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Cellular computation and cognition
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Contemporary neural network models often overlook a central biological 
fact about neural processing: that single neurons are themselves complex, 
semi-autonomous computing systems. Both the information processing and 
information storage abilities of actual biological neurons vastly exceed the simple 
weighted sum of synaptic inputs computed by the “units” in standard neural 
network models. Neurons are eukaryotic cells that store information not only in 
synapses, but also in their dendritic structure and connectivity, as well as genetic 
“marking” in the epigenome of each individual cell. Each neuron computes 
a complex nonlinear function of its inputs, roughly equivalent in processing 
capacity to an entire 1990s-era neural network model. Furthermore, individual 
cells provide the biological interface between gene expression, ongoing neural 
processing, and stored long-term memory traces. Neurons in all organisms have 
these properties, which are thus relevant to all of neuroscience and cognitive 
biology. Single-cell computation may also play a particular role in explaining 
some unusual features of human cognition. The recognition of the centrality of 
cellular computation to “natural computation” in brains, and of the constraints it 
imposes upon brain evolution, thus has important implications for the evolution 
of cognition, and how we study it.
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Introduction

The inception of modern computer science can be traced directly to three giants: Alan 
Turing, John von Neumann, and Claude Shannon. Both Turing and von Neumann had plenty 
to say about the brain, and how their respective notions of computation might somehow 
be mapped onto neural tissue (Turing, 1950; von Neumann, 1958), and although it seems 
likely that Shannon was aware of these ideas, he  did not publish on this topic himself. 
Nonetheless, Shannon made crucial contributions to the implementation of computation on 
machines (Shannon, 1938), as well as single-handedly creating information and coding 
theory (Shannon, 1948), and these contributions remain fundamental to contemporary 
computational neuroscience. In this paper I will attempt to apply Shannon’s computational 
and informational tools to a fundamental question in brain research: how do single neurons 
contribute to cognition? I will argue that individual cells play fundamental roles in both 
neural computation and information storage (memory), roles vastly exceeding those 
envisioned in “standard” contemporary neural network models. If correct, this argument has 
important implications for cognitive neuroscience, particularly regarding the evolution of 
cognition in animals.

Debates about the computational role of individual neurons go back more than a century, 
to the origins of neuroscience (Shepherd, 1991; Finger, 2000). A central debate in early 
neuroscience pitted the network or “reticular” theorists like Camillo Golgi, who believed that 
the cortex constituted a vast web of continuously interconnected cytoplasm, against those who 
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saw the brain as composed of individual cells termed “neurons.” The 
champion of the neuron-based viewpoint was Santiago Ramon y 
Cajal, whose remarkable images of neurons, stained with Golgi’s 
method, provided increasing evidence that the brain is constructed of 
independent cells, connected not by fusion but by contact at synapses 
(Shepherd, 1991). The theory was consistent with the established 
notion that most other body tissues in plants and animals are made 
up of separate cells – “cell theory”  - and is now enshrined as the 
universally accepted “neuron doctrine” (Bear et al., 2001). By the time 
Golgi and Cajal shared the Nobel Prize in 1906, most biologists had 
accepted the neuron doctrine, although Golgi himself sided with the 
reticular concept until his death.

Cajal argued that neurons are the fundamental units of neural 
processing. He  recognized that neurons are dynamic entities, 
changing their connections to other cells and changing their own 
form, and believed that such changes played a critical role in learning 
and development. Cajal’s student Lorente de No, an early 
neurophysiologist, further developed these ideas, arguing that 
electrical activity (today we would say “information”) mostly flowed 
one way in a cell, from dendrites to the cell body and down the axon. 
Today, with a few tweaks, these insights have become standard 
textbook neuroscience.

It is thus ironic that, when Turing, Shannon and von Neumann 
were establishing computer science, a rather different conception of 
neural computation was in vogue. The underlying theory in so-called 
“neural network models,” extending from Donald Hebb’s theoretical 
work in the 1940s, through the earliest perceptron models of the 
1960s, through connectionist models in the 1990s, to today’s “deep” 
neural nets, dispenses with the complex and beautiful dendritic and 
axonal trees that Cajal spent his life meticulously documenting. The 
“units” in these artificial neural networks (ANNs) are simple 
summators only loosely modeled on neurons, and connected by 
“weights” modeled on synapses. They are in these respects consistent 
with the neuron doctrine. However, the only computation these units 
perform is to linearly sum their weighted inputs and apply a nonlinear 
threshold to the result (see below). The information content of such 
units is stored entirely in their synaptic weights, and the computation 
performed depends on the structure of the network that encompasses 
them, not any property of the unit. In these and other ways, the units 
upon which neural networks are based deviate sharply from real 
biological neurons.

If alive today, Cajal might well ask why the complex and 
changing three-dimensional forms of his beloved neurons have been 
reduced to a simple spherical blob, and any potential information 
content or computation instantiated in that complex form has 
disappeared. Indeed, he might see the modern networks used in 
machine learning and AI today as a conceptual step backwards, 
toward the reticular model of Golgi, rather than being “neural” in 
any real sense. Fortunately, practicing neuroscientists never stopped 
studying cells, and we now know that real neurons play a much more 
powerful role, in terms of both information storage and computation, 
than the units of an ANN. As I will detail below, each neuron is a 
complex computer in its own right, at multiple levels, and this has 
serious implications for our theoretical understanding of brains and 
cognition. In Shannon’s terms, both the computational hardware 
(Shannon, 1938) and information content (Shannon, 1948) of the 
brain need to be grounded at the cellular level of individual neurons 

if we are to understand computation and memory in real nervous 
systems, and their evolution.

In this paper I argue that an adequate understanding of neural 
computation must incorporate what I will term “cellular computing,” 
a term encompassing not only “standard models” of synapses and 
spikes, but also nano-scale biochemical and genetic information 
processing, micro-scale morphology of neurons, and meso-scale cell–
cell interactions (including the connectome). Some principles 
underlying each of these distinct levels of biophysical information 
processing have been known for decades, e.g., that neurons are slow 
and sloppy compared to transistors, or that brains are massively 
parallel computational systems (Rummelhart and McClelland, 1986). 
Other principles have only recently become clear, such as 
understanding gene regulation in computational terms (Istrail et al., 
2007) or calculating the computing power intrinsic to the 3-D form of 
a neuron’s dendritic tree (Moldwin and Segev, 2020; Beniaguev et al., 
2021). But today the existence of these distinct cellular computational 
mechanisms is uncontroversial, and their operational principles are 
now largely understood by insiders in the respective fields – molecular 
cell biology, developmental biology, and neuronal biophysics, 
respectively (Koch, 1997; Levine and Davidson, 2005; Davidson and 
Erwin, 2006; Bray, 2009; Cuntz et al., 2014a).

My key point in this paper is that, when we  put these pieces 
together, the picture of neural computation that emerges is one that 
differs radically from both standard artificial neural networks, and 
more broadly from contemporary silicon-based computer technology. 
Since contemporary cognitive neuroscience relies heavily on both 
ANNs and computer metaphors (e.g., “hardware vs. software”), this 
has important implications for major issues in the cognitive sciences, 
including issues concerning digital (“symbolic”) vs. analog 
computation (cf. Dehaene et al., 2022). Furthermore, because single-
cell computation is where biochemical/genetic and electrochemical/
synaptic information processing intersect, the more inclusive 
conception of neuronal computation I will advance here has crucial 
implications for our understanding of cognition and memory, and 
their evolution in our own and other species.

A brief history of synaptocentrism: Hebbian 
synapses and point neurons

Cajal placed strong emphasis on the complex shape of neurons, 
and spent much of his life documenting the rich and diverse tree-like 
structures of neurons throughout the brain (Ramón y Cajal, 1894–
2004). Nonetheless, neural network modelers have generally treated 
neurons as highly simplified “units” since the foundation of the 
discipline by McCulloch and Pitts (1943), who modeled neurons as 
simple devices that sum their weighted inputs and apply a nonlinear 
threshold to this weighted sum to compute their binary output 
(McCulloch and Pitts, 1943) – in mathematical terms, they simply 
compute a thresholded dot-product. The focus of McCulloch & Pitts 
was on the computations performed by the network, not any 
single neuron.

This conception gained additional support with the supposition 
of Donald Hebb that a synaptic connection between two neurons 
will be strengthened when those two neurons fire simultaneously 
(Hebb, 1949). This now-famous “Hebbian learning rule” has become 
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a centerpiece of theoretical neuroscience, and again focused 
attention away from cells or their structure and onto the connective 
network between cells. The discovery by neuroscientists of long-
term potentiation (LTP) or depression (LTD) in the 1970s (Bliss and 
Lømo, 1973) offered empirical support for Hebb’s supposition, and 
seemed to cement a belief in an all-powerful role of the synapse 
in learning.

Once computer-modeling of neural networks became feasible, 
this synaptocentric model, and a connectionist focus on networks 
rather than cells continued (Bishop, 1995; Segev, 1998). More 
explicitly, the sole function of the “units” making up both early (e.g., 
perceptron) and contemporary (e.g., deep neural network) models is 
essentially “integrate-and-fire”: each unit performs a linear 
summation of the products of its input and the corresponding 
synaptic weights, subjects this sum to a nonlinear (often sigmoidal) 
threshold function, and outputs a binary spike when this weighted 
sum exceeds some threshold value (Rosenblatt, 1957; Rummelhart 
and McClelland, 1986).

The exciting advance allowed by early perceptron models was to 
allow “learning” via synaptic plasticity: the synaptic weights could 
be adjusted algorithmically to allow the model to “learn” some set of 
inputs as positive, and fire preferentially to those stimuli. These early 
network models were useful classifiers, could be applied to arbitrary 
digital inputs, and intriguingly showed some similarity to humans in 
their classification performance. Nonetheless, for many reasons (cf. 
Minsky and Papert, 1969) these earliest two-layer models did not 
take off.

The next wave of neural modeling built on a new and highly 
effective algorithm (back-propagation of error) to adjust synaptic 
weights throughout a complex, multi-layer network. This integration 
of Hebbian associative memory via synaptic plasticity with the 
integrate- and-fire “neuron” generated what I will call the “standard 
model” for artificial neural networks (ANNs) today, first in the guise 
of three-layer networks (with one hidden layer), and now as “deep 
neural networks” of many flavors that have scores or even hundreds 
of layers. Despite a superficial variety, the underlying computational 
units or “neurons” in these deep neural networks have changed little 
in the eighty years since McCulloch and Pitts (1943). Computational 
neuroscientists refer to these fictitious integrate-and-fire units as 
“point neurons,” to emphasize their difference from the complex and 
beautiful cells that actually make up our brains.

It was already clear by the 1980s that the biophysics of neurons 
supported a much richer set of computational primitives than a point 
neuron (Poggio and Torre, 1978; Torre and Poggio, 1978), and by the 
1990s comprehensive lists of these possibilities were already available 
(Churchland and Sejnowski, 1992; Koch, 1999). In addition to 
Hebbian memory via synaptic plasticity, these known biophysical 
computation mechanisms include coincidence detection at synaptic 
or whole cell levels (important for temporal coding), AND-NOT 
logic via shunting inhibition in dendritic trees, multiplication by 
active (voltage-dependent) dendritic currents, and Ca++ − mediated 
firing propensity of the cell (“excitability”). Despite having powerful 
and attractive computational properties (reviewed in Mel, 1994; 
Koch, 1999), and being explored in hundreds of simulations and in 
widely used modeling frameworks (cf., Tikidji-Hamburyan et al., 
2017), these additional computational mechanisms have never made 
it into the standard model point neuron ubiquitous in contemporary 
ANNs and beloved of cognitive scientists. All learning in such 

networks occurs by modifying synaptic weights, and neglects 
alternative forms of plasticity: they are “synaptocentric” models of 
learning and memory.

Despite this commonality, today’s impressive deep learning 
models have moved in a direction of increasing biological plausibility. 
Typically in early connectionist models, the unit-to-unit connectivity 
pattern was either random or complete (full connectivity), differing 
sharply from the underlying biology of brains, where most connections 
are local, and most neurons remain completely unconnected (Levy 
and Reyes, 2012; Markov et al., 2014). Modern deep networks (e.g., 
convolutional neural networks) are more biological, in that each unit 
in such a network has only a local connectivity pattern with those in 
adjacent networks. This enables both rapid computation (e.g., via 
matrix multiplication using GPUs) and a much greater number of 
layers in such networks (hence the term “deep”). Nonetheless, these 
models retain point neurons and a reliance on a biologically unrealistic 
back-propagation of error (cf. Lillicrap et al., 2020). Although it is 
clear that the brain transmits error signals between neurons in 
different regions across the global scale (Wolpert et al., 1995; Clark, 
2013; Roth et al., 2016; Friston, 2018), there are no biologically 
plausible models by which synapse-specific error signals could 
be  propagated across multiple neurons (Lillicrap et  al., 2020). 
Intriguingly, Senn and colleagues have shown that, in models that 
move beyond point neurons to active dendritic computation (see 
below), back-propagation of error within dendrites is both biologically 
plausible and computationally powerful (Schiess et al., 2018; Wybo 
et al., 2023), a point further explored below.

For many engineers, the question of how closely their networks 
model biological neurons is irrelevant: practical machine learning 
with point neurons works well enough for many purposes. Perhaps 
more surprising, many neuroscientists have also come to accept the 
synaptocentric perspective, in which synaptic plasticity is the sole (or 
at least main) mechanism underlying learning and memory, despite 
long-known neuroscientific evidence suggesting a much richer model 
of neuronal computation. This may be partially due to the discovery 
of NMDA receptor-dependent LTP, which offered an exciting 
molecular mechanism by which the Hebbian dictum that “neurons 
that fire together wire together” could be  implemented in actual 
synapses. But even NMDA-dependent LTP, we now know, involves a 
host of specific underlying mechanisms and different biophysical 
substrates (Malenka and Bear, 2004): there are many ways to update 
synaptic strengths, each having differing properties. Furthermore, it 
is equally clear today that synapses themselves are nonlinear, so the 
traditional linear dot-product of synaptic inputs and synaptic weights 
omits specific and important forms of neuronal computation observed 
in real brains (Zador, 2000). Given this weight of neurobiological 
evidence, it seems imperative to ask what is being omitted in current 
synaptocentric models of memory (information storage), and/or what 
is missing in models of computation based on point neurons.

Beyond synaptocentrism

In addition to the “bottom-up” neurobiological evidence 
discussed above, equally pressing reasons to re-evaluate 
synaptocentrism have come from cognitive science, “top-down.” This 
re-evaluation has been recently spurred by a series of critiques led by 
the comparative psychologist Randy Gallistel (Gallistel and King, 

https://doi.org/10.3389/fncom.2023.1107876
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Fitch 10.3389/fncom.2023.1107876

Frontiers in Computational Neuroscience 04 frontiersin.org

2010; Gallistel, 2017, 2020; Langille and Gallistel, 2020). This recent 
backlash against synaptocentrism builds on a much older long-
running debate between associationism and other models of cognition 
(symbolic, computational and cognitive models), itself hearkening 
back to earlier debates between behaviorists and early cognitive 
scientists concerning the very existence of cognitive elements such as 
goals, plans, emotions or memories (Gardner, 1985). Briefly, Gallistel’s 
critique is that what is stored in memory, in humans or in animals, are 
not associations between events, but concepts and facts about the 
world (distances, amounts, identities, words, locations, etc.). It is 
argued that such facts, and in particular numerical values, cannot 
be captured solely by associations, and that associationism is thus a 
deeply inadequate model of memory or of cognition (cf. Bever et al., 
1968; Fodor and Pylyshyn, 1988; Fodor and McLaughlin, 1990). To 
the extent that this critique is valid, any model of memory that relies 
entirely on Hebbian associations will fail, and some form of symbolic 
computation is required to understand cognition in any species (cf. 
Trettenbrein, 2016; Prasada, 2021).

The practicing neuroscientist or psychologist may be tempted to 
dismiss such long-running arguments as philosophical hair-splitting 
(indeed, many of the protagonists in the traditional debate were 
philosophers), or to consider it a matter of taste whether one favors 
associationist or symbolic models of the mind. Indeed, the answer 
may come down to a question of level of analysis: associations at an 
implementational level may encode symbols at a higher computational 
level (Smolensky, 1988; Chalmers, 1993). However, even as simplified 
models of the brain, there are a host of other problems with a 
synaptocentric view, strongly grounded in neurobiology, that add 
bottom-up fuel to this cognitively oriented debate (Arshavsky, 2006; 
Kastellakis et al., 2015; Trettenbrein, 2016; Langille and Gallistel, 2020; 
Poirazi and Papoutsi, 2020; Gershman, 2023).

One of the key problems with synaptic plasticity as the locus of 
memory is, ironically, that synapses are too plastic [cogently 
summarized by Gershman (2023)], while memories can last a lifetime. 
For example, long-term memories, whether implicit memories such 
as a major early life event experience, or implicit knowledge such as 
motor skills, or word meanings learned at a few years of age, can 
persist for an individual’s entire lifespan (Poeppel and Idsardi, 2022). 
From this viewpoint, “long-term” potentiation is a misnomer, since 
the effects of glutamatergic LTP at the synapse last hours or at most 
days (Malenka and Bear, 2004). In fact, synaptic weights are constantly 
changing [e.g., due to spike-timing dependent plasticity (Bi and Poo, 
2001)], and the dendritic spines that house most excitatory synapses 
are in a constant state of flux (Loewenstein et al., 2015). Changes in 
dendritic spine morphology directly reflect learning and memory 
[e.g., Roberts et al., 2010; Ashokan et al., 2018], but even the longest-
lasting changes in dendritic spine morphology probably last at most a 
few months (Yang et al., 2009). Problematically, synapses and synaptic 
spines require a constant and relatively high metabolic cost to 
maintain their current state, relative to some other loci of memory 
discussed below. This plasticity and variability on a short time scale, 
combined with their high metabolic cost and various other “sins” (cf. 
Arshavsky, 2006), conspire to suggest that synapses are poorly suited 
to represent the sole and final locus of long-term memory over weeks 
or years (cf. Gallistel, 2020; Poeppel and Idsardi, 2022).

This growing weight of evidence has led most of the authors cited 
above to argue that synapses cannot form the sole basis of memory. 
Although none of these critics deny the fact of synaptic plasticity via 

LTP/LTD, nor deny that it plays a role in memory and learning, all of 
these lines of argument suggest that other, more stable and low-cost, 
biophysical mechanisms must also be involved in long-term memory. 
Indeed, these considerations have led some authors to suggest that 
long-term memory must somehow be stored intracellularly, in the 
form of RNA or DNA based codes (Gallistel and King, 2010; Gallistel, 
2020). At first blush, this is an appealing idea, because nucleic acids 
represent the ultimate low-cost, long-lasting biological mechanism for 
information storage. Unfortunately, there is no known mechanism by 
which information stored temporarily in patterns of synaptic weights 
could be “translated” into base-pair encodings, and the very idea of 
such a back-translated encoding goes against most of what is currently 
known about the molecular biology of the cell. These and other facts 
have led some commentators to entirely reject Gallistel’s argument, 
I  think prematurely (e.g., Dayan, 2009). But I  will argue that 
acknowledging the weaknesses of the Hebbian synapse and 
synaptocentric arguments does not require embracing any 
hypothetical undiscovered reverse-transcription based 
memory mechanisms.

My goal in the rest of this paper is to show how current 
knowledge of neuronal biology allows us to move beyond 
synaptocentric conceptions of memory and point neurons, and to 
address and answer Gallistel’s challenge based on established 
biological facts and computational concepts. I will first show how a 
biophysically grounded model of cellular computation in real 
brains, richer than that envisioned by standard point neurons, 
combined with contemporary understanding of genomic 
computation, provides fresh answers to both the storage and 
computation questions. I will end by considering the cognitive and 
evolutionary implications of such a more biologically realistic, cell-
based computational viewpoint.

Cellular computation: a computer in 
every cell

The central point of the next sections is that each individual 
neuron is a powerful computer in its own right, with a computational 
power roughly equivalent to an entire ANN (Poirazi et  al., 2003; 
Moldwin and Segev, 2020; Beniaguev et al., 2021), and an information 
storage capacity much greater than the 1–10 kB stored in a neuron’s 
1,000–10,000 synaptic weights (Poirazi and Mel, 2001; Bray, 2009; 
Brenner, 2012; Fitch, 2021). While many of these ideas were first 
advanced by modelers, there are now many empirical studies 
confirming these early suppositions in actual neural systems (ably 
reviewed in Kastellakis et  al., 2023). The existence of dendritic 
computational phenomena, including dendritic spikes and active 
conductances at dendritic branches (Gidon et al., 2020), means that 
many Hebbian phenomena previously thought to require 
metabolically expensive whole-cell firing, such as LTP and LTD, can 
in fact occur at a local, dendritic level. Conceptually, this is equivalent 
to adding a second layer of computation to the traditional Hebbian/
connectionist model, intervening between the synapses and the whole 
cell. This new conception renders biological neuronal networks much 
more energetically efficient than previously though (a key evolutionary 
desideratum). Furthermore, because neighboring synapses act 
cooperatively, spatial localization of connections can now play a 
central role in cellular computation, such that inputs that are 
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contextually or conceptually related cluster together in space on the 
dendritic tree (Kastellakis et al., 2023).

From this updated biological perspective, trying to understand 
brain function without attending to dendritic structure is like trying 
to understand a community based on a listing of its individual 
members, without attending to their personalities, where they live, or 
their family and neighborhood dynamics.

There are multiple distinct biophysical systems underlying this 
cellular computational power and storage capacity, each with its own 
properties. These include electrodynamic processes, short-term 
biochemical computation or “wetware,” and longer-term gene 
expression systems. By “electrodynamic processes” I  mean the 
neuronal biophysics traditionally studied by cellular 
neurophysiologists – ion currents, membrane potentials, and voltage- 
or ligand-gated ion channels – but crucially incorporating the 
computational role of the complex 3-D branching structure of the cell, 
which has powerful effects on its input–output relations (Koch et al., 
1982; Koch and Segev, 2000; Moldwin and Segev, 2020; Kastellakis 
et al., 2023). In the short-term (“fast”) biochemical category, I include 
all of those cell-internal processes encompassed by Dennis Bray’s term 
“wetware” – protein marking via phosphorylation, methylation and 
other processes – and active protein trafficking via the cytoskeleton. 
Wetware makes contact with electrodynamics in that internal ion 
flows, especially Ca++ flows, often play an important cell-internal 
signaling role (Malenka and Bear, 2004) that has lasting effects on 
future electrodynamic responses. Finally, gene expression involves 
slower biochemical computation (cf. Istrail et al., 2007; Brenner, 2012), 
involving genomic marking (via methylation or chromatin 
modifications) and is most clearly reflected in the cell’s current 
transcriptome (the dynamic set of RNA transcripts in the cell).

Each of these systems mutually influences the others, making the 
borders between them somewhat fuzzy. Electrodynamic phenomena 
affect internal biochemistry, and both affect gene expression, which in 
turn has powerful reciprocal influences on electrodynamics and 
“wetware.” I nonetheless distinguish them for several reasons. First, 
although there is information storage (“memory”) at each of these 
levels, the mechanisms used are quite different: chromatin 
modification, protein phosphorylation, and dendritic or synaptic 
morphology are conceptually and biophysically distinct, and operate 
on rather different time scales. Second, from an empirical viewpoint, 
the data used to study cell function at each level differs: we use multi-
electrodes or calcium imaging to measure electrodynamics, but use 
single-cell transcriptomics to understand gene expression patterns. 
This makes collating these empirical data a challenge in itself, but one 
which can now be met using existing methodologies (cf. Nandi et al., 
2022). Finally, these distinct mechanisms operate on different (but 
overlapping) characteristic time scales, with electrodynamics being 
fastest, gene expression slowest, and wetware somewhere in between. 
This implies that we may usefully analyze functionality at fast levels by 
modeling the slower level(s) as fixed state variables characterizing that 
neuron. For example, in analyzing electrodynamics, we can adopt a 
millisecond timescale and can treat the cell’s current form, wetware 
state, and transcriptome as unchanging.

It is important to recognize that both wetware and gene expression 
patterns are properties of all cells, not just neurons (Bray, 2009; 
Brenner, 2012), but are nonetheless centrally relevant to neurons, and 
thus to neuroscience. Wetware is a form of non-synaptic computation 
particularly important in understanding behavior in single-celled 

organisms such as bacteria or Paramecium, which obviously lack both 
neurons and synapses, but are still capable of complex-goal directed 
behaviors and, in the case of single-celled eukaryotes, learning and 
memory (“single-cell cognition,” cf. Tang and Marshall, 2018; 
Marshall, 2019; Dussutour, 2021; Gershman et al., 2021). Because 
I  have recently reviewed these data, and their implications for 
evolutionary neuroscience, elsewhere (Fitch, 2021), I will simply note 
here that such data in themselves call any strictly synaptocentric 
model of memory and computation into question (cf. Gershman 
et al., 2021).

I will now briefly survey the key properties of each of these four 
distinct computational mechanisms. I  will begin with the best-
understood and least controversial level – gene expression – and end 
with 3D electrodynamics, whose detailed computational properties 
are less clear, and are a topic of current active research.

Genomic computation

Virtually all of the cells in our body share an identical copy of our 
genome (red blood cells are an exception). The distinctions between 
different cell types are a result of variation in gene expression between 
cells. Metaphorically speaking, all cells possess the same library, but 
each cell type reads a different subset of the books within. Which 
books are read (which genes are expressed) is determined by the 
regulatory genome, and the cell’s current regulatory state. The 
regulatory genome includes non-coding DNA binding sites in the 
neighborhood of protein-coding genes, whose bound or unbound 
state controls the expression of neighboring protein-coding genes.

The key computational elements for genomic computation are 
several hundred thousand cis-regulatory modules, including sections 
of DNA to which transcription factors can bind, thus enhancing or 
suppressing expression of the neighboring genes on the same strand 
of DNA (Britten and Davidson, 1969; Davidson, 2006; Istrail et al., 
2007). Transcription factors are short proteins that selectively bind to 
DNA at specific binding motifs within a cis-regulatory module, 
controlling the rate of transcription of genes in their vicinity. There are 
roughly 1,600 different transcription factors in humans (Lambert 
et al., 2018). For brevity, I will term an entire set of regulatory sites 
(containing transcription-factor binding sites and protein coding 
genes) a “gene expression module” or GEM (roughly equivalent to an 
“operon” in bacterial genetics).

Each of the 105 GEMs in our genome contains multiple control 
regions involving multiple transcription factors, which can interact in 
complex ways. In particular, activation of a GEM typically requires 
binding of multiple factors, that can work additively or oppose each 
other. This means that the entire gene regulatory system can 
be analyzed in computational terms (Istrail et al., 2007; Brenner, 2012) 
as a set of interacting AND, OR, and NOT gates (along with more 
complex logical combinations). We can thus picture the current levels 
of transcription factors as “input,” the current state of binding as 
“memory,” and the resulting gene expression (the current 
transcriptome) as “output.” However, we  cannot draw a clear 
hardware/software distinction for this form of computing: memory 
and computation for one GEM are co-localized to small regions of 
DNA, and GEMS are spread throughout the genome. The end result 
of this computational process will be a set of RNA transcripts that are 
transported out of the nucleus, where (after further editing) they will 
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be translated into proteins. Roughly 10% of this RNA codes for the 
transcription factors, which can then bind to DNA throughout the 
genome. The remaining RNA codes for the molecular machinery for 
other cell functions (including neurotransmitters and neurotransmitter 
receptors, and the synthesis machinery for other mechanisms that will 
control neuronal electrodynamics).

Binding of transcription factors to DNA is relatively stable over 
periods of hours or days, but remains stochastic and unlikely to 
provide a truly long-term memory over years. A second related source 
of information storage is provided by chromatin modifications (such 
as DNA methylation, or histone acetylation: Watson et al., 2014), 
today often termed “epigenetic” changes (Holliday, 2006). Most of the 
DNA in a cell is tightly wound around protein complexes termed 
histones, and in a differentiated cell only a small subset of the DNA is 
normally unpacked and exposed for binding or transcription. 
Continuing the library metaphor, the DNA library involves a rolling 
shelf system, where most of the shelves in the library are pushed 
against one another and unavailable for browsing; chromatin 
modification processes can open some of these sections up.

Chromatin modifications provide a form of cell-internal storage 
that plays a central role in development: the identity of a cell (as 
liver, muscle or any of several thousand types of neuron) is 
essentially “coded” by what portions of its genome are “open” for 
binding and transcription. Once a cell differentiates, chromatin 
modifications can remain in place for the life of the cell – which for 
a neuron is measured in decades. This form of memory is thus 
extremely long-lasting and, once established, can be maintained at 
virtually no metabolic cost. These properties make chromatin 
methylation or acetylation an ideal mechanism for long-term 
memory storage at the cellular level. Indeed, methylation patterns 
can be transferred from the mother’s egg to her offspring, extending 
beyond the lifespan of a single organism (hence the term 
“epigenetic”). However, it remains unclear whether epigenetic 
changes at the whole cell level could influence specific connection 
strengths (Campbell and Wood, 2019).

The memory capacity of the entire gene regulatory/epigenetic 
system is vast in principle. There are roughly 105 cis-regulatory 
modules, and if each could be bound or unbound independently as a 
binary variable, it would yield 105 bits, meaning 210000 or ~ 103000 
possible states! Similarly, each chromosome contains hundreds of 
thousands of histones, and again each can be in an open or closed 
state. Despite this vast potential, constraints on the epigenetic system, 
particularly the limited number of transcription factors, severely 
constrain this possible state space. Nonetheless, even basing a 
conservative lower bound on the number of transcription factors 
(1600), each treated as a binary variable (expressed or not) yields 21600 
or ~ 1051 possibilities – vastly more than the number of synapses 
(roughly 1014 in the human brain). Of course, the state of these GEMs 
is crucial to all aspects of cellular function and developmental biology 
(Howard and Davidson, 2004), and cannot be  simply used as a 
memory storage device for arbitrary cell-specific information. 
Furthermore, we know that epigenetic factors and gene expression 
patterns play a key role in determining the type of neuron during early 
development, but it remains unclear to what extent these systems 
encode the specific past history of individual cells during adulthood. 
But if even a tiny fraction of these DNA binding sites or histones were 
available to store information about a particular neuron’s past state 
(and thus the organism’s past experience), it would provide a 

formidable auxiliary memory that is digital, cheap to modify, and 
highly stable over time.

Returning to issues of computation, there is a long tradition of 
seeing gene regulation in computational terms, dating back to the 
discovery of the first molecular “switch” in bacteria, the lac-operon 
(Jacob and Monod, 1961). But this computational perspective was still 
unfamiliar enough in 2012 for its importance to be stressed by the 
Nobel-prize winning molecular biologist Sydney Brenner (Brenner, 
2012). Computational perspectives on gene regulation play a central 
role in the burgeoning field of synthetic biology (Benenson, 2012). 
Perhaps the clearest codification of gene regulation in computational 
terms is due to Eric Davidson and colleagues (Istrail et al., 2007), who 
stressed the deep conceptual similarities between genomic 
computation and the more familiar electrical computation in silicon, 
but also discussed some important ways in which they differ. Among 
these differences, in artificial computers information is transmitted 
point-to-point by wires, but in cells the means of information 
transmission is diffusion of small molecules. Diffusion can be quite 
rapid in the case of local communication within the nucleus, or within 
a small bacterial cell (cf. Bray, 1995, 2009), or quite slow along the 
many millimeters of some axons. The cell’s system is also massively 
parallel: many molecules diffuse to many different DNA binding sites 
simultaneously (Istrail et al., 2007). Finally, genomic computation is 
highly redundant: there are many routes to achieve the same 
transcriptional outcome, which makes the system highly robust to 
disturbances, and thus stable across a wide range of circumstances. 
These are all in sharp contrast to contemporary von Neumann 
computer architectures, which separate hardware from software, 
communicate with point-to-point specificity along wires, utilize a 
single uniform communication currency (current or voltage), and 
typically operate serially.

Despite these differences, the gene regulatory system is an example 
of “natural computation” involving both information storage 
(memory) and processing (computation), best understood in 
computational terms (Istrail et al., 2007; Brenner, 2012). Although this 
computational system characterizes any eukaryotic cell (from yeast to 
liver cells and including neurons), the key implication for the topic of 
this paper is that genomic computation provides an increasingly well-
understood computational system that equips individual neurons with 
powerful computational resources, including several forms of long-
lasting memory that are independent from, and much more stable 
than, synaptic forms of memory. They are however strongly influenced 
by (and therefore coupled to) the cell’s electrodynamic history and 
current biochemical state, to which we now turn.

Wetware: rapid biochemical computation

A second biochemical computation system characterizing living 
cells is encompassed by cell biologist Dennis Bray’s term “wetware”: 
the set of signaling proteins which are specialized to store, transfer and 
process information within a cell (Bray, 2009). These signaling 
proteins are able store information (for example via protein 
phosphorylation or methylation) and transmit it (via diffusion of cell-
internal signaling molecules termed “second messengers,” for example 
cyclic AMP), and are arranged into biochemical ‘circuits’ that can 
compute various types of simple functions (e.g., amplification, 
addition and multiplication) (Bray, 1995; Benenson, 2012). Several 
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systems of wetware are quite well-understood, such as the mechanism 
underlying bacterial chemotaxis (cf. Bray, 2009). In single-celled 
eukaryotes (e.g., Paramecium or Stentor), wetware and gene expression 
are the only computational systems available, and enable these 
organisms to sense their environment, store information, and control 
action. These two systems thus represent the core mechanisms 
underlying the impressive feats of learning and memory documented 
in single-celled eukaryotes (Tang and Marshall, 2018; Dexter et al., 
2019; Marshall, 2019; Dussutour, 2021; Fitch, 2021; Gershman et al., 
2021). Crucially, neurons inherit this computational machinery 
simply by virtue of being eukaryotic cells. Many of these wetware 
systems (e.g., G-proteins and cyclic nucleotides such as cAMP and 
cGMP) play a ubiquitous and well-studied role in neurophysiology 
(Schulman, 2004), and are so familiar to cellular neurophysiologists 
that they are seen simply as necessary background knowledge from 
molecular biology. Despite this importance, these are rarely considered 
in computational terms, and their potential roles in neuronal 
computation thus often remain either unmentioned (Gazzaniga et al., 
1998) or implicit (Bear et al., 2001) in neuroscience textbooks.

In neurons, the cell-signaling pathways that together comprise 
wetware play a critical role as the bridge between fleeting 
electrodynamic phenomena such as EPSPs, ion influx, or action 
potentials, and longer-term changes in gene expression. This is best 
understood in the context of LTP, illustrating how electrodynamic 
phenomena (e.g., correlated Hebbian firing) are translated into longer-
lasting changes in synaptic and dendritic morphology. In glutamatergic 
LTP, the NMDA receptor serves as a molecular AND gate that only 
opens when a glutamate molecule is bound to it and an action 
potential fired by the host cell. When this occurs, it allows calcium 
ions to flow into the cell which provides a trigger for calcium-
dependent protein kinases (e.g., CaMKII) that play a role in synaptic 
weight modification in LTP (Malenka and Bear, 2004; Kastellakis 
et al., 2023). Such NMDA-mediated changes were once thought to 
be restricted to a single synapse, but it is now clear that they also 
strongly influence neighboring synapses on the same dendrite 
(Kastellakis et al., 2023; Wybo et al., 2023) - so-called “heterosynaptic 
plasticity.” Fortunately then, all of the virtues of this well-known 
plasticity mechanism extend nicely beyond the synaptocentric 
perspective to include the dendrite-focused viewpoint I argue for here.

A host of other molecular mechanisms that bridge between rapid 
electrodynamic events and long-lasting changes in cell form via 
intracellular wetware are currently the topic of intense study. For 
example, the last decades have made clear that the process of 
translating genes into protein from messenger RNAs is distributed 
thoughout the dendritic arbor (rather than limited to the cell body, as 
previously thought) (Sutton and Schuman, 2006). This local 
translation supports an activity-dependent protein synthesis, which in 
some cases (e.g., the Arc gene) can lead to further transcription of the 
gene. Such dendritically localized processes are now thought to 
be crucial to explaining how short term changes in electrodynamics 
can lead to the long-term stability needed for lasting memories to 
form (cf. Das et al., 2023).

For our purposes here, the crucial point concerning neuronal 
wetware is that it provides a powerful cell-internal computational 
mechanism that both responds to neuronal electrodynamics, and 
causally affect gene expression and cell morphology, using physical 
mechanisms independent from either of them. It operates on 
timescales intermediate between these two, and thus provides an 

important conceptual and informational bridge between these other 
two computational levels.

The connectome: dynamic neuronal 
connectivity and the brain’s “wiring 
diagram”

The above discussion of genomic computation (e.g., Istrail 
et  al., 2007) focused on its role within individual cells, but 
genomic computation plays an equally important role in creating 
the whole-brain wiring diagram in the first place. Despite the 
power of individual neurons (see below), they never work alone 
but rather function in complex networks. The fact that neurons 
are dynamic agents, extending axons and forming connections 
with other cells during development, was part and parcel of 
Cajal’s introduction of the neuron doctrine (Finger, 2000), and 
the significance of this morphological plasticity for brain wiring 
has long been recognized. For many years, clear evidence for this 
was limited to the developing nervous system or recovery from 
trauma. Unambiguous evidence that axonal and dendritic 
plasticity also play a key role in adult learning and memory has 
only recently become available (e.g., Biane et al., 2019; Kastellakis 
et al., 2023). This suggests that the details of connections between 
neurons - overall neural architecture - potentially play a central 
role not just in neural development, but in ongoing neural 
computation, information storage, plasticity, and learning in the 
adult brain (Van Kerkoerle et al., 2018).

Despite my focus in this paper on the computational power of 
single cells, neurons in brains are of course members of large networks 
of interconnected cells, and neural computation in its fullness must 
be  understood in ensemble terms of network computation 
(Libedinsky, 2023). It is thus a misconception to focus only on one or 
the other of these two levels (contra Barack and Krakauer, 2021). A 
crucial factor in understanding these network-level computations is 
the specific point-to-point connectivity between neurons, how it 
develops, and how it changes based on experience.

The brain’s wiring diagram – the set of connections between 
neurons – is now widely referred to as the “connectome.” Despite the 
new name, understanding this wiring diagram has been at the heart 
of neuroscience since its inception. Throughout most of the history of 
this field, mapping connections required tract tracing – a laborious 
and time-consuming process that typically involved brain injections 
in living animals and later sacrificing them for histology (Markov 
et al., 2014). Today, a host of new tools makes studying the connectome 
much easier. The primary tools include single-cell transcriptomics, 
which allow us to study the gene expression patterns that control brain 
wiring, genetic engineering to study the global effects of single-gene 
knockouts or enhancements, and/or morphology and connectivity of 
selected neuron classes. While less accurate, whole brain MRI 
scanning and analysis of large fiber tracts using diffusion tensor 
imaging provide us with a global map of connectivity of the entire 
brain, and can be used in living subjects including humans (Rilling 
et al., 2008; Makuuchi et al., 2009; Jbabdi and Johansen-Berg, 2011). 
These new tools provide powerful, multi-scale analysis of connectomes 
in different species, different individuals within a species, and even 
developmental time courses of the same individual across 
development. Connectomics has come of age.
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It is now increasingly recognized that the connectome is dynamic 
at multiple spatial and temporal scales, and that this plasticity plays a 
role both during development and in adult learning (Takeichi, 2007; 
Hirano and Takeichi, 2012). Starting with brain development, 
expression of cell-adhesion molecules such as cadherins plays a 
central and ubiquitous role in neurogenesis, migration patterns of 
neuronal precursor cells, and formation of high-specificity axonal 
connections, as well as key roles in the complex tree structure of 
individual cells (e.g., axonal and dendritic tree complexity) (Hirano 
and Takeichi, 2012). The cadherins are a large family of molecules that 
play crucial roles in development by regulating cell differentiation, cell 
migration, and cell-to-cell contact including synapses. Their roles 
during development are complex and diverse (Hirano and Takeichi, 
2012), and so I only summarize a few highlights here.

In building the brain’s “wiring diagram” – the connectome per se 
– cadherins and similar molecules play important roles in guiding 
axonal growth trajectories and in synapse formation during 
development. These appear to be mediated by a so-called “adhesion 
code” (Krishna-K et al., 2011; Hirano and Takeichi, 2012) determined 
by different combinations of cadherins (and other cell-surface 
molecules). During brain wiring, axonal growth cones extend out 
from young neurons and guide axonal growth by sensing 
environmental guidance cues – by “sniffing” their way through the 
brain (Tessier-Lavigne and Goodman, 1996). A host of different 
signaling molecules, including cadherins, semaphorins, and others, 
play key roles in this process (Redies et al., 2003; Tran et al., 2007), and 
depending on the match between the axon and its potential targets, 
may repel the growth cone, or attract it. Once the growth cone arrives 
at a potential synaptic target, the match or mismatch of cell-surface 
proteins can further determine whether or not synapses are formed. 
Because there are more than 100 cadherin types in vertebrates, and 
they can be co-expressed in arbitrary patterns in different cells, this 
provides a rich combinatorial code that can determine cell-to-cell and 
region-to-region connectivity with high precision (cf. Bekirov et al., 
2008). These signaling molecules also have far-reaching effects within 
the cell, particularly differentiation into neuronal subtypes and/or 
stabilization or dissolution of the cell’s internal actin cytoskeleton. 
That is, once a cell has formed the correct connections, it “senses” this 
fact, and can then differentiate into its final terminal cell type, 
expressing the correct neurotransmitters and receptors, and stabilizing 
its form (potentially by retracting other, dis-preferred connections).

An excellent example of the role of dynamic cadherin expression 
in the establishment of the fundamental connectivity in the brain 
comes from the song-learning system in songbirds, where changes in 
the timing and location of cadherin expression play a central role in 
creating the song-system wiring diagram (Matsunaga et al., 2006; 
Matsunaga and Okanoya, 2008, 2009). To properly learn their songs, 
young songbirds require early exposure to their species-typical song, 
and young birds store these songs as templates before they begin 
singing themselves. When older, the bird then enters the sensorimotor 
or “babbling” stage, where it begins producing song itself and 
converging, over weeks, to a final song that matches the learned 
template(s). This requires synaptic connections between sensory, 
cognitive and motor regions. When the maturing bird begins to 
practice singing, cells in a key song motor nucleus switch from 
expressing a repellent cadherin-7 to a “matching” cadherin-6, creating 
a hand-shake signal which induces synapses with axons projecting 
from higher-order song regions to form. This is an excellent example 

where the gene expression (genomic computation) has a direct causal 
effect on connectivity, and where both map nicely onto whole-
organism behavior. This is just one of many well-studied examples 
showing that cadherin expression patterns play key roles in long-range 
connectivity and synapse formation in the developing brain (Takeichi, 
2007; Matsunaga and Okanoya, 2008), and thus in the creation of 
basic brain circuitry (cf. Hirano and Takeichi, 2012).

Similar mechanisms also play a role in determining the detailed 
form of individual neurons, particularly the structure and complexity 
(e.g., branching patterns) of the dendritic and axonal trees. For 
example, N-cadherin plays an important role in determining retinal 
receptive field sizes, by controlling attachment between retinal 
horizontal cells to photoreceptors (Tanabe et  al., 2006), and a 
combined code involving co-expression of N-cadherin and cadherin-8 
plays a key role in connectivity and arborization in the hippocampal 
mossy fiber pathway (Bekirov et  al., 2008). Cadherins also play 
important roles in stabilizing synapses once they have formed (Brigidi 
and Bamji, 2011).

Summarizing the developmental data discussed so far, the 
expression of different cell adhesion molecules in specific cells plays a 
key role in laying out the initial wiring of the brain, both via early cell 
migration and in later growth-cone based guidance of axonal 
connectivity and synapse formation. The same or closely related 
factors also play a role in generating the dendritic and axonal tree 
form, which both play key roles in determining the computational role 
of single cells within this network (as detailed in the next section, cf. 
Shepherd, 2004). These are all ultimately controlled by gene expression 
patterns at the single-cell level. Thus, the underlying gene expression 
patterns that generate the connectome blur the line between cell-
internal and cell-external computational mechanisms.

Regarding the role of such connectomic changes in adulthood, 
their potential funtion in adult long-term learning and memory 
remains less well-understood. The formation of new synapses at new 
dendritic spines is well-documented (Hickmott and Ethell, 2006). 
Data from birds during song learning demonstrates the computational 
role of dendritic spine plasticity in fully grown young birds (Roberts 
et al., 2010). Strong recent evidence comes from a study by Biane and 
colleagues which demonstrated that motor cortical connectivity is 
modified during motor learning, that these modifications are 
restricted to the relevant microcircuits, and that blocking neuronal 
plasticity impairs learning (Biane et al., 2019). Furthermore, such 
dynamic changes in connectivity have also been shown for axonal 
arbors in cortex, where both sprouting and pruning of new axonal 
branches are seen during perceptual learning in macaque visual cortex 
(Van Kerkoerle et al., 2018). These and other data indicate that the 
connectome remains dynamic throughout life, and thus that specific 
cell-to-cell connectivity continues to play an important role in neural 
computation and plasticity during adulthood.

From a computational perspective, the information storage 
capacity of the connectome is vast. Although wiring still involves 
synapses, the connectome involves the absolute presence or absence 
of synapses, rather than changes in synaptic weights of existing 
synapses (Van Kerkoerle et al., 2018). The connectivity matrix between 
cells provides an additional medium for memory storage (Fitch, 2021), 
which has a discrete binary character rather than the continuous 
values of synaptic weights. While this connectivity remains 
“synaptocentric” in one sense, such all-or-nothing connections, once 
formed, can be  inexpensively maintained via thermodynamically 
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stable cell-adhesion molecules such as cadherins (Takeichi, 2007; 
Hirano and Takeichi, 2012). This storage medium is both metabolically 
cheap and stable over months, and can be maintained by cell-internal 
factors including gene expression patterns yielding matching adhesion 
molecules in the two connected cells (cf. Matsunaga et  al., 2006; 
Matsunaga and Okanoya, 2008) and/or stabilization of the 
internal cytoskeleton.

Graph-theoretically, this form of information storage could 
be captured by a vast neuron-to-neuron connectivity matrix where 
most of the connections are set to zero (no connection) – an extremely 
sparse matrix (Levy and Reyes, 2012). While applicable to very small 
nervous systems (like that of C. elegans, with 302 neurons, Varshney 
et  al., 2011), applying this brute-force approach to human cortex 
would require an impractical 1010 × 1010 connectivity matrix. Although 
absurd from an implementational viewpoint it offers a first suggestion 
of the information capacity of the cortical connectome: 1020 bits! Of 
course, to a large extent the developmental program that constrains 
connectivity among different brain regions is fixed within a species by 
evolution, so many of these theoretical connections are probably 
unreachable in practice (Markov et al., 2014). However, even a tiny 
fraction of these possible connections would provide a formidable 
memory store if they remain settable in adulthood. If each of 1010 
cortical neurons retained a dynamic capacity to form or retract 
synapses on each of 10 recipients, this would still provide 1011  
bits of metabolically cheap, thermodynamically stable, long-term 
information storage. Thus, considering the “wiring diagram” of the 
brain to be fixed would yield a massive underestimate of the potential 
capacity of neural storage at the cell-to-cell level.

Electrodynamics: dendritic computation 
and deep neurons

Finally, I return to cellular neurophysiology to discuss the last, and 
most exciting, category of cell-internal computation: electrodynamics 
as influenced by cell morphology, and particularly the shape of the 
dendritic tree (Figure  1). This class of phenomena can be  termed 
“single-cell computation” or “dendritic computation,” and is the topic 
of a large and fast-growing field (Häusser and Mel, 2003; Schiess et al., 
2018; Gidon et al., 2020; Larkum, 2022; Kastellakis et al., 2023). Single-
cell aspects of neural function are critical to the function of neural 
circuits, but have been consistently ignored in “standard” point-neuron 
models since McCulloch & Pitts (Shepherd, 2004). Neuroscientists 
interested in cellular biophysics have nonetheless been studying this 
type of computation for many decades, often under the rubric of 
“dendritic computation” or “active dendrites.” The many distinct 
categories of computation that can be carried out in dendritic trees 
have been surveyed in multiple excellent reviews (Koch, 1997; London 
and Häusser, 2005; Cazé et al., 2013; Remme and Torben-Nielsen, 
2014; Poirazi and Papoutsi, 2020; Kastellakis et  al., 2023), and are 
reviewed at book length elsewhere (Cuntz et al., 2014a). Here, I will 
only provide a brief overview, focusing on aspects of neuronal form 
that are relevant to both of Shannon’s interests: computation and 
information storage.

Single-cell dendritic computation has been well documented in 
multiple cells types throughout the brain, including Purkinje cells in 
the cerebellum, medium spiny neurons in the striatum, and pyramidal 
cells in the hippocampus and cortex (Shepherd, 2004). Single-neuron 

computation is thus ubiquitous. Although there was still debate in the 
late 1990s about whether dendrites enhance neural computation, this 
is no longer controversial (e.g., Borst and Egelhaaf, 1994; Segev, 1998; 
Guerguiev et al., 2017; Gidon et al., 2020; Kastellakis et al., 2023). This 
renders it rather mysterious that this entire class of cell-based neural 
processing continues to be essentially ignored by “neural network” 
modelers or cognitive neuroscientists.

I will now provide illustrative examples of the power of dendritic 
computing, first discussing the computations made available by 
“passive” dendritic trees: those that lack voltage-gated ion channels. 
Even the addition of a single filamentous dendrite, modeled as a 
passive cable, to a point neuron adds computational power (Rall, 
1964). Because of conduction delays and a steady voltage drop along 
the length of the dendrite, the distance of a synapse from the cell body 
has an important effect on how excitatory post-synaptic potentials 
(EPSPs) propagate, and thus the likelihood that a series of EPSPs will 
fire the cell. For example, a collection of synapses receiving precisely 
the same number of EPSPs may or may not fire the cell, depending on 
the precise timing of this synaptic input.

If these inputs are timed and localized such that summation 
occurs down the length of the dendrite, the net voltage change at the 
soma will be  greater than if they are activated randomly, or in a 
non-summating pattern. This allows a simple directional sensitivity in 
the whole cell output, where it will only fire when its inputs “move” 
down the dendrite rather than up it. This type of direction-sensitivity 
is well documented in early vision in the vertebrate retina interneurons 
(Cuntz et al., 2014b). A slightly more sophisticated form of selectivity, 
still essentially passive, can be achieved more compactly in space via 
impedence gradients and nonlinear ion channels (e.g., NMDA 
channels: Branco, 2014). These examples show that even a cell with 
drastically simplified dendrites possesses a greater repertoire of 
potential spatio-temporal patterns to which it can tune itself, for 
example to implement a direction-sensitive motion detector as seen 
in the retina of flies or vertebrates (Cuntz et al., 2014b).

A second important type of passive dendritic filtering incorporates 
multiple dendrites, and allows the branching structure of the dendrites 
to play a separate role in determining cell firing. This results from the 
phenomenon of “sublinear summation”: the fact that, due to 
membrane biophysics, the EPSPs of closely neighboring excitatory 
synapses on the same dendritic branch will not be fully additive (Rall, 
1964; Segev, 1998). In the simplest case of a bipolar neuron with two 
dendritic branches, several EPSPs co-localized to one dendritic branch 
will not fire the cell, while the same number distributed over both 
branches will. This provides a mechanism by which a single neuron 
can implement an AND function over its two branches, only firing 
when both dendrites are activated (Shepherd, 2004), or more complex 
time-adjusted coincidence detection, as seen in the visual and auditory 
periphery (Borst and Egelhaaf, 1994; Agmon-Snir et al., 1998).

Although so far we  have discussed summation of EPSPs, 
inhibitory inputs are also ubiquitous phenomena in biological neural 
networks. In a point neuron, inhibition is always global, and affects all 
of the input EPSPs equally. In reality, inhibitory inputs can play a 
diverse role in dendritic computing, allowing “targeted inhibition” of 
a particular dendritic branch (Koch et al., 1982). Because inhibitory 
neurons typically impinge upon their targets in multiple locations on 
the dendritic tree, and multiple inhibitory neurons contact each cell, 
this allows for more sophisticated subsetting of the dendritic 
computations than would be allowed by EPSPs alone.
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The phenomena above all occur even in passive dendritic trees. 
However, the full power of dendritic computation only becomes 
evident when the nonlinearities added by active (voltage-sensitive) 
channels are considered (Poirazi and Mel, 2001; Gidon et al., 2020), 
along with dendritic tree structure (Moldwin and Segev, 2020; Jones 
and Kording, 2021; Moldwin et al., 2021). Active ion channels are 
widespread in dendritic arbors, particularly at branch points (nodes) 
in cortical cells (Borst and Egelhaaf, 1994; Magee, 2008) (Figure 1). In 
active dendrites, nonlinear summation can occur at every branch point 
in the dendritic tree, so that dendritic nodes in a single neuron play the 
computational role (summate and threshold) of entire point neurons 
in a complex ANN (Figure 1E), essentially granting a single neuron the 
power of a multi-layer neural network (Poirazi and Mel, 2001; Moldwin 
and Segev, 2020; Beniaguev et al., 2021; Moldwin et al., 2021).

Active conductances can also play a fundamental role in cell-
intrinsic firing patterns, due to coupling between branchlets that leads 
to intrinsic subthreshold dendritic oscillations (Remme and Torben-
Nielsen, 2014). These can also be reflected in firing patterns: Mainen 
and Sejnowksi (1996) examined cell morphology and showed that 
dendritic form determines whether the cell fires tonically (roughly 
periodically) or in concentrated bursts. Thus, the dendritic structure 

of a cell can strongly influence its firing properties, controlling both 
the periodicity of firing, and the precise spike timing. Furthermore, as 
mentioned previously, this dendritic structure is highly plastic: cells 
are constantly changing their form in an activity-dependent manner, 
often using the same molecular mechanisms that have previously been 
researched in a synaptocentric context (Poirazi and Mel, 2001; Lee 
et al., 2005; Kastellakis et al., 2023). Thus, cell morphology is a crucial 
intermediate between wetware and electrodynamics.

To illustrate some experimental examples of the computational 
power of single cells, consider some early results in rodent 
somatosensation. Rodents flick their whiskers and the resulting 
sensory signals provide a high-resolution “image” of the space around 
the head, even in complete darkness. Single cell stimulation studies 
show that tiny (nano-ampere) currents, applied to single cells, are 
capable of both generating whisker movement, and eliciting a 
behavioral response from the animal (as if it had detected a stimulus) 
(Brecht et al., 2004; Houweling and Brecht, 2008). This is remarkable, 
given that this low-level stimulation led to only 14 action potentials 
on average, and that rat somatosensory cortex contains roughly 2 
million neurons. This shows that the influence of single cells can 
be  great enough to yield behaviorally detectable consequences, 

FIGURE 1

Schematic illustrations of different conceptualizations of neural computation. (A) Real biological neurons receive synapses (lines ending in gray circles) 
onto complex, branched dendrites, which join at a cell body, which then projects one or more axons to synapse upon other neurons. (B) “Point 
neurons”: The dominant conceptualization of a “unit” in contemporary artificial neural networks (ANNs) is a simple “point neuron” which has no 
structure: it simply multiplies the input from each synapse by a weight, and sums these weighted inputs. If the sum is above threshold (a nonlinear 
function, as indicated by the sigmoid curve), the unit “fires” an output. (C) A classical two-layer ANN, with fully connected input and output layers made 
up of “point neurons”. (D) “Dendritic Compartmental Model”: A more accurate but still incomplete model of a neuron, represented by multiple 
dendrites, each computing a weighted sum of its own synaptic inputs. (E) “Active Branch Conductances”: The simplest computational model capable 
of approximating the actual complexity of biological neurons has both separate dendritic compartments, and active conductances at the branch 
points where dendrites join together. These support a number of separate nonlinear threshold functions before the final whole-cell threshold, thus 
allowing a single neuron to approximate a two-layer ANN in complexity and computational power.
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indicating that single-cell computation can have major effects at the 
whole-brain level (cf. Tanke et al., 2018).

To summarize these examples of dendritic computing at the 
single-cell level, modeling dendrites as simple passive cables already 
extends the computational powers of dendritic neurons beyond those 
of point neurons, allowing computations such as motion detection or 
logical operations like AND to be  implemented. But in reality, 
dendritic trees possess active voltage-gated channels that allow each 
dendritic branch to spike independently, permitting synaptic inputs 
to be combined in complex, nested logical fashion. Complex, active 
dendritic trees thus render each neuron a complex micro-computer 
in its own right (cf. Poirazi et al., 2003; Cuntz et al., 2014a; Kastellakis 
et al., 2023). These computations can to some extent be “read off ” 
from the morphology of the dendritic tree, as Cajal had hoped, where 
complexity of the dendritic tree maps directly onto to complexity of 
the attendant computation.

Turning to information storage in dendritic trees, the 
computational discussions above all considered only static neuronal 
morphology. But ever since Cajal discovered the axonal growth cone, 
we have known that, like many other eukaryotic cell types, neurons in 
fact have a highly dynamic form, and can readily change their shape 
(Van Kerkoerle et al., 2018). This is true of both axonal and dendritic 
arbors, with axons being distinguished by their long-range 
“migrations” throughout the brain and body, particularly during 
development or after injury. New imaging methods have also provided 
compelling (and beautiful) evidence of plasticity in adult organisms, 
where filopodia can be  observed to extend out from an axon or 
dendrite, make contact with axons of other neurons, and form new 
synapses. Rapid morphological changes (particularly in dendritic 
spines) are correlated with electrical activity of cells and behavioral 
readouts of whole organisms (Akemann et al., 2010; Roberts et al., 
2010; Van Kerkoerle et al., 2018; Kastellakis et al., 2023). 

All of the computational properties described above depend upon 
the detailed shape and size of dendrites and/or the distribution of 
synapses, receptors and ion channels upon the dendritic tree. This 
means that dynamic changes in dendritic form, and creation or 
destruction of synaptic contacts, provide an important and capacious 
potential locus of information storage and cellular memory. For 
example, changing the location of synapses on the dendritic tree, the 
overall diameter of a dendrite, or the area of its connection to others 
at a branch node will all have major effects on its dynamics and 
coupling to the rest of the cell, thus modifying the overall computation 
performed by the dendritic tree. This means that, in addition to but 
independent of synaptic modification, modifications of dendritic form 
can also serve as a high-capacity locus of learning and memory for 
individual cells (Poirazi and Mel, 2001).

Extending artificial neural networks with 
dendritic computation

As emphasized above, it is no secret that dendritic form plays a 
central role in cellular neurophysiology, or that active channels exist in 
dendritic trees: these facts have been suspected since Cajal’s time and 
clearly documented for at least three decades (for brief histories see 
Poirazi and Mel, 2001; Shepherd, 2004). This means that single cells are 
complex microcomputers, whose form fuses computation and 

information storage in their dendritic morphology (Koch, 1999; Cuntz 
et al., 2014a; Beniaguev et al., 2021; Kastellakis et al., 2023). Why then 
do standard contemporary “neural” models ignore this rich domain of 
neural computation?

It might be  expected that including greatly increased 
computational power in the individual “units” in neural network 
models would be prohibitively computationally expensive, and beyond 
the power of existing computers to model. However, recent “deep” 
neural models of pyramidal cells indicate that more realistic and 
complex cellular models can, seemingly paradoxically, simplify 
learning and computation in such networks (Beniaguev et al., 2021; 
Hodassman et al., 2022). For example, in a network model of a single 
cell, modifications of synaptic weights during learning can be limited 
to the superficial input layer (where synapses actually occur in real 
neurons) and not the deeper layers of the model (corresponding to 
intra-cellular computation at nodes). Fixing internal node weights 
corresponds to “freezing” the dendritic structure, allowing most of the 
neuron’s computation to be modeled in a simple fixed, feed-forward 
manner (which can be done very efficiently using specialized GPU 
processing) (Boahen, 2022).

Increased complexity of the “units” in a deep neural network also 
greatly increases biological plausibility. For example, most 
contemporary ANNs use back-propagation of error signals 
throughout an entire network to support learning via synaptic weight 
adjustment. However, back propagation across many neurons is 
biologically implausible: there is no known biological mechanism to 
propagate an error signal across multiple synapses (Roberts, 1989; 
Lillicrap et al., 2020). In contrast, error signal propagation within a 
single neuron does exist, due to antidromic propagation of action 
potentials throughout the dendritic tree, and can serve as a learning 
signal not only for synapses but for the morphological changes and 
gene expression changes discussed above as extra-synaptic forms of 
memory (Schiess et al., 2018). Finally, implementing dendrocentric 
computation in engineered systems may yield impressive energy 
savings over the traditional synaptocentric view: Boahen has recently 
argued that a dendrocentric conception, implemented in silicon, could 
yield a 400-fold energy savings in engineered “neural networks” 
(Boahen, 2022). Thus, incorporating insights beyond the 
synaptocentric standard could yield engineering benefits, while 
simultaneously making such systems more “neural.”

Thus, more complex models of single neuron computation will 
allow much closer contact between models of brain function, neural 
circuits, neuronal form and gene expression, while still allowing 
robust computational efficiency. Of course, all models must remain 
constrained to be useful: we cannot simply model every cell in a 
deep neural network with a full-blown set of partial differential 
equations, so the search for simplified cell models that nonetheless 
support more complex computations will be a central desideratum 
(cf. Boahen, 2022). As our understanding of the computational 
properties of single neurons increases, varying abstractions 
regarding their underlying mathematical/computational 
representation may be required for different purposes (cf. Hedrick 
and Cox, 2014; Denève and Machens, 2016). But if our goal is to 
understand how brains compute, there appears to be  little 
justification, either biological or computational, to continue relying 
upon the outdated point neuron model and the synaptocentric 
perspective it embodies.
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Discussion: computational and 
evolutionary implications

In this paper, I have summarized diverse data strongly implying 
that real neurons are considerably more powerful than “standard 
model” point neurons, both in terms of computational power and 
information storage. Although the existence in dendritic arbors of 
active conductances and nonlinearities has been known for several 
decades (Koch, 1999; Koch and Segev, 2000), understanding the 
deeper computational significance of these cellular properties has 
been a slow process that has only recently reached fruition (Beniaguev 
et  al., 2021; Boahen, 2022; Galakhova et  al., 2022; Larkum, 2022; 
Nandi et al., 2022; Kastellakis et al., 2023). In contrast, understanding 
the nature of gene regulation and “wetware” has been part and parcel 
of molecular cell biology almost since its inception (Jacob and Monod, 
1961; Bray, 1995), but is too rarely seen in computational terms and 
integrated into holistic models of single-cell computation in 
neuroscience. Here, the problem stems from the difficulties of inter-
disciplinary integration rather than a dearth of scientific knowledge. 
Indeed, perhaps the greatest obstacle to synthesizing all of these 
viewpoints into a unified cognitive perspective on single-cell 
computation is the sheer volume of knowledge, distributed across 
different subdisciplines of biology and neuroscience. Having, I hope, 
demonstrated the possibility and potential promise of such a unified 
viewpoint, I will end by briefly considering several key implications of 
the more biologically grounded perspective on neural computation 
and cognition laid out in this paper.

Beginning with computational implications, dendritic computing 
in “deep” neurons allows, in a single cell, complex computations 
previously believed to require multi-layered networks of classical 
“point” neurons (Poirazi et al., 2003; Moldwin et al., 2021; Larkum, 
2022). Larger and more complex dendritic trees can both implement 
a more complex repertoire of computations, and store more 
information than point neurons. Single-cell computation provides 
significantly increased speed and precision (Testa-Silva et al., 2014) at 
lower energetic cost (Koch, 1999; Niven and Laughlin, 2008; Niven, 
2016; Boahen, 2022) than network computation. Thus, changes in 
both cell morphology and cell-internal factors including intrinsic 
excitability and wetware will result in highly significant changes in 
neural computation, both within individual brains and across 
evolution (summarized in Galakhova et al., 2022).

Summarizing the nature of the computations performed in 
single cells is a challenge, using currently familiar abstractions 
like the familiar “analog/digital,” “distributed/symbolic” or 
“software/hardware” distinctions. Some aspects of dendritic 
computation are best considered analog (e.g., EPSP propagation 
in passive dendrites) while others are clearly discrete and digital 
(e.g., logical operations at active nodes in the dendritic tree, or 
the cell’s overall binary decision to fire or not). So neurons, and 
thus neural networks, are mixed analog/digital systems. Similarly, 
modern silicon-based computers have their wiring diagram fixed 
during manufacturing (“hardware”), and store information 
(including software) in flexible and independent memory storage 
devices of various types (RAM, hard disks, etc.). In contrast, as 
discussed above, dendritic form influences both the computations 
the neuron performs and provides a high-capacity, low-cost 
source of discrete information storage. Because this “hardware” 
is constantly changing, both influencing computation and storing 

information, there is no clear hardware/software or CPU/memory 
distinction in real neurons. Of course, there may be useful related 
computational abstractions to be  made that are more directly 
relevant to biological computation than those deriving from 
silicon computing devices. Thus, we urgently need new models 
of “natural computation” that take into account the biological 
facts considered in this paper, and should avoid trying to foist 
existing models of computation, developed mainly in the context 
of in silico computing, onto the biological computers in our skulls.

In particular, the conception of neural computation outlined 
here calls into sharp question the value of the long running 
debate regarding discrete, symbolic models of the brain (as in 
first-generation AI) versus parallel, distributed models (as in late 
20th century ANNs or contemporary “deep networks”). Despite 
the vehemence and persistence of this debate in cognitive science 
(e.g., Fodor and Pylyshyn, 1988; Elman et al., 1997; Christiansen 
and Chater, 1999; Marcus, 2001), a serious consideration of 
cellular neurophysiology shows that artificial neural networks are 
really no more “neural” than Turing-style symbolic computation. 
Both perspectives involve oversimplified models whose 
assumptions, depending on one’s goals, may be  more or less 
appropriate. I  suggest that what is needed are new symbolic 
approaches (cf. Dehaene et al., 2022), perhaps based on the solid 
mathematical foundations of formal language theory (Fitch and 
Friederici, 2012; Fitch, 2014), that still allow the high degree of 
parallelism nicely captured in network models, along with the 
power and robustness of distributed representations (Rummelhart 
and McClelland, 1986; Smolensky, 1988). Mathematically, in 
place of the simple dot product computed by artificial point 
neurons, a more structured computation that is still tractable in 
terms of an augmented linear algebra (and computable using 
modern GPUs) that combines distributed and symbolic 
computing is clearly desirable and much needed, along the lines 
of Smolensky’s tensor product proposal (Smolensky, 1990) or 
Boahen’s “dendrocentric” model (Boahen, 2022).

Turning to cognitive perspectives on brain function, a 
perspective on neuroscience that centrally includes cellular 
computation has much to offer, both in terms of synthesizing 
brain structure and function, and in understanding how genetic 
changes (over evolution, or among individuals within a species) 
map onto cognitive function. For example, within vertebrate 
brains there is a clear gradient of cellular complexity in sensory 
systems, from numerous simpler cells in primary sensory areas 
(e.g., V1) to larger and more complex cell structures in higher-
order sensory or associations regions (Elston, 2000, 2003; Elston 
et al., 2009; Galakhova et al., 2022). There is a huge dimensionality 
expansion in initial stages of cortical computation: human 
primary visual cortex receives input from roughly 3 million input 
neurons in the lateral geniculate nucleus, but itself contains about 
140 million neurons, implying a 40:1 expansion. Ultimately, 
however, sensory and motor decisions (e.g., object recognition or 
action planning) require a great dimensionality reduction to 
essentially discrete decisions, implying lower numbers of 
“decision” neurons that sparsely code their outputs (Olshausen 
and Field, 2004; Houweling and Brecht, 2008). Post-primary 
processing layers must therefore drastically reduce 
dimensionality, omitting irrelevant data and compressing 
representations, in order to converge upon discrete decisions 
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(Tanke et al., 2018). The increased complexity of cells progressing 
“up” the processing hierarchy suggests that the faster, more 
precise single-cell computation provided by more complex 
pyramidal cells in higher-order cortex is one of the mechanisms 
by which such sparseness and dimensionality reduction 
are achieved.

Across species, highly significant changes in cell morphology and 
cell-internal computation have occurred across evolution. These 
factors almost certainly include both changes in connectivity 
(particularly long-range connections) and changes in cell-intrinsic 
computational power (Rilling et al., 2008; Bräuer et al., 2011; Fitch, 
2014; Ardesch et  al., 2019; Galakhova et  al., 2022). For example, 
numerous studies indicate that cellular complexity, particularly in the 
dendritic arbor, is higher in humans than in other mammals (Mohan 
et al., 2015; Galakhova et al., 2022), and that such increased complexity 
is cognitively relevant (e.g., Ashokan et al., 2018; Goriounova et al., 
2018). Dendritic structure is more diverse and varied in human cortex 
than in macaques or rodents (Mohan et al., 2015; Galakhova et al., 
2022), potentially allowing more efficient compression of information 
at any level of the cortical processing hierarchy. Furthermore, as 
summarized earlier, increased dendritic complexity allows more 
computationally distinct dendritic compartments, and thus increased 
computational power per neuron. This is partially because the lack of 
synaptic delays and axonal conduction makes single-cell computation 
faster, more precise, and more energy-efficient (Laughlin et al., 1998; 
Olshausen and Field, 2004; Niven and Laughlin, 2008; Testa-Silva 
et  al., 2014; Boahen, 2022) than in a network of unstructured 
point neurons.

Although factors concerning cell shape and connectivity are thus 
very relevant to cognitive changes across evolution, better 
understanding how such changes relate to genetics must play a truly 
central role in understanding the cognitive biology of species 
differences. Differences in neural form and connectivity are 
particularly important from the viewpoint of evolutionary genetics. 
Because single cells are the locus of gene expression, any computational 
understanding of the rapid evolutionary divergence in neurally-
expressed genes (cf. Theofanopoulou et  al., 2017) will require an 
increased understanding of how differences in gene expression map 
onto changes in the morphology and connectivity of single neurons. 
This is true both within a species (e.g., to understand individual 
variability and clinical disorders, Glessner et al., 2009; Goriounova 
et al., 2018) and across species (DeFelipe, 2011; Galakhova et al., 2022).

Recent advances in transcriptomics reveal important changes in 
gene expression in human cortical cells relative to those of rodents. 
Based on expression of key genes, humans have unique pyramidal cell 
types not seen in rodents. For example, some human pyramidal cells 
express CARM1P1 or FREM3 which code for neurofilament markers 
indicative of long-range cortico-cortical connections (Berg et  al., 
2021). These transcription factor differences reflect robust differences 
in both cell morphology and electrical properties (Nandi et al., 2022), 
such as presence and timing of dendritic spikes, and in some cases 
these differences have already been shown to increase the 
computational power of such cells (Gidon et al., 2020). Thus, changes 
in gene expression thought to be cognitively relevant will play out first 
and foremost at the level of single-cell morphology and development 
– whether at the cell-structural level, the distribution of receptors and 
ion channels within the cell, or the connections between cells. Given 
the practical and theoretical relevance of understanding the mapping 

between genes, brains and minds, cellular computation should thus 
take center stage in the next generation of cognitive and computational 
models of the brain.

Summary and conclusions

My central argument in this paper has been that every eukaryotic 
cell is a complex computer at the levels of gene expression and 
“wetware” (Bray, 2009; Brenner, 2012; Fitch, 2021), and that neurons 
in particular add additional layers of computation to these in their 
dendritic form and cell-to-cell connectivity (Koch and Segev, 2000; 
Beniaguev et al., 2021). By analogy with contemporary “deep” neural 
networks, “deep” neurons constitute powerful microcomputers at the 
cellular level. However, these computations occur at multiple different 
levels and time scales, ranging from very rapid wetware and 
electrodynamics to the much slower formation of long-range neural 
connections during development. The synaptocentric view of most 
modern neural networks, in contrast, pictures neurons as simple 
sum-and-threshold nodes, where all of the computational work is 
done at the network level, and information storage occurs solely in 
synapses via adjustable synaptic weights.

Although I  have distinguished four different computational 
substrates in this review, each of these four levels interacts with the 
others. Although this perspective may seem very (perhaps 
unnecessarily) complicated to an engineer, it is first of all the way 
biology does “natural computation” (as a matter of fact) and (as a 
matter of principle) it allows an integration of the explanatory levels 
of genetics, biochemistry, cell form and neural circuitry in a way 
inaccessible to standard “neural” models. Thus, if we  hope to 
understand how genetic changes during evolution impinge upon 
neural circuitry, and thus control brain computation and cognition, 
we must embrace a cell-focused viewpoint on computation, along 
with the complexity that attends it, and not continue to focus solely on 
network structure.

The viewpoint on cellular computation advanced here has an 
important implication for the arguments of Gallistel and colleagues 
(Gallistel and King, 2010; Gallistel, 2020; Langille and Gallistel, 2020), 
who have argued that neural network models (and thus various 
conceptions of neural function that are based on them) are intrinsically 
unsuited to provide satisfactory models of cognition and memory due 
to their fundamental reliance on stored associations (cf. Dayan, 2009; 
Gershman et al., 2021; Prasada, 2021; Poeppel and Idsardi, 2022). My 
arguments here are consistent with Gallistel’s critique, insofar as 
I argue that synaptic weights are not the sole repository of long-term 
stored information in the brain. However, I have tried to show here 
that there are multiple well-studied domains of information storage 
that can play this role, and thus that we need not rely on any novel 
undiscovered mechanisms (e.g., reverse transcription of learned 
information into DNA Gallistel, 2020) to fill the explanatory gaps left 
by rejecting a synaptocentric view. I argue that all we need to solve 
“Gallistel’s problem” is to take seriously the known molecular biology 
of cells in general, along with the computational properties embodied 
in the form of neurons in particular. When we do so, we discover a 
surfeit of possible information storage mechanisms at the level of 
single cells that are discrete, long-lasting and metabolically 
inexpensive: precisely Gallistel’s desiderata. The task moving forward 
will be to better integrate our understanding of these levels, and to 
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better understand how these different mechanisms, each of them a 
topic of a discipline in its own right, interact to provide the 
computational and information storage resources that underlie 
cognition in humans and other animals.
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