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Lateral flow immunoassay (LFIA) is an important detection method in vitro diagnosis,

which has been widely used in medical industry. It is difficult to analyze all peak

shapes through classical methods due to the complexity of LFIA. Classical methods

are generally some peak-finding methods, which cannot distinguish the difference

between normal peak and interference or noise peak, and it is also difficult for them

to find the weak peak. Here, a novel method based on deep learning was proposed,

which can effectively solve these problems. The method had two steps. The first

was to classify the data by a classification model and screen out double-peaks data,

and second was to realize segmentation of the integral regions through an improved

U-Net segmentation model. After training, the accuracy of the classification model

for validation set was 99.59%, and using combined loss function (WBCE + DSC),

intersection over union (IoU) value of segmentation model for validation set was

0.9680. This method was used in a hand-held fluorescence immunochromatography

analyzer designed independently by our team. A Ferritin standard curve was created,

and the T/C value correlated well with standard concentrations in the range of

0–500 ng/ml (R2 = 0.9986). The coefficients of variation (CVs) were ≤ 1.37%. The

recovery rate ranged from 96.37 to 105.07%. Interference or noise peaks are the

biggest obstacle in the use of hand-held instruments, and often lead to peak-finding

errors. Due to the changeable and flexible use environment of hand-held devices,

it is not convenient to provide any technical support. This method greatly reduced

the failure rate of peak finding, which can reduce the customer’s need for instrument

technical support. This study provided a new direction for the data-processing of

point-of-care testing (POCT) instruments based on LFIA.

KEYWORDS

lateral flow immunoassay, data processing, point of care testing, deep learning,
convolutional neural network, U-Net model

1. Introduction

In vitro diagnosis (IVD) generally refers to detecting targets in the blood, urine, sweat,
saliva, tissue fluid, or tissue outside the body, and is mainly used to diagnose diseases,
prevent infections, manage chronic diseases, track pathological changes, evaluate therapeutic
effects, and other aspects of health care (Yang et al., 2021; Peng et al., 2022). Currently, the
instruments used for IVD include biochemical, immunological, molecular, microbial, and blood
diagnosis as well as point-of-care testing (POCT) (Haung and Ho, 1998; Xiao and Lin, 2015;
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Chen et al., 2017; Vila et al., 2017; Li et al., 2020; Liao et al., 2021).
Compared with previous instruments, POCT has the characteristics
of high speed, convenience, and low cost; therefore, it has received
considerable attention from the medical industry (Singer et al., 2005;
Damhorst et al., 2019).

Point-of-care testing is a patient-centered method for rapid
sample detection using portable analytical instruments or simple
reagents (Luppa et al., 2011; Florkowski et al., 2017). There
are many kinds of POCT instruments, among which the lateral
flow immunoassay (LFIA), based on paper-based and fluorescence
detection technology, is increasingly being applied (Chen and Yang,
2015). It has the advantages of being cheap, lightweight, and easy
to handle, and the fluorescence detection method can realize the
quantitative detection of the sample. Both of them make LFIA highly
competitive, especially for developing countries where budget is an
important criterion, which is a good choice (Wu et al., 2018).

According to the published literature, LFIA technology has
successfully realized the detection of biomarkers in many fields.
Our research group combined many medical units using fluorescent
microsphere labeling and immunochromatography technology to
successfully detect COVID-19 and evaluated the analytical ability and
clinical application of this technology (Zhang et al., 2020). Hu et al.
(2016) developed a highly sensitive quantitative lateral flow analysis
method for protein biomarkers using fluorescent nanospheres (FNs)
as materials, which can be used to detect the concentration of CRP in
the human body with a detection limit of 27.8 pM. Lee et al. developed
a novel portable fluorescence sensor that integrates a lateral flow assay
with quantum dots (Qdots) labeling and a mobile phone reader for
the detection of Taenia solium T24H antibodies in human serum (Lee
et al., 2019). Huang et al. (2020) used a double-antibody sandwich
immunofluorescence method based on the combination of nano
europium (EUNP) and lateral flow immunoassay (LFIA) to detect
IL6 with a wide linear range (2–500 pg/ml) and high sensitivity
(0.37 pg/ml) (Huang et al., 2020). Shao et al. (2017) used the
double-antibody sandwich immunofluorescence method combined
with the time-resolved immunofluorescence (TRFIA) and lateral
flow immunoassay (LFIA) to detect human procalcitonin with high
sensitivity (0.08 ng/ml). Gong et al. (2019) developed a miniaturized
and portable UCNP-LFA platform that can be used to detect small
molecules (ochratoxin A, OTA), heavy metal ions (Hg2+), bacteria
(Salmonella, SE), nucleic acids (hepatitis B virus, HBV), and proteins
(growth-stimulating expressed gene 2, ST-2).

As shown in Figure 1, there are two schemes of fluorescence
detection technology for LFIA: a photoelectric scanning data
acquisition platform based on Si photodiode, which is the current
mainstream technology because of better performance, and a data
acquisition platform based on CCD photography (Shao et al., 2019).
The classical method of LFIA data processing is to obtain the C-/T-
lines of the strip by peak-finding method. In this way, the normal
peak and interference peak or noise peak cannot be distinguished,
and wrong peak is easy to be regarded as normal peak, thus
giving wrong detection result. These methods still perform poorly in
effectively identifying weak and overlapping peaks while maintaining
a low false-discovery rate. Qin et al. (2020) used a U-Net neural
network, a variant of the convolutional neural network (CNN), to
achieve the region of interest (ROI) containing T-/C-lines of test
strips, and which was only used for CCD photography. In this study,
we proposed a novel data processing method, which can be applied to
both CCD photography and photoelectric scanning data acquisition
platform. When applied to CCD photography, it only needed to

convert the data to one dimension, which can be done by averaging
the same row pixels parallel to the fluorescent band. This method
greatly reduced the failure rate of peak finding, which can reduce
the customer’s need for instrument technical support, and provided a
new direction for the data processing of POCT instruments based on
LFIA.

Compared with the classical peak-finding method, method
proposed in this study has the following advantages:

(1) Classical peak-finding methods combined with threshold-based
techniques do not have the ability to identify peak shapes.
They can only find local maxima according to certain rules,
and cannot accurately identify certain noise signals as invalid
data. For example, according to the setting rules in section “3.4.
Comparison with classical methods,” they will misjudge peak
1 as C-peak in Figures 2A–G, and misjudge peak 2 as T-peak,
resulting in incorrect detection results. They will also misjudge
peak 1 as C-peak in Figure 2H, and no T-peak can be found,
resulting in a false concentration of 0. In fact, all the data listed
in Figure 2 were judged invalid by the technician. Due to the
diversity of sample types and detection items, coupled with
some problems in user operation, various invalid data could
be generated. The classification model based on deep learning
proposed in this study has ability to distinguish peak shape, and
it can identify these invalid data as noise (class 1) or only T-peak
(class 3), thus solving this problem well.

(2) Classical peak-finding methods cannot solve the problem of
interference peaks, especially the interference peaks around
weak T-peak, as shown in Figure 4. Interfering peaks may
appear anywhere, to the left or right of valid peak. Classic peak-
finding methods combined with threshold-based techniques,
such as setting an interval range for the positions of C-peak and
T-peak or setting a threshold for the height of C-peak, are not
completely reliable. Because the positions of C- and T- peaks
will change with assembly position of nitrocellulose membrane,
insertion position of test strip, difference between different
instruments, sampling speed and so on, errors will occur when
the set range is exceeded. For example, the classic peak-finding
methods will misjudge peak 1 as C-peak in Figure 4B, and
misjudge peak 2 as T-peak in Figure 4C and peak 1 or 2
as T-peak in Figure 4D. In addition, the classic peak-finding
methods perform poorly when looking for weak T-peak. They
often fail to find T-peak and misjudge the tailing peak (peak
2 in Figures 4E, F) as T-peak. Similarly, the improved U-net
segmentation model proposed in this study has ability to
distinguish shape of peaks, which can solve this problem well.

(3) For classical methods, a minimum threshold is generally set for
the height of C-peak. If the threshold is too small, accuracy
will be greatly reduced due to presence of interference peaks or
invalid data. If the threshold is too large, it will be unfavorable
to process data with low height of C-peak in test strips of
competition method. This is an unavoidable shortcoming of
classical methods, but the method proposed in this study does
not have this problem.

(4) Method proposed in this study can enhance its generalization
ability by constantly learning new type data, but classical
algorithm obviously does not have this ability. They are only
some fixed peak-finding rules and threshold judgments, and
cannot accurately identify some noise peaks similar to valid
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FIGURE 1

Schematic diagram of LFIA. A hand-held fluorescence immunoassay analyzer which was used to measure fluorescent intensity controlled by a mobile
phone via Bluetooth. Its sensor can be CCD or Si photodiode.

peaks. In particular, the noise data is ever-changing, and
it is difficult for classical methods to be suitable for every
new type of data.

2. Materials and methods

2.1. Materials

The data used for training, validation, and testing in this study
were obtained from Beijing Savant Biotechnology Co., Ltd. These
data are the result of testing a variety of items. The detection items
mainly included human ferritin, vitamin D, D-dimer, and C-reactive
protein and so on. The sample types mainly included whole blood,
serum, and plasma.

2.2. Principle of LFIA

A double-antibody sandwich test strip with fluorescent
microspheres (FMS) as the carrier was used to illustrate the
detection principle of LFIA. The double-antibody sandwich structure

is shown in Figure 1. The test strip was composed of a sample pad,
conjugate pad, nitrocellulose membrane (NC membrane), absorbent
pad, and plastic backing card. After the sample was dripped into
the sample pad, it was subjected to immunochromatography under
capillarity. The detection antibody-FMS (DAb-FMS) and rabbit IgG
antibody-FMS (Rabbit-Ab-FMS) were placed on the conjugate pad.
There are T and C lines on the NC membrane; the T line is coated
with capture antibody (CAb), and the C line is coated with goat
anti-rabbit IgG antibody (GAR-Ab). The absorbent pad causes liquid
to flow via capillary action. The plastic backing card plays the role of
fixing and supporting.

When the sample solution containing the analyte was added to
the sample pad, it was laterally transferred along the NC membrane
via capillary action. When the sample flowed through the conjugate
pad, the Antigen in the sample reacted with DAb to form a DAb-
FMS/Antigen complex. When the complex flows to the T line in the
NC membrane, the Antigen and CAb on the T line are immunized
to form a DAb-FMS/Antigen/CAb complex. Rabbit-Ab-FMS, which
does not participate in the reaction, continues to flow forward to the
C line and reacts with GAR-Ab.

Generally, the entire reaction process takes approximately
15 min. After immunochromatography is completed, the excitation
light generated by the scanning mechanism irradiates the T and C
lines, and fluorescence is generated. In the process of scanning the
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FIGURE 2

Noise (Class 1) of different shapes (A–H). The classical methods will
misjudge peak 1 as C-peak in panels (A–G), and misjudge peak 2 as
T-peak, resulting in incorrect detection results. They will also misjudge
peak 1 as C-peak in panel (H), and no T-peak can be found, resulting
in a false concentration of 0.

NC membrane, the fluorescence intensity produced at each point
of the scan was recorded using a photodiode, and the peak data
shown in Figure 1 were finally formed. The ratio of the fluorescence
intensities of the two lines can be obtained by calculating the ratio of
the peak areas of the T- and C-peaks. The concentration of the antigen
detected in the sample was proportional to the T/C. By establishing
a standard curve, the concentration of the antigen detected in the
sample can be calculated.

2.3. Data augmentation

During the testing of clinical samples, four different peak shape
data were obtained: noise (class 1), only C-peak (class 2), only T-peak
(class 3), and double-peaks (C-peak and T-peak, class 4). Class 1
was generated by a fluorescence analyzer scanning the fouled NC
membrane, whereas class 2 was generated by detecting the sample

with a concentration of 0. However, the data of class 3 were very
few, and were generally generated from the test strips with the
disappearance of the C-peak. To better train the model, the C-peak
of the double-peaks (class 4) was deleted and transformed into the
background by a cubic spline interpolation method; thus, a large
amount of data containing only the T-peak was generated manually.

2.4. Label annotation

To train the model, a large amount of labeled data is required.
Data annotation is a complex process, and the quality of the
annotation directly affects the results of the model training. This
method includes two steps corresponding to a classification and a
segmentation model, and the training data of the two models must
be annotated separately. The labeled dataset was randomly divided
into training and verification sets.

The entire dataset for the classification model includes
approximately 4,100 detection data, including four types of peak
shapes, namely, noise, only C-peak, only T-peak, and double-peaks.
These four types of data were encoded according to one-hot, which
were noise (class 1), only C-peak (class 2), only T-peak (class 3),
and double-peaks (class 4), as shown in Figures 2–4. There were
approximately 900 data for noise (class 1), 900 for only C-peak (class
2), 900 for only T-peak (class 3), and 1,400 for double-peaks (class
4). The peak shape of the detection data is particularly complex and
diverse, and only a few typical ones are selected for display here.

The dataset of the segmentation model includes approximately
1,400 pieces of detection data, that is, all the data of class 4. In
this study, based on the Python language, software was designed
to annotate the integral regions of the T-peak and C-peak, and the
integral regions of the C-peak and T-peak of 1,400 fluorescence
detection data were annotated.

2.5. Network architecture

Convolutional neural network is an artificial neural network
specially designed to process data such as images or videos. It
generally has three layers, namely, convolution, pooling and full
connection layer. In the convolution layer, input samples are
convolved with kernel, and the discrete convolution function is
defined as:

(f ∗ g)(x) =
∑

τ

f (τ) · g(x− τ)

where f and g are two functions.
Pooling is used to extract high-dimensional features, and the

most commonly used ones are maximum and average pooling.
In a fully connected layer, all neurons in the current layer are
interconnected with every neuron in the next layer.

As shown in Figure 5, the entire data-processing flow consists
of two steps. First, a classification model was used to classify the
input data. Second, after analyzing the input data, if the output result
was class 4 (double-peaks), the data were imported into the next
segmentation model to realize the data segmentation of the C-peak
and T-peak areas.

The input of the classification model had two channels. Because
the fluorescent signal has strong background noise, we subtracted
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FIGURE 3

Panels (A–D) are only C-peak (Class 2) of different shapes, and panels (E,F) are only T-peak (Class 3) of different shapes.

the background and then normalized it as the first channel. It was
achieved by the following formula.

Y1 =
X−xmin

xmax − xmin

where Y1 is the first channel, X is raw input data, xmin is minimum
value, and xmax is maximum value of raw data. In order to make
the model learn the peak shape rather than intensity, we performed a
logarithmic operation on the signal which was deducted background

as the second channel. It was achieved by the following formula.

Y2 =
log10(X − xmin)

log10(xmax − xmin)

where Y2 is the second channel, X is raw input data, xmin is minimum
value, and xmax is maximum value of raw data.

The network architecture of the classification model is illustrated
in Figure 5A. The entire network architecture consisted of 10
layers; the first seven layers were conv1d + ReLU + MaxPool1d
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FIGURE 4

Double-peaks (Class 4) of different shapes (A–F). Peaks 1 and 2 are interference peaks. The classic methods will misjudge peak 1 as C-peak in panel (B),
misjudge peak 2 as T-peak in panel (C), and peak 1 or 2 as T-peak in panel (D). They often fail to find T-peak and misjudge the tailing peak [peak 2 in
panels (E,F)] as T-peak.

(Acharya et al., 2017; Gu et al., 2018; Zhang et al., 2019), and the
input data were extracted into four features of high-dimensional
1,024 channels. The eighth layer extended the number of channels to
2,048. Next, Max + Transposition was used to extract the maximum
value from the four high dimension features (Gu et al., 2018).
To improve the accuracy of classification, we used dropout layer

before fully connected layers. The last layer (Dropout + Fully-
connected + SoftMax) classified the data into one of four classes
(Srivastava et al., 2014).

We designed an improved U-Net segmentation model with
reference to the classic U-Net model (Ronneberger et al., 2015);
the network architecture is shown in Figure 5B. We changed
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FIGURE 5

Each blue box represents a feature map of a layer. Number above the blue box is the number of channels, whereas number in lower left corner is the
number of data points. The arrows represent different operations. (A) Neural network architecture of the classification model. The first blue box
represents the format of input data. After being processed by the classification model, the input data were finally classified into four classes, namely,
Class 1 (Nosie), Class 2 (Only C-peak), Class 3 (Only T-peak), and Class 4 (double-peaks). (B) Neural network architecture of segmentation model,
through which the ROI of test strip containing T-/C- peak can be extracted and obtained.

the input data into two channels. This model had four parts:
input unit, encoding structure, decoding structure, and output unit
(Ronneberger et al., 2015; Oh et al., 2019; Wang et al., 2021; Zheng
et al., 2021; Zunair and Ben Hamza, 2021). The encoding structure
used four units to reduce the dimensions, and the number of feature
maps was increased gradually. In order to reduce training time,
we added batch normalization after each convolution (Melnikov
et al., 2020). In the decoding structure, each step was symmetrical
with the encoding part to recover data. The upsampling section
allowed the network to propagate the context information to a

higher-resolution layer. In the last layer, the discrimination of
whether each point in fluorescence data belonged to an integral
region was realized.

2.6. Loss function

The classification model classified the data into one of four
classes, which is a problem of four classes. Multi-classification neural
networks generally use cross-entropy loss as a loss function. The
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mathematical expression of this loss function in the program is:

LCE = −
1
M

M∑
j = 1

C∑
i = 1

yij log oij

where M is the batch size, C is the total number of classes (four), yij is
the real label, and oij is the predictive output.

The Dice coefficient (also known as the Dice score or DSC) is a
function of the set similarity measurement, which is usually used to
calculate the similarity between two sets (Saeedizadeh et al., 2021),
with values ranging from 0 to 1. Here, it was used to measure the
overlap between the ground-truth and predicted masks, where 0
indicates no overlap and 1 indicates complete overlap.

DSC (A,B) =
2 |A ∩ B|
|A| + |B|

where A and B denote the predicted and ground-truth masks.
To minimize the loss function, we used the 1-DSC as the final

loss function. The mathematical expression of this loss function in
the program is:

LDSC = 1−
1
M

M∑
j = 1

2
∑N

i = 1 yij oij∑N
i = 1 yij +

∑N
i = 1 oij

where M is the batch size, N is the number of sample data, yij is the
ground-truth mask, and oij is the predictive mask.

For unbalanced sample data, weighted binary cross entropy can
be used as the training loss function. Therefore, compared with the
standard cross-entropy loss, better results can be obtained when the
number of positive and negative points is unbalanced (Zhu et al.,
2019). The mathematical expression of this loss function in the
program is:

LWBCE = −
1

M × N

M∑
j=1

N∑
i=1

(
w1yij log oij + w0(1− yij) log(1− oij)

)
where M is the batch size, N is the number of sample data, yij is
the ground-truth mask, and oij is the predictive mask. w1 and w0
correspond to the weights labeled 1 and 0, respectively.

In this study, the mathematical expression for the weight
parameter wc is:

wc =
N − Nc

N

where N represents the total number of data points for each sample
and Nc represents the number of data points in class c.

2.7. Model hyper-parameters of models

After labeling the data, we trained the model. The classification
and segmentation models were trained separately. The training
parameters of the classification and segmentation model are listed in
Table 1.

3. Results

3.1. Evaluation metrics of models

Accuracy, which is the proportion of correctly predicted samples
to the total number of samples, is generally used as the evaluation

metric of a multi-classification model. The mathematical expression
of accuracy in the program is:

Accuracy (y, o) =
1
M

M∑
i = 1

1
(
oi = yi

)
where M denotes the batch size, yi denotes the real label, and oi is the
predictive output.

The intersection over union (IoU), also known as the Jaccard
index, calculates the ratio of the intersection and union of the ground-
truth and predicted segmentation masks (Saeedizadeh et al., 2021). It
can be used to measure the similarity between the ground-truth and
predicted segmentation masks; the higher the similarity, the higher
the value.

IoU (A,B) =
|A ∩ B|
|A ∪ B|

where A and B denote the predicted and ground-truth masks. The
mathematical expression of IoU in the program is:

IoU
(
y, o

)
=

1
M

M∑
j = 1

∑N
i = 1 yij oij∑N

i = 1 yij +
∑N

i = 1 oij −
∑N

i = 1 yij oij

where M is the batch size, N is the number of sample data, yij is the
ground-truth mask, and oij is the predictive mask.

3.2 Model hyper-parameters optimization
of segmentation model

Both the weight coefficients of the weighted binary cross-entropy
and cut-off threshold have a certain influence on the performance of
the model. To obtain appropriate weights and cut-off thresholds, this
study conducted cross experiments on weights and cut-off thresholds.
As presented in Table 2, when w0 : w1 = 0.6 : 0.4 and the cut-off
threshold = 0.6, the IoU achieved a maximum value of 0.9680. The
other parameters used during the training are listed in Table 1.

We also compared the three loss functions of WBCE, DSC,
and WBCE + DSC. When the other conditions were the same, the
combined loss function (WBCE + DSC) was used to obtain the
maximum IoU, as illustrated in Table 3.

TABLE 1 Important parameters used in two models training.

Network
parameters

Classification
model

Segmentation
model

Batch size 8 8

Epoch 30 100

Activation function ReLU ReLU

Padding mode MaxPool AvgPool

Pooling size 2 2

Optimizer Adam Adam

Learning rate 0.001 0.001

Convolution kernel 3 3

Upsample – Nearest

Input size 512× 2 512× 2
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TABLE 2 Cross experiments result on weights of the weighted binary cross entropy and cut-off threshold.

w0:w1 IoU
(Cut-off = 0.3)

IoU
(Cut-off = 0.4)

IoU
(Cut-off = 0.5)

IoU
(Cut-off = 0.6)

IoU
(Cut-off = 0.7)

0.3:0.7 0.9668 0.9652 0.9665 0.9677 0.9660

0.4:0.6 0.9674 0.9657 0.9658 0.9674 0.9674

0.5:0.5 0.9668 0.9674 0.9674 0.9665 0.9670

0.6:0.4 0.9677 0.9676 0.9666 0.9680 0.9674

0.7:0.3 0.9668 0.9674 0.9652 0.9669 0.9654

When w0 : w1 = 0.6 : 0.4 and the cut-off threshold = 0.6, the IoU achieved a maximum value of 0.9680.

TABLE 3 Overall performance with different loss functions,
w0 : w1 = 0.6 : 0.4 and cut-off threshold = 0.6.

Loss w0:w1 Cut-off IoU

WBCE 0.9652

DSC 0.6:0.4 0.6 0.9586

WBCE + DSC 0.9680

3.3. Training convergence analysis of
models

Figure 6A shows the loss curves of different epochs during
the classification model training process, and Figure 6B shows the
accuracy of the training and validation sets corresponding to different
epochs. The maximum accuracy of the model validation set was
99.59%.

To analyze which samples were misclassified, we built confusion
matrix. As in Figure 6C, only five samples were misclassified, two
class 1 and three class 2 data were misclassified as class 4. These five
samples had the characteristics of two different classes, which leaded
to misclassification. In general, such samples are rare.

Figure 7A shows the loss curves of different epochs during the
segmentation model training process, and Figure 7B shows the IoU
of the training and validation sets corresponding to different epochs.
The maximum IoU of the model validation set was 0.9680.

3.4. Comparison with classical methods

There are many types of peak detection methods, such as the
direct peak location, Fourier transform, cumulative sum derivative,
curve fitting, devolution, and wavelet transform (CWT) methods
(Deng et al., 2021). The direct peak location according to the
properties of peak and continuous wavelet transform are two classical
methods in traditional methods. The principle of direct peak location
is to find out all the local maxima of the signal through the simple
comparison method, and then select the subset of these peaks
according to the specified peak properties. The method principle of
CWT is that the signal is first transformed by CWT in certain scales,
and then the ridges are found in the CWT matrix. The positions
of these ridges correspond to the positions of all peaks (Du et al.,
2006). Using the verification set, method proposed in this paper was
compared with the two traditional methods. These two methods have
been implemented in SciPy library based on Python, so we directly
used the related functions (find_peaks() and find_peaks_cwt()) in
SciPy library.

Classical peak-finding methods can only find the local maxima
of the signal, and do not have the ability to classify the signal.
Here, after obtaining the local maxima through the classical methods,
some subsequent processing steps were adopted to make it have the
classification ability, and then compared with the classification model
proposed in this study. These subsequent processing steps are as
follows:

(1) According to the characteristics of the strip, the data of 512
sample points are divided into C peak region (0–220) and T
peak region (221–511).

(2) Judge whether there are local maxima in the C peak region (0–
220), and if so, take the maximal local maximum as the C peak.
Judge whether the height of the C peak is greater than 1,000,
and if it is greater than 1,000, it is considered to be an effective
C peak (according to the characteristics of the strip, the height
of the C peak is usually greater than 1,000).

(3) Judge whether there are local maxima in the T peak region (0–
220), and if so, take the maximal local maximum as the T peak.

(4) According to the results of (2) and (3), the signal is classified to
noise (class 1), only C-peak (class 2), only T-peak (class 3), and
or double-peaks (class 4).

The comparison results are shown in Table 4. It can be seen that
the performance of the two classical methods is similar in term of
accuracy, one is 80.10%, the other is 80.76%. Accuracy of the method
proposed in this study is 99.59%, which is much better than classical
methods.

For two classical methods, the function of peak_widths() in the
SciPy library can be used to identify the integral region. Compared
with the segmentation method in this study in terms of IoU, Dice,
Recall and Precision. The results are shown in Table 4. As can be
seen from the table, no matter which evaluation term it is, the method
proposed in this paper is much better than two classical methods.

3.5. Test of the method

The method proposed in this study was tested using instrument
test data. First, the ability of the segmentation model to segment
various peak shapes was tested. Next, three most important indicators
(standard curve, repeatability, and recovery) were tested.

After training, the method can classify raw input data into one
of four classes and perform data segmentation on data belonging
to Class 4. The segmentation model could effectively segment C-
and T-peak regions from fluorescence intensity of 512 data points.
Figure 8 shows examples of data segmentation results for some
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FIGURE 6

(A) Loss of classification model during training. (B) Training and validation accuracy of classification model during training. (C) Confusion matrix showing
the result of trained classification model for validation set. The row number reflects the predicted label, and column number reflects the true label.

FIGURE 7

(A) Loss of segmentation model during training. (B) Training and validation IoU of segmentation model during training.

TABLE 4 Comparison of classical peak-finding methods and proposed method performance in terms of accuracy, IoU, dice, recall and precision.

Method Accuracy IoU Dice Recall Precision

Direct peak location 80.10% 0.7753 0.8509 0.8801 0.8391

CWT 80.76% 0.7597 0.8423 0.8510 0.8541

Our method 99.59% 0.9680 0.9836 0.9857 0.9821

typical peak shapes, where the orange shaded areas are segmented
C- and T-peak regions. Figure 8A shows segmentation of the normal
peak shape, and C -and T-peak regions were accurately extracted and
obtained. Figures 8B, C show that in the presence of overlapping
and interference peaks, C- and T-peaks can be accurately segmented.
Figures 8D–F show the segmentation results for weak T-peak with
baseline drift, tailing or interference peak. As shown in the figure,
baseline drift, tailing and interference peaks did not affect accurate
segmentation of the data; the detection of weak T-peak region is also
excellent. After data were imported into the segmentation model,
they were first normalized. The network model only focused on

learning the shape of entire data set and did not learn the value of
fluorescence intensity. The experimental results indicate that it can
meet the requirements of LFIA for data processing.

The method was tested using Ferritin. A standard curve was
established using a range of concentrations (0, 15, 50, 200, 300, and
500 ng/ml) of the standards. Each concentration of the standard
was tested three times using test strips. The detection data were
processed using proposed method. First, data were classified, then
segmented, and finally, the segmented regions were integrated and
T/C was calculated. The method accurately classified the detection
data of 0 ng/ml as class 2 (only C-peak), and the corresponding
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FIGURE 8

The results of ROI extraction by segmentation model on different kinds of data. (A) Normal peak data, (B,C) overlapping and interference peak data,
(D–F) Weak T-peak with baseline drift, tailing or interference peak data.

T/C values were 0. The remaining data were classified as class 4
(double-peaks) and then segmented. Using T/C as the ordinate and
concentration as the abscissa, a standard curve was established using
four parameters, as shown in Figure 9. It can be observed that the
T/C and concentration have a good correlation with a correlation
coefficient of 0.9986. This shows that the method is effective in
dealing with LFIA data.

Three concentrations (20, 220, and 400 ng/ml) of the reference
standards were tested for repeatability using the same batch of
test strips. Each concentration was tested 10 times, and the

CV values were calculated. The data were processed using the
method described in this study. The data for all the three
concentrations were classified as class 4 (double-peaks). The data
were segmented, and concentrations were calculated; the results
are listed in Table 5. It can be observed that the CV values of
three concentrations are all good, and the maximum does not
exceed 1.37%. This shows that the stability of the method is
good.

Recovery was tested using samples of three concentrations (40,
100, and 150 ng/ml). Each sample was tested thrice. The method in
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FIGURE 9

Four parameter fitting line for ferritin detection in the range of
0–500 ng/ml.

TABLE 5 Precision results of ferritin test strips.

Mean (ng/ml) SD CV (%)

17.561 0.240 1.37

212.541 1.274 0.60

369.034 1.401 0.38

TABLE 6 Recovery rates results of Ferritin test strips.

Concentration (ng/ml) Mean (ng/ml) Recovery rate (%)

40 42.030 105.07

100 96.371 96.37

150 149.502 99.67

this study was used to process the data, and all the data were classified
as class 4 (double-peaks); the results are listed in Table 6. The
calculated recovery rates were 105.07, 96.37, and 99.67%, respectively.
This shows that concentration calculated by the method is very
accurate.

4. Discussion

Because POCT instruments based on LFIA detection technology
are used in a variety of situations and there are many different types
of samples, the peak shape of the test data is complex. It is difficult for
classical peak-finding methods to deal with all peak shapes. The data-
processing method proposed in this study has several advantages.

First, through a classification network, the peak types were
classified into four classes, and the peak types that needed to be
calculated for the concentration were screened. In this manner, the
data processing difficulty of the segmentation model is reduced,
and the model can easily achieve better performance. Second, an
improved U-Net-based segmentation model directly identifies the
integration regions, replacing the operations of the peak finding,
peak start and end location in the classical method, which makes
the data processing process more accurate and convenient. It is very
difficult to determine the starting point and ending point of the peak
accurately by the traditional method. Our segmentation model can
easily solve this problem. Third, through experiments, it was found
that this U-Net -based segmentation method also performs well in
effectively identifying weak and trailing peaks. Forth, the classical
peak-finding methods can only find the local maxima of the signal,
and do not have the ability to classify the signal. In this case, it is

difficult to distinguish the noise peak from the effective peak. Our
classification model has perfectly solved this problem.

The method was applied to the hand-held immunofluorescence
analyzer developed by ourselves and good results were obtained.
Interference peaks are the biggest obstacle in the use of hand-
held instruments, and often lead to peak-finding errors. The use
environment of hand-held instruments is flexible and changeable,
which makes it inconvenient to provide technical support. This
method greatly reduced the failure rate of peak finding, which can
reduce the customer’s need for instrument technical support. This is
a great advantage for hand-held instruments sold in large quantities.

5. Conclusion

In this study, a deep-learning-based LFIA photoelectric scanning
data-processing method was proposed. The entire method had two
steps. The first step was to build a CNN classification model to classify
the LFIA peak shape and screen out the data required to calculate
the concentration. The second step was to build an improved 1D
U-Net segmentation model to achieve the segmentation of C- and
T-peak integration regions for data containing double-peaks and then
perform calculations such as T/C and concentration. A large amount
of experimental data were used to train the two models. The accuracy
of classification model on validation set was 99.59% and the IoU of
segmentation model on validation set was 0.9680. Using the data-
processing method, a standard curve was established for Ferritin,
and the CV and recovery rate, the two most relevant indicators in
clinical testing, were tested. The CV values corresponding to the
three concentrations of 20, 220, and 400 ng/ml were 1.37, 0.60,
and 0.38%, respectively. The recovery rates corresponding to the
three concentrations of 40, 100, and 150 ng/ml were 105.07, 96.37,
and 99.67%, respectively. These experimental results show that the
data-processing method proposed in this study can be used for the
processing of LFIA photoelectric scanning data, and the obtained
results are accurate and reliable, which proposes a new direction for
POCT instrument data processing.
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