

bh0 ×
x̄

x̄0
, σ h

b

)

(55)

ah0 ∼ Norm(0, σ 0
a ) (56)

bh0 ∼ Norm(0, σ 0
b ) (57)

σ h
k ∼ Gamma(1, 0.01) h = 0, 1, 2 k = a, b (58)

τ hk ∼ Gamma(1, 0.01) h = 1, 2 k = a0, a, b0, b (59)

From the posterior estimates of parameters σ h
a and σ h

b
, we can

gain information about whether the combination of two studies

is appropriate for the same model. The posterior distributions of

the precision parameters indicate a good agreement between the

two studies and confirm the suitability of the choice for the prior

distribution. High-posterior estimates of the precision of the prior

distribution indicate good agreement between prior distribution

and data.

4.2. Power prior model

Recalling Section 2.1, the prior distribution of parameters θ =

(α,β) is defined as follows:

π(θ |D0, a0) ∝ L(θ |D0)
a0π0(θ). (60)
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FIGURE 9

Posterior distributions of parameters of the first stage of the

hierarchical model βh
i
, by group and masking condition. Experiment

in Section 3.2.

FIGURE 10

Posterior distributions of parameters of the first stage of the

hierarchical model PSEh
i
, by group and masking condition.

Experiment in Section 3.2.

The power parameter a0 represents the weight of the historical

data relative to the likelihood of the current study. The parameters

represent how much data from the previous study is to be used in

the current study. There are two special cases for a0, the first case

a0 = 0 results in no incorporation of the data from the previous

study relative to the current study. The second case a0 = 1 results

in full incorporation of the data from the previous study relative to

the current study. Therefore, a0 controls the influence of the data

gathered from previous studies that is similar to the current study.

This control is important when the sample size of the current data is

quite different from the sample size of historical data or where there

is heterogeneity between two studies (Ibrahim and Chen, 2000).

In Table 2, a comparison between all the models obtained by

varying the parameter a0 is shown. The choice of the value for a0
is implemented by model comparison, taking into account the log-

likelihood, the log point-wise predictive density, the sum of squared

errors, of both the level of the model, that are the individual and

overall model. Moreover, a comparison of the uncertainty in PSE

estimation is computed. The uncertainty decreases as a0 increases

indicating that we are updating our informative knowledge for

the correct model use. The likelihood increases as the value of a0
increases. The measures of goodness of fit of the models are very

similar increasing the value of a0. We decide to favor the model

that lowers the uncertainties in the estimation, that is the model

with a0 = 0.7.

In Table 3, three different prior distributions are compared. On

one hand, an informative prior is assumed following Section 3.2;

on the other hand, the first experiment is used to improve the

understanding of experiment 2. A combination of the two studies

[as in Equations (46)–(59)] illustrated in Section 4.1 is compared

with power prior as in Section (4.2). In Figures 11, 12, a comparison

of the posterior distributions of PSE and β , in the control group,

obtained according to the three different prior distributions is

shown. Again we favor the model that lowers the uncertainties

of posterior estimates. Overall, combining the two studies with

the power prior approach reduced the posterior estimate of the

model parameters as can be clearly seen by comparing the three

distributions in the figures.

5. Conclusion

In this study, we compared the outcome of a Bayesian

approach to a frequentist mixed model (GLMM) approach. The

comparison showed the importance of incorporating informative

prior knowledge from previous studies for data analysis.

We re-analyzed data from two studies using GLMM and

Bayesian models. First, we applied GLMM and four different

Bayesian models to the data-set described by Dallmann et al.

(2015). We compared the log-likelihood, LPPD, the sum of errors

between the different models, and confidence interval of the two

parameters of slope and PSE. The Bayesian approach allowed for

more flexibility in the model fitting (see Table 1). Next, we applied

Bayesian models to the second data-set for re-analysis of the results

described by Picconi et al. (2022). With a non-informative prior,

the Bayesian approach confirmed the estimation of the parameters

of the frequentist model. Finally, we ran a joint analysis of the two

data-sets using two different approaches, either by using the first

data-set to choose the parameters of the prior or by using the power

prior method. The informative prior in the power prior method

reduced the credible intervals of the PSE and justified the choice

of the model, as shown in Tables 2, 3.

The Bayesian approach provides useful features for the in-depth

analysis of psychophysical data. Through a Bayesian approach, the

random effects are estimated parameters, like the fixed effects, with

the advantage of obtaining credible intervals for both the quantities.

This allowed to estimate the effect of individual participants and

the reliability of each of them. For example, in Figure 4, it is

possible to identify a single participant with increased variability

and higher slope as compared to the rest of the group. Potentially,

this will simplify the identification of outliers or sources of

unobserved variability. Another advantage of the hierarchical

Bayesian approach is the possibility to incorporate information

from past studies to reduce the uncertainty of the estimate. For

example, compare the width of the three distributions in Figures 11,

12, with the non-informative prior having the larger width, i.e., the
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TABLE 2 Comparison between the di�erent models obtained by varying values of a0 in Equation (60), as illustrated in subsection 4.2.

a0 E�ects Log likelihood LPPD Sum errors CI of PSE Width CI

0 Individual –291.76 –3169.67 (9.91) 2.24

Overall 2.68 (0.32, 0.37) 0.05

0.1 Individual –292.85 –3183.66 (8.66) 2.24

Overall 2.64 (0.27, 0.26) 0.01

0.2 Individual –293.47 –3202.41 (7.18) 2.21

Overall 2.64 (0.24, 0.27) 0.03

0.3 Individual –294.07 –3221.91 (8.45) 2.21

Overall 2.64 (0.22, 0.27) 0.05

0.4 Individual –295.08 –3243.93 (7.02) 2.20

Overall 2.65 (0.25, 0.24) 0.01

0.5 Individual -295.48 -3242.41 (8.75) 2.20

Overall 2.66 (0.21, 0.25) 0.04

0.6 Individual -296.00 –3253.47 (13.02) 2.20

Overall 2.66 (0.19, 0.27) 0.08

0.7 Individual –296.02 –3256.63 (8.33) 2.23

Overall 2.68 (0.18, 0.22) 0.04

0.8 Individual –296.84 –3276.64 (7.70) 2.1

Overall 2.68 (0.18, 0.25) 0.07

0.9 Individual -296.77 –3268.68 (12.03) 2.23

Overall 2.68 (0.18, 0.2) 0.02

1 individual –297.27 –3268.46 (10.7) 2.22

Overall 2.7 (0.17, 0.24) 0.07

For each model, we showed the log-likelihood, the LPPD of the model, the sum or squared errors, and length of the Credible Intervals of the PSE.

TABLE 3 Comparison between the di�erent priors assumed for the data-set touch-diabetes.

Model E�ects Log like LPPD Sum errors CI of PSE Width CI

Non Informative 1 Individual –285.92 −3026.4 (3.4) 2.04

Overall 2.68 (0.3, 0.35) 0.05

Non Informative 2 Individual –291.66 −3153.9 (6.2) 2.25

Overall 2.67 (0.26, 0.32) 0.06

Non Informative 3 Individual -283.74 −3000.3 (2.8) 1.91

Overall 2.68 (0.31, 0.39) 0.08

Informative Prior

Subsection 4.1

Individual -292.14 −3156.2 (7.8) 2.2

Overall 2.65 (0.25, 0.36) 0.11

Informative Prior

Subsection 4.2

with a0 = 0.7

Individual –296.02 −3256.63 (8.33) 2.23

Overall 2.68 (0.18, 0.22) 0.04

For each model, we showed the log-likelihood and the LPPD of the model, and the Sum or Squared Errors and the Credible Intervals of the PSE. The first three models refer to non-

informative prior as illustrated in Equations (36)–(45). The first three models differ for hyperparameters in the Gamma distribution in Equations (40), (41). Non Informative 1 assumes

τβ ,PSE ∼ Gamma(1, 0.01). Non Informative 2 assumes τβ ,PSE ∼ Gamma(1, 0.001) and Non Informative 3 assumes τβ ,PSE ∼ Gamma(0.1, 0.01). The fourth and fifth models refers to the joint

analyzes of the two data-sets. In particular, the fourth model refers to prior illustrated in Section 4.1. The fifth model refers to the prior illustrated in Section 4.2 with a0 equal to 0.7.
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FIGURE 11

Posterior distributions of parameters PSEh with di�erent prior distributions for di�erent values of a0. The model with the informative prior (a0 = 1.0) is

illustrated in dark brown, the one with the power prior (α0 = 0.7) in orange, and the one with the non-informative prior (α0 = 0.0) in yellow.

Experiment in Section 3.2.

FIGURE 12

Posterior distributions of parameters bh with di�erent prior distributions for di�erent values of a0. The model with the informative prior (a0 = 1.0) is

illustrated in dark brown, the one with the power prior (a0 = 0.7) in orange, and the one with the non-informative prior (a0 = 0.0) in yellow.

Experiment in Section 3.2.

higher variance. This will increase the power of the analysis. Finally,

this approach allowed quantifying the coherence of multiple studies

on a related topic through the parameter a0. The greater the value

of a0, the higher the coherence across the studies.

Hierarchical modeling is a natural tool for combining several

data-sets or incorporating prior information. In the current study,

the method presented by Chen and Ibrahim (2006) has been used

that provides a formal connection between the power prior and

hierarchical models for the class of generalized linear models.

Understanding the impact of priors on the current data and

subsequently making decisions about these priors is fundamental

for the interpretation of data (Koenig et al., 2021). One of the

assumptions of the power prior approach is the existence of a

common set of parameters for the old and current data and

this assumption may not be met in practice. An alternative

approach to incorporate historical data has been proposed by

Neuenschwander et al. (2010) and van Rosmalen et al. (2018). This

other method is based on meta-analytic techniques (MAP) and

assumes exchangeability between old and current parameters.

Incorporating previous knowledge and insight into the

estimation process is a promising tool (Van de Schoot et al., 2017)

that is particularly relevant in studies with small sample sizes, as is

often in psychophysical experiments. In our case, the sample size of

the first data-set differed from the sample size of the second data-

set. To take this into account, the power prior approach allowed us

to assign a different weight to the historical data and the current

data. It is possible to purposefully choose the hyperparameters of

the prior, τ , to increase the precision of the posterior estimate.

Zitzmann et al. (2015) suggested to specify a slightly informative

prior to the group-level variance. As shown in Section 4, diffuse

priors produce results that are aligned with the likelihood. On the

other hand, using an informative prior that is relatively far from

the likelihood, produces a shift in the posterior. It is possible to

conduct a prior sensitivity analysis to fully understand its influence

on posterior estimates (Van de Schoot et al., 2017).

Uncertainty quantification is an important issue in

psychophysics. Hierarchical Bayesian models allow the researcher

to estimate the uncertainty at a group level and the one specific
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to individual participants. This model approach will have an

important impact on the evaluation of psychometric functions in

psychophysical data.
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