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An information theoretic score for
learning hierarchical concepts

Omid Madani*

Cisco Secure Workload, Cisco, San Jose, CA, United States

How do humans learn the regularities of their complex noisy world in a robust

manner? There is ample evidence that much of this learning and development

occurs in an unsupervised fashion via interactions with the environment. Both the

structure of the world as well as the brain appear hierarchical in a number of ways,

and structured hierarchical representations o�er potential benefits for e�cient

learning and organization of knowledge, such as concepts (patterns) sharing

parts (subpatterns), and for providing a foundation for symbolic computation and

language. A major question arises: what drives the processes behind acquiring

such hierarchical spatiotemporal concepts? We posit that the goal of advancing

one’s predictions is a major driver for learning such hierarchies and introduce an

information-theoretic score that shows promise in guiding the processes, and, in

particular, motivating the learner to build larger concepts. We have been exploring

the challenges of building an integrated learning and developing system within

the framework of prediction games, wherein concepts serve as (1) predictors,

(2) targets of prediction, and (3) building blocks for future higher-level concepts.

Our current implementation works on raw text: it begins at a low level, such

as characters, which are the hardwired or primitive concepts, and grows its

vocabulary of networked hierarchical concepts over time. Concepts are strings

or n-grams in our current realization, but we hope to relax this limitation, e.g., to

a larger subclass of finite automata. After an overview of the current system, we

focus on the score, named CORE. CORE is based on comparing the prediction

performance of the system with a simple baseline system that is limited to

predictingwith the primitives. CORE incorporates a tradeo� between how strongly

a concept is predicted (or how well it fits its context, i.e., nearby predicted

concepts) vs. how well it matches the (ground) “reality,” i.e., the lowest level

observations (the characters in the input episode). CORE is applicable to generative

models such as probabilistic finite state machines (beyond strings). We highlight a

few properties of CORE with examples. The learning is scalable and open-ended.

For instance, thousands of concepts are learned after hundreds of thousands of

episodes. We give examples of what is learned, and we also empirically compare

with transformer neural networks and n-gram language models to situate the

current implementation with respect to state-of-the-art and to further illustrate

the similarities and di�erences with existing techniques. We touch on a variety

of challenges and promising future directions in advancing the approach, in

particular, the challenge of learning concepts with a more sophisticated structure.

KEYWORDS

unsupervised learning and development, concepts, information theory, hierarchy,

compositionality, constructivism, perception and interpretation, symbols

“Concepts are the glue that hold our mental world together.”, G. Murphy (Murphy,

2002).

“.. to cut up each kind according to its species along its natural joints, ...”, Plato,

Phaedrus.
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1. Introduction

Concepts such as water, chair, and eat are fundamental to

human intelligence: our mental model(s) of the world and our

basic cognition are founded on concepts (Murphy, 2002). What

is the nature of concepts, i.e., how are they computationally

represented, and how can a system acquire diverse and richly

interrelated concepts in an unsupervised manner, i.e., without

an explicit teacher, from the low-level sensory stream? There is

evidence that much learning, of numerous concepts, and how

they relate and constrain one another, and ultimately a sense of

what is probable or common in everyday experience in humans

and animals, takes place without explicit teaching, achieved largely

through (active) observing (Sheridan, 1973; Gopnik and Meltzoff,

1997; Rakison and Oakes, 2003; Law et al., 2011). Inspired

by considerations of early human learning, and in particular

perceptual and category learning, that likely continue throughout

life (Gibson, 1963; Gopnik and Meltzoff, 1997; Kellman and

Garrigan, 2009; Carvalho and Goldstone, 2016), here we propose

and explore an approach to efficient unsupervised learning of

discrete and discernible (interpretable/structured) concepts, in a

sparse manner, in the text domain. The learning is achieved in a

cumulative bottom-up fashion.

To explore bootstrapped learning of concepts and their

relations, we have developed a system, named Expedition, within

the framework of prediction games (Madani, 2007), wherein

concepts serve as (1) predictors, (2) targets of prediction, and (3)

building blocks for future higher-level concepts. The Expedition

system is situated in a text world in our current implementation.

Text such as natural language enjoys a diversity of hierarchical

regularities. A concept in this study corresponds to an n-gram or

a string of consecutive characters, such as “a,” “is,” and “school.”

However, a concept, as represented and used in the system, is more

than just the string pattern it corresponds to: it has associations

with other concepts and may have parts and may be parts of many

other concepts.1 Expedition begins at the low level of reading single

characters, which are the primitive or hardwired concepts. Each

(inference+learning) episode consists of inputting a line of text,

segmenting and interpreting the input in terms of a few highest

level concepts, a small subset of all the concepts that currently exist

in the system (inferring) and learning: updates are made to various

statistics, such as prediction edge weights among the participating

concepts. Interpretation is important because it determines which

concepts are present in an episode, and thus how they co-occur,

affecting the generation of future concepts. Periodically, the system

performs offline processing, which includes building new concepts

out of existing ones using the statistics accumulated over the

online episodes and various other organizational and learning

tasks. Therefore, the product of this learning, which is the evolving

system itself, consists both of a set of structured concepts as well

as the means of interpreting the environment with them, i.e., what

appears in each episode. Both the edges and the nodes are necessary

1 The learned patterns are at a relatively low level, and instead, we could

refer to such as proto-concepts, or percepts, or (recurring) patterns, etc. For

simplicity, and for our ultimate aim of shedding light on the origins of higher

level concepts, and because these patterns are learned (e.g. as targets of

prediction), we refer to them simply as concepts.

for interpretation. Figure 1 shows the main system components

and their interaction, and Figure 2 gives a picture of the learning

and development.

A major question that arises is what could drive the

unsupervised learning. We posit that improving prediction of one’s

environment is a main driver and formalize an objective we name

CORE, a combination of fit of a candidate concept to the context

that contains other top-level predicted concepts (coherence), and

how well the concept matches the lowest level characters. We

note that when interpreting, matching the lowest level observations

is often insufficient, and (the high level) context matters too.

This score shows promise in guiding the interpretation of an

episode as well as assessing system progress over time. Importantly,

it rewards the system for building larger concepts and thereby

growing its vocabulary of concepts, unlike related measures such

as perplexity. The primary aim of this paper is to describe and

motivate the information-theoretic CORE score. Another goal is

to present a novel learning system, and show how it utilizes the

score to use and develop concepts. We touch on a variety of

challenges as we describe the various parts of the system, such

as handling non-stationarity and avoiding convergence to inferior

concept structures.

We expect that this overall framework for developing higher

level concepts, shown in Figure 2, is not limited to text. As

long as the sensory information from the external world (in

various modalities) can be effectively mapped into a finite discrete

vocabulary,2 we hope that the algorithms and the systems we

explore would extend and generalize. Our work focuses on the

processes that take us from the primitive space to higher level

spatiotemporal concepts, or the processes behind a growing

networked vocabulary of concepts.

The system we have developed, with current rudimentary

algorithms, is promising. When run on natural language English

text with blank spaces removed, starting at the character level,

we find that, after some learning, the n-grams learned, i.e., the

higher level concepts, correspond to words and phrases, and the

splitting of the text into concepts continues to improve with more

training episodes and more time spent on inference. We also

compare character-level prediction with artificial neural networks,

based on the transformer architecture (Vaswani et al., 2017), and

the more classic character n-gram language models (Manning

and Schutze, 1999; Rosenfeld, 2000), where we obtain competitive

results in predicting the first letter of a word (more suited to our

current implementation of the interpretation step), even though

Expedition does not optimize for predicting one character at a

time. The proposed approach requires substantially less space

(model size) compared with classic n-grams. The acquired patterns

being explicit, compared with neural networks and traditional n-

grams approaches, offers a number of other benefits, such as the

possibility for more flexible inference and handling of noise (in

unknown or changing future environments), learning regularities

over the structure of the learned concepts (various forms of meta-

learning), accelerating supervised learning tasks, and naming (a

subset of) the concepts, for the purpose of communication (sharing

of experience). As we explain, the benefits come at a cost, including

2 A variety of discretization techniques exist for continuous data, such as

clustering and vector quantization.
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FIGURE 1

A view of the Expedition system: The two major components, inference and learning, utilize, update, and grow the network of concepts together.

Several subtasks are highlighted, especially in terms of components implemented in the current system. In every (online) episode, inference uses the

existing network to come up with an interpretation of the input in that episode, and the interpretation (an information-rich data structure) is given to

learning components for various learning-related updates.

FIGURE 2

A picture of learning and development: A small portion of reality (the world, external to the system), in every episode, is mapped into a sequence of

primitive concepts via sensory computations. The primitive concepts comprise a finite discrete set (an alphabet or the initial vocabulary). The system

predicts and matches the concepts it currently has to the primitive sequence in an e�cient manner (the interpretation process). A few concepts

match and a subset is selected (the shaded ones), and learning updates occur using the observed co-occurrence relations. Over time and much

learning, higher level concepts are acquired from this process, and an identical primitive sequence, presented at two di�erent times, can lead to

di�erent sets of highest level concepts being activated due to the learning in the intervening time. The networked vocabulary of concepts grows

large, but only a relatively small subset is activated in a typical episode. This study explores unsupervised learning processes that begin with a set of

primitive concepts and lead to the learning and development of higher level (spatiotemporal) concepts and their rich relations.

the time and the complexity cost of interpretation in episodes,

but we conjecture that, in many settings, the capabilities afforded

are worth the expense: Acquiring and maintaining concepts incur

costs, but they are the means for the system to untangle its world,

thereby making more successful predictions, or achieving a better

sense of its world. We hypothesize that acquiring such structured

vocabularies is an essential step for symbolic computations.

In summary, we provide evidence that the combination of

several tasks of learning and inference, with the goal of improving

prediction, is a promising self-supervised framework for learning

a network of structured concepts. We begin the paper with an

overview of the Expedition system in the next section. We describe

the network structure, i.e., the edge types and the nodes or concepts,

and summarize the segmentation/interpretation process and the

learning techniques used. We, then, focus on CORE in Section 3

and present several of its properties with examples. Experimental

results are provided and discussed throughout these two sections.

Section 4 situates this study within related research, and Section 5

concludes with a short discussion of the differentiating factors of

the approach, and future directions.

2. Overview of the system

We describe the current implementation of the Expedition

system. The system is composed mainly of a network of nodes

(concepts) with a few different edge types and the operations that

use the network and maintain and grow it, or the algorithms

and processes. We summarize the components and provide

examples instead of more formally defining the algorithms and data
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TABLE 1 Table of main notations.

V Lowest level vocabulary (an alphabet), with one-to-one mapping to primitives. |V| ≈ 100 in most experiments.

T A text string, e.g., “ther.” A string is also shown as c1c2 · · · ck . For “ther,” c1 =“t” and c4 =“r”.

conl(T) The concept corresponding to string T at level l, l ≥ 0 (when the concept exists), e.g., con0(“z”) is the primitive for “z” (Section 2.1.3).

1 Size of context (window) for prediction (default bidirectional). 1 = 3 in most experiments.

wC1 ,C2 ,i Prediction weight (edge) from concept C1 to C2 , relative position i (w ∈ [0, 1], i ∈ {±1, · · · ,±1}). The weight is roughly a (conditional) probability

(Section 2.2.6).

EMA Exponential Moving Average, for updating edge weights (Sparse EMA), and other averages (Section 2.2.6).

r Learning rate for Sparse EMA (each concept has its own rate), r ∈ [0, 1].

[Ci] Sequence of concepts in a candidate interpretation: C1 , · · · ,Ck (Section 2.2.1)

prior(c) The (lowest level) prior, or probability that character c is observed in a randomly picked location of a (randomly drawn input) line.

pred(C) The prediction probability that concept C, at a specific location of an interpretation sequence, receives from context (other concepts within j± 1 predict)

(Section 2.2.4).

CORE(C) A combination of prediction and match scores for a concept C (in an interpretation sequence), used for guiding and scoring interpretations, and measuring

system progress (Section 3).

structures. Our prior work provides additional details (Madani,

2021a). Table 1 presents the main notation with short descriptions

and pointers.

The input to Expedition is a stream of text, where the input

stream is broken into lines in our experiments. We removed blank

spaces in most of our experiments, but otherwise do not do any

extra processing. Thus, the line “An apple (or 2) a day!” is input into

the system as “Anapple(or2)aday!.” One reason we remove blank

spaces is to see whether and how well the system can learn words

and phrases without the aid of separators. Does it, eventually, get

the (word) boundaries right?

The system alternates between two modes or phases. In the

online phase, it repeatedly gets an episode (i.e., an input line) and

processes it segments and interprets it, and then learns from the

outcome, i.e., the resulting data structures (Figure 3 and Sections

2.2.1, 2.2.6). In the offline phase, Expedition performs other tasks

that would be too expensive and wasteful to do in every online

episode, such as learning new concepts (Section 2.3). The system

keeps a clock, which is the number of online episodes so far. This is

useful for keeping track of when a concept is first generated, used,

etc.

We use a dataset of NSF abstracts in the experiments (Dua

and Graff, 2017). The dataset contains approximately 120k research

paper abstracts, yielding 2.5 million English text lines, over 20

million term occurrences, and just under 100 unique characters

(size |V| in Table 1). Each line contains approximately 55 characters

on average.3 All code is written in Python, and all experiments were

3 One could also start at the word level. We start with characters to more

easily test whether the errors accumulate and propagate on the path to

reaching the relatively distant and the higher level of words and phrases

(as the system builds upon its earlier constructions): good systems and

algorithms should be robust against mistakes and some level of noise. Note

that some human languages do not have natural word separators, and in

some domains such as for DNA sequences or image processing, one may

have to begin at a relatively low level (the equivalent of words and phrases

may not be available). We have also explored converting English text to

binary, i.e., starting at the level of only 2 primitives, and learning to reach

performed on aMacbook Pro laptop. We show results and example

concepts from two models which we refer to as Model3 trained to

level 3 and Model4 trained to level 4 (Section 2.1.3 explains levels).

Section 2.4 reports on computational cost, and Section 3.8 describes

comparisons with two language modeling techniques, including

artificial neural networks.

2.1. Network structure

The nodes in the network correspond to concepts, currently

n-gram patterns. There are two main edge types: part-related

edges, yielding a part-whole hierarchy and associations or

prediction edges.

2.1.1. Nodes
A concept corresponds to a string or a consecutive sequence

of characteristics, which we may refer to as an n-gram or a string

concept. A concept is also a node in a network and has different

types of edges. In our implementation, both concepts and edges are

object classes. Each class can have various (scalar) fields, such as

a prior for concepts (probability of being observed), which can be

used during segmentation. Others, such as time of creation, or first

and last time seen, are useful for debugging and insights into the

learning progress.

Initially, before any learning has taken place, the only

concepts in the system correspond to the lowest level concepts,

which we refer to as primitive concepts. There is a one-to-one

correspondence between the primitive concepts and the set of

characters, the vocabulary V . The line of characters in each episode

is readily converted to a sequence of primitives to begin the

segmentation process (Section 2.2.1). Therefore, the primitives can

be viewed as the interface to the external world or reality. Figure 4

shows an example concept. In our implementation, whenever

the character level and beyond from such binary sequences, with promising

results (Madani, 2021a).
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FIGURE 3

(A) The active perception-learning cycle: In the online phase, the Expedition system repeatedly inputs a line (some span of text), segments and

interprets it (converting it to a few highest level concepts). This process creates an interpretation data structure. The system uses this information-rich

data structure for (online) learning: it updates various edge weights and statistics among the active concepts present in the structure. (B) A simple

causal view of the interaction of subsystems: o	ine concept synthesis changes the course of future interpretations (concept analyses), via

generating new concepts, and the current interpretations a�ect future concept generations, through determining which (co-occurrence) relations

are observed (interpretation as an internal choice or action). The self arc on interpretation means that even if concept generation is turned o�,

present interpretations can directly a�ect future interpretations, via changing the learned prediction weights (online learning).

FIGURE 4

(A) An example learned concept, con2(“ther”) (i.e., , “ther” at level 2), from a model trained up to level 3, and a few of its prediction (three at -1 to the

left, and three at +1 to the right) and part-related (vertical) edges (top 3 most frequent of its holonyms in level 3, having con2(“ther”) as a part). “o” and

“whe” occur immediately before “ther” with high probability (0.3 and 0.08 respectively). (B) The vertical (part-related) and horizontal (prediction)

edges of a generic concept (Sections 2.1.2 and 2.1.3).

a new character is first seen, a (primitive) concept object is

allocated for it, so V may not be known in advance and grows

over time.

2.1.2. Prediction edges (associations)
Each concept keeps and updates weighted directed edges, the

prediction edges to other concepts. It uses these edges to predict

(Section 2.2.4). Imagining text is written and read horizontally,

these connections can also be viewed as horizontal or lateral edges.

Edge positions are relative to a concept. Thus, (relative) position 1,

with respect to concept C, means 1 concept to the right of C, which

may span several characters, and position –1 means one concept to

its left. Each concept keeps edges for up to 1 positions to the left

and to the right, i.e., bidirectional (although one could change to

unidirectional).4 Thus, 1 denotes the context size (on one side).

In the experiments reported in this study, 1 is set to 3 (unless

specified otherwise).

4 More generally, one could also keep edges that are position or direction

insensitive, but we have not experimented with such (direction is highly

informative for natural language text).

Each concept keeps a separate edge-class instance for each

position (with 1 = 3 and bidirectionality, we would get six relative

positions). The class contains weight information as well as possibly

other information such as counters and position-specific learning

rates (Section 2.2.6). These weights are implemented via hashmaps

in the edges class, and hard or soft constraints on the size of the

hashmaps are imposed so that the memory consumption is kept in

check, and the processing is efficient (e.g., predicting and updating

times) (Madani and Huang, 2008). Examples of such edges for

positions 1 and –1 are shown in Figure 4.

Let wC1 ,C2 ,i denote the weight of prediction edge from C1

to C2 for relative position i. A weight can be interpreted as a

conditional probability, and the absence of an edge means 0 weight

(Section 2.2.6). When a concept is first seen or created, it has no

edges (empty edge maps).

2.1.3. Part-related edges and levels of concepts
Concepts also keep track of their part-related edges: edges to

their parts and edges to the concepts they are part of, i.e., their

holonyms, which we can visualize as vertical edges, in contrast to

the prediction or lateral edges (Figure 4).
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In our prior work, we introduced the idea of a layering of and

cloning of concepts so that we avoid mixing up of predictions as

much as possible which we explain briefly. The pattern “a” can

be a low-level concept, forming a part of many words, but it can

also appear with other high-level concepts (words) as an indefinite

article in English (similarly for other concepts, such as “an,” “be,”

“I,” etc.). The primitive “a” should predict other primitives, while

“a” at higher levels should predict other higher level concepts

(Section 2.1.3 in Madani, 2021a), and we should avoid mixing

these predictions. We introduced layers to help to handle such

distinctions. A clone of a concept corresponds to (matches) the

same pattern, but has different prediction edges (to concepts in

its own layer). We note that we are working on removing this

type of layering with new techniques that are based on changing

(raising) learning rates. If the layering requirement is removed,

several advantages include speeding up the learning and simplifying

the system (note: concept structures remain hierarchical). We will

use the terms “level” and “layer” interchangeably.

The primitive concepts are in layer 0. Each higher level contains

the clones of all concepts in the layer below, and in addition, it

can contain holonym concepts, which is made up of two concepts

from the layer below. Thus, layer l contains concepts corresponding

to strings that are up to 2l characters long. A layer is added once

sufficient training is performed in the current highest layer. We

added layers manually in our experiments, but automating this is

not difficult (see Section 2.3).

We denote the concept corresponding to a string T in level

i when the concept exists by coni(T), for example, con3(“ther”).

However, when clear from the context, or not important, we may

not specify the level, and furthermore, we may just say the concept

(corresponding to) “ther.” Higher level concepts correspond to

concatenation of characters, and we also represent a string concept

of size k by the variable C and string c1c2 · · · ck (where ci are

characters and/or primitives). Table 2 shows a number of concept

sequences at different levels (Section 2.2.1), where to remove clutter,

only the pattern corresponding to a concept is shown.

Each concept keeps a list of bottom-up connections to

holonyms in the next layer (its immediate holonyms) that it

is a part of, as well as its clone, in the next layer. These

connections are used during (bottom to top) interpretation

(Section 2.2.1). The number of such connections are kept

manageable. We posited that a concept need to only keep 100s

to 1,000s of such connections. For instance, while the character

“a” may be part of tens of thousands of words and phrases

in English, the primitive that corresponds to “a” will be a

part of only 10s to 100s of significant bigrams. The layering

and significance tests when composing reduce the connection

possibilities.

Similarly, each concept in a layer i ≥ 1 keeps a list of top-down

connections to its part concepts in layer i − 1. Note that a concept

corresponding to a string of k characters can, in principle, be

split into two subconcepts (substrings) in k many ways. However,

many such possibilities will be insignificant in the lower layer and

will not be generated. However, a concept may have more than

two parts, e.g., con2(“new”) can have a pair of parts (con1(“n”),

con1(“ew”)), and (con1(“ne”), con1(“w”)) (the parts will always

be paired).

The top-down connections are used during matching a

candidate concept (holonym) during interpretation. Notably, in

addition to interpretation, these vertical connections are also useful

in understanding which string pattern a composition concept

corresponds to.

2.1.4. Special predictors
Predictors that are not themselves regular concepts, so they

may not get predicted, or may not correspond to any low-level

input, can be useful. We have experimented with a predictor,

the always-active predictor, that gets updated with every position,

as well as one predictor for the beginning of the input line,

the begin-buffer predictor, and one for the end. Each level has

its own set of auxiliary predictors. The always-active predictor

learns to predict the prior for observing a concept at a given

level,5 while the begin-buffer predictor learns to predict concepts

that tend to appear at the beginning of a line. Note that if we

set the prediction direction to left-to-right (unidirectional), the

begin-buffer predictor is necessary to obtain a probability for

the first concept of a sequence, in order to score the sequence

(Section 2.2.5).

2.2. Online tasks

Every online episode consists of segmenting the input into

chunks, i.e., consecutive character sequences, and interpreting the

chunks in terms of existing concepts in the system. The final

product of this perception process is a single data structure, an

interpretation chain, that is used for updating various weights and

statistics (online learning). We refer to the concepts in the final

selected interpretation chain as active concepts. Next, we go over

each of the two main tasks, perception and learning.

2.2.1. Segmentation and interpretation
Segmentation, in general, refers to chunking (grouping) as well

as separating the input bits, in our case the characters in the input

line, and may or may not involve the usage of concept information.

Interpretation refers to mapping chunks of input to existing

concepts in the system. In our current implementation, the two

tasks or processes are intertwined, and we do notmake a distinction

between the two segmentation and interpretation terms.6 This

(perception) process ultimately generates a mapping from stretches

of consecutive raw characters in the input to internal concepts, and,

within efficiency constraints, involves bottom up activations and

top-down matching processes as we describe (prediction and index

look ups, probabilistic inference, search). Table 2 shows example

5 The system could keep the number of edges under a budget for

(prediction) e�ciency.

6 In general, segmentation may also include discarding parts of the input

of the episode or requesting additional lines to be input to better determine

the beginning and ends of concepts and related groups of concepts (such

as determining clause or sentence boundaries). We expect di�erentiating

between the two tasks will be fruitful in the future.
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TABLE 2 Interpretation of a couple of example lines (episodes) via two models, using search width 15. The interpretation chains, i.e., concept sequences

leading to the top-level sequence, covering a few lower levels are also shown. Level 1 contains up to 2-grams, level 2 up to 4-grams, and so on (Section

2.1.3). The interpretation score (average CORE, a mix of match score and received prediction probability, see Equation 1) of the top-level sequence is

also shown on the left. Only the patterns corresponding to the concepts are shown to remove clutter [thus, “reg” in level 3 is actually con3(“reg”)].

Line = regarding the conservation and management of these magnificent

(blanks removed, input to the system is: regarding the conservation and management of these magnificent)

Model3, L= 3 reg arding the conser vation and mana gement ofthese magni fice nt

11.7 CORE L= 2 re g ar ding the con ser va tion and ma na ge ment oft hese mag ni fice nt

L= 1 re g ar di ng t he c on se r va ti on a nd ma n a ge me nt o ft he se ma g n i fi ce nt

Model4, L= 4 regardingthe conserv ationa ndman a gementofthe s emagni fic ent

17.3 CORE L= 3 regard ingthe conser v ation a ndma n a gementof the s emagni fic ent

L= 2 reg ard in gthe cons er v atio n a ndm a n a geme ntof the s ema gni fic ent

Line = Commercial exploitation over the past 200 years drove

Model3, L= 3 Commer cial e xploi t ationo verthe pa st t w o h undred y e ars d rove

6.3 CORE L= 2 Comm er ci al e xplo i t ati ono ver the p a st t w o h und red y e ar s d rove

L= 1 Co mm er c i al e xp lo i t a ti on o v er t he p a st t w o h u nd re d y e ar s d ro ve

Model4, L= 4 Commercial e xploitatio n overthe pasttwo hundred y e ar s dro ve

11.9 CORE L= 3 Comm ercial e xploi tatio n overthe pasttwo hundre d y e ar s dro ve

L= 2 Comm er cial e xplo i t atio n ove rthe past two hun dre d y e ar s dro ve

interpretations. Note that interpretation is a kind of an internal

action or decision: frommyriad concepts available, which relatively

few are relevant to the current episode? Such choices, in addition

to the consequences within a larger system (such as leading to

actions affecting the external world), affects the generation of

future concepts (Figure 3B). In this sense, interpretation is an

active process.

We note that there are a number of alternatives in the design of

both the interpretation data structures and algorithms.We describe

a preliminary approach that has worked well but we expect much

improvements and extensions are possible. For example, currently,

in our implementation, only exact matching is allowed (see Section

3 for relaxations).

2.2.2. Interpretation chains (data structures)
The interpretation data structure is primarily a chain of a

sequence of concepts from the same level, one (concept) sequence

for each level, the sequence at level 0 leading to a sequence at

level 1, which leads to a sequence at level 2, etc. As an example,

the sequence [C1, C3, C1] has three concepts: C1 is at concept

position 0, C3 at position 1, and C1 (again) is at position 2.

For each position of a sequence, we keep an interpretation slot

object that has a pointer to the concept used and contains other

information, including match information (exact match to the

lowest level). If the original input line is “book,” then the sequence at

level 0 is [con0(“b”), con0(“o”), con0(“o”), con0(“k”)]. In our current

implementation, all character positions (primitives at level 0) need

to be covered by (matched against) exactly one concept at each of

the higher levels (thus, leading to the requirement of exhaustive and

non-overlapping coverage) and vice versa (non-redundancy): each

(higher level) concept in the sequence has to cover (account for) at

least one position in each of the lower levels. In Table 2, the first

concept in layer 3 segmentation, con3(“reg”) covers con2(“re”) and

con2(“g”) in layer 2, and ultimately covers the first three positions

in layer 0. We note that a concept can occur multiple times in

an interpretation.

In future, we want to relax both conditions of partitional

and completeness, e.g., allow interpretations in which concepts

can overlap to an extent in what they cover, as well as allow

some mismatches or approximate matches to handle noisy input

(Section 3.7).

2.2.3. Interpretation: A search process
The process for finding a good interpretation is a beam search

and proceeds one layer at a time. The interpretation sequence at

layer i yields one or more candidate sequences at layer i + 1, thus

one or several (partial) data structures (chains of sequences) are

created, each corresponding to a different search path. A search

path is finished once a sequence at the highest level is created, and

the data structure is complete. One such structure, among several

candidates, is picked based on the average CORE score (Section 3)

and used for updating (online learning).

The process of segmenting a layer i sequence to get one or

more candidate interpretations at layer i + 1 is the same for all

layers i. Given a layer i sequence, initially, all its concepts (positions)

are marked uncovered. We picked a remaining uncovered concept

at random. The concept’s holonyms, as well as its clone, are then

matched against the sequence. The clone always matches, and a few

holonyms may match too. One of the matches is picked by a certain

quality score. We use the concept’s historical CORE if it is at the

top level (the current highest layer of the system), and otherwise,

the historical average CORE of holonyms it leads to. The matched

one or two concepts in layer i are marked covered, and we repeat

the process for the remaining uncovered concepts in layer i until
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all are marked covered. Once all are covered, we have a candidate

interpretation (sequence) at layer i + 1. By default, we tried 10

times from each sequence and kept the best three sequences at the

next level (the beam width parameters). For computing sequence

scores (CORE scores), we need to compute prediction probabilities

(described next).

2.2.4. Deriving prediction probabilities
For a concept C at any position in an interpretation sequence,

the probabilities from the context, concepts within 1 positions, are

aggregated and normalized to obtain its prediction probability at

that position, denoted pred(C).

For example, let us assume the context size is 1, and the system

does bidirectional prediction (both sides of each position predict).

For position 1 in the sequence [C1, C3, C4], concept C1 is on the

left of the position, and concept C4 is on the right. Let us assume

C1 has two edges for its (relative) position +1, say to C2 and to

C3 with weights (probabilities) 0.1 and 0.15, respectively (thus,

wC1 ,C3 ,1 = 0.15). Let us assume C4 has one edge only to C2 with

weight 0.11 (wC4 ,C2 ,−1 = 0.11). Thus, we say C1 predicts C2 and C3

while C4 predicts C2 only. Before normalizing, C2 and C4 get raw

prediction scores of 0.1 + 0.11 = 0.21 and 0.15, respectively, and

after normalizing, we get pred(C2) =
0.21
0.36 , and

0.15
0.36 for C3 (and all

other concepts are implicitly at 0).

We have experimented with different normalization

techniques, such as softmax, as well as using learning techniques

to extract probabilities. Plain linear normalization, as explained

above, does sufficiently well in our experiments.7

2.2.5. Scoring the interpretations
Not all interpretations (concept sequences) are equal. For

instance, a good interpretation of “anewbike” is the sequence

“a,” “new,” and “bike,” assuming the system is exposed to much

English text, and all three concepts have been learned sufficiently

well. However, in this situation, if the system initially joins “a”

and “n” together to get the concept “an” and commits to it,8 we

get an inferior interpretation for the rest of the string “ewbike.”

The system performs a beam search to pick the most promising

interpretation at the highest level. In order to select a final

(interpretation) chain, the highest level sequence is scored from

each chain, which is simply the average score, given below for

a sequence containing k concepts (CORE is described in the

next section):

InterpretationScore([C1, C2, · · · , Ck]) =
1

k

∑

1≤i≤k

CORE(Ci) (1)

7 Learning a mapping from raw scores and concept ranks to probabilities

improves the quality of the probabilities in terms of quadratic loss.

However, additional experiments may be required to determine whether any

improvements attained from the trajectory of learning is worth the extra

overhead.

8 The question of commitment depends on the details of the interpretation

algorithm. Our search technique for interpretation do not undo earlier

decisions in a search path, but do explore several paths using beam search.

A new holonym C (at level 1 and higher) poses a special

challenge, as it needs to be used, so other concepts can develop

prediction weights to it, and pred(C) is sufficiently well estimated,

before CORE(C) can be well estimated. This presents a chicken-

and-egg problem (Madani, 2021a). Currently, our solution is to

include an exploratory period. For a new holonym, the system

assigns an optimistic probability of 1.0 in place of actual pred(C), so

a new concept gets used when it matches the primitives.9 A counter

is kept with each concept, and once the counter reaches a limit (50

in our experiments), the normal pred(C) is used.

For scoring lower sequences, we use the average of the historical

CORE scores of concepts in the sequence. We note also that

initially, when there are only primitives in the system before layer

1 is added, the interpretation task is trivial, as there are no higher

level holonyms.

2.2.6. Online updates of prediction edges
In each (online) episode, a final interpretation chain, out of

several candidates, is selected based on Equation (1), and is used

for updating edge weights and other statistics. For example, if

the selected top-level sequence is [C4, C3, C2, C5] with 1 = 2

(and bidirectional), updates for position 0 involve strengthening

the edge weights from C3 and C2 to C4 (wC3 ,C4 ,−1 and wC2 ,C4 ,−2

are increased). Similarly, for position 1, wC4 ,C3 ,1, wC2 ,C3 ,−1, and

wC5 ,C3 ,−2 are increased. Edges to other concepts (if any) are

weakened, as explained in more detail next.

The edge weights are updated using (sparse) exponentiated

moving average (EMA) updates (Madani and Huang, 2008). EMA

enjoys a number of useful properties, in particular, for handling

non-stationarity in time series and finds applications in financial

and economic modeling. Let r denote the learning rate, r ∈ [0, 1].

Sparse EMA updating consists of weakening the weight of all edges

of a concept for a given position via multiplying by 1 − r, and

then adding r to the weight of edge connecting to the observed.

Let us imagine C2 appears right after C1, i.e., [· · · , C1, C2, · · · ],

and before update wC1 ,C2 ,1 = 0.4. Then, after update, it becomes

(1 − r)0.4 + r = 0.36 + 1 = 0.46. Let us assume, before

update, wc1 ,c3 ,1 = 0.5 (C1 is also connected to C3). After the

update, it is weakened to wC1 ,C3 ,1 = 0.5(1 − r) = 0.45. One

can verify that the weights remain in [0, 1], and, for a specific

position, sum to no more than 1.0 (∀C, i,wC,∗,i =
∑

j wC,Cj ,i ≤

1, or the weights of a position, at any time point, form a sub-

distribution, with 1.0 being a fixed point for the total weight

mass). Moreover, under fairly general assumptions (e.g., taking

into account a possibly changing learning rate r of EMA and the

budget on the number of edges), for each position, the weights

converge to approximate conditional probabilities. For instance,

the weight wC1 ,C2 ,1 converges to the probability of observing C2

immediately in the next position, given C1 is observed in current

9 If the length of the exploratory period is long enough, this can lead to a

possible over use and an over-estimate of pred(C). Note also that this solution

makes the implicit assumption that a su�cient portion of a time, when a

concept matches the primitives, it is the right concept. Because, the system

has somewhat strict criteria in creating new holonyms, this assumption is

overall useful.
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position. We note that each node, for each position, keeps its

own gradually decaying learning rate, and it is shown that the

harmonic decay of rate (starting high and lowered with each

subsequent episode, via a harmonic schedule) has benefits for faster

convergence (Madani, 2021a).

2.2.7. Other online updates
The active concepts update a number of other statistics and

scalar fields, some of these are important for guiding the search

during interpretation (Section 2.2.3). The concepts at the top level

update their historical CORE values (via a moving average such as

EMA). All other active concepts (at all levels other than the top)

update their historical CORE based on the CORE of the concept at

the top level they lead to.

2.3. O	ine tasks

Some tasks may need to be performed every so often. They

may also be more global (than the online tasks), i.e., may need to

process a relatively large number of concepts and/or edges, so they

may be expensive to run more frequently. However, if performed

only periodically, for instance, once the cost is amortized over all

(online) episodes, the extra cost becomes feasible. These offline

tasks include organizational tasks, such as garbage collection

(e.g., recycling concepts no longer used). Some learning tasks that

require the statistics gathered overmany online episodes and do not

require any single specific episode, such as creating new concepts or

simplifying and transforming existing ones, should be performed

in the offline phase too. We explain two main offline tasks we

have implemented.

2.3.1. Composing new concepts
Putting together any pair of concepts to create new concepts

would lead to too many new candidates. Even if two concepts are

seen together, this occurrence could be spurious, and furthermore,

we would still get too many such co-locations for subsequent

analysis and use. In our current implementation, we consider a

pair of concepts, C1 and C2, a good pair, for creating a holonym

when we have strong evidence that C2 follows C1 with probability

greater than the prior of C2 (of observing C2 in a top-level

interpretation). When the test is satisfied, we have strong evidence

that C1 followed by C2 can be part of a larger concept. We use

the approximate binomial tail test of significance, which is based

on KL divergence (Arratia and Gordon, 1989; Ash, 1990; Madani,

2021a,b). This test works better than the commonly used pointwise

mutual information when C2 is relatively frequent (Church and

Hanks, 1990; Manning and Schutze, 1999).

2.3.2. Adding a new layer
In the offline phase, we may also add a new layer occasionally.

When adding a new layer, the system performs the following. All

existing concepts in top layer i, each gets cloned for new layer

i + 1, each clone getting the prediction edges to other clones in

layer i + 1 (so, if C1 has an edge to C2 in level j, the clone of

C1 gets an edge to the clone of C2 in level j + 1), and historical

scores (used for guiding interpretation) are copied appropriately. In

addition, composition criteria are checked for creating new (non-

clone) holonym concepts for the new layer i+1. All concepts at i+1

are appropriately initialized (frequencies initialized to 0, optimistic

historical probabilities at 1 for non-clone concepts, and empty lists

of prediction edges and part of edges).

2.4. Timings and computational costs

Each online phase analyzed 1,500 lines (episodes), which took

3 min each when layer 1 was the maximum layer, with the default

of 10 tries and keeping 3 for each beam search level. It took

30 min when the maximum layer was level 4 (e.g., for Model4).

We note that one could train models in parallel and periodically

aggregate the models. Model sizes also grow with more episodes

and layers (additional concepts and edges), from a few megabytes

(MBs), compressed, when layer 1 is the maximum layer, to low

100s of MBs for Model4 in our current experiments. The main

time complexity is in the search for a good interpretation, which

primarily depends on the width of the beam search.Madani (2021a)

discusses size budgets, e.g., on node outdegrees, that keep the

computations efficient.

3. Scoring via CORE

We first develop the score for the case of string concepts with

an exact match, which applies to the current implementation of

Expedition. We, then, generalize the score to generative models

(Section 3.6) and describe a related extension for inexact match.

We conclude with an empirical comparison to n-gram and neural

network language model techniques, on character prediction.

We want to encourage the system to learn larger patterns.

Fundamentally, it is plausible that an organism that can predict

larger patterns in a single prediction attempt, whether the

pattern extends further into the future or farther spatially, has a

survival advantage over those predictions that are more myopic.

Furthermore, meaningful n-grams (e.g., words) are more powerful

predictors than single characters: words predict other nearby words

(longer than characters), while characters are best at predicting

other nearby characters.10 A single character, such as “z,” has

significant predictive power over a few character locations nearest

to it, while the word “zoo” has significant predictive power over a

few word locations (many more characters). Thus, beginning at a

relatively low level such as characters in the text, it pays to acquire

larger patterns, in terms of both predicting such patterns, and using

them as predictors.

To assess the quality of a candidate interpretation, we imagine

comparing the system against some reference or baseline system.

In particular, here, we will use a very simple character-level

10 Beyond language and text, our world is made up of complex systems

that interact, and it has been observed that complex systems, the patterns

of interactions, which can be used for predictions, tend to be hierarchical,

i.e., components interact directly with other components that are mostly at

the same rough level (cross-level or “vertical” interactions being limited to

a component’s own subparts and containers) (Simon, 1996; Callebaut and

Rasskin-Gutman, 2005).
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predictor: the baseline never learns larger patterns. Let us say

Expedition is assigning pred(C) (Section 2.2.4) to a string concept

C that occurs in (covers part of) the input. The baseline makes

the independent assumption when predicting and does not use

any context. Therefore, it assigns
∏

i prior(ci) to the concept C

corresponding to c1c2 · · · ck (irrespective of the context in the

interpretation).11 We define CORE to be the log of the ratio as

follows:

CORE(C) = log(
pred(C)

∏

1≤i≤k prior(ci)
)

(concept C corresponds to c1 · · · ck). (2)

This is the reward of the system for predicting concept C

with probability pred(C). The farther the system gets from the

baseline in the above sense, i.e., the larger the ratio, the higher

the system’s CORE score.12 The priors of the primitives (their

occurrence probability) can be updated in each offline phase, or in

an online manner (e.g., via EMA) during processing each episode.

3.1. A related view: A combination of two
types of fit

The CORE score can also be viewed as a tradeoff between two

types of fit: (1) how a candidate concept “fits” with other concepts

in a candidate interpretation (laterally), and our measure for this

fitness is how well a concept is predicted, i.e., the probability that

it attains from the local context (Section 2.2.4), and (2), and how

well the concept matches (explains) the ground-level primitives it

covers and the reward from that match. Figure 5 shows this setup.

Formally, we define the match reward of a concept C

corresponding to c1c2 · · · ck as follows:

MatchReward(C) = − log(
∏

1≤i≤k

prior(ci)) = −
∑

1≤i≤k

log(prior(ci))

(C corresponds to c1 · · · ck). (3)

Thus, longer concepts (concepts with more primitives) and

concepts with more infrequent primitives (pack more surprise)

have a higher intrinsic reward. When interpreting, the intrinsic or

matching reward of a concept C is balanced against how much

probability the rest of the interpretation (the concepts in the

context) assigns to C (the coherence part) to get a COherence +

REality match, or CORE, as follows:

CORE(C) = log(pred(C))
︸ ︷︷ ︸

coherence

+MatchReward(C)
︸ ︷︷ ︸

match (to reality)

(4)

Notes: log(pred(C)) ≤ 0, so it is a negative (penalty) term in

general. The CORE score for a concept and the average CORE for

an interpretation can be negative, for instance if the prediction

11 Other baselines or reference systems (weaker or stronger) are possible

too. In particular, here we are implicitly giving the baseline the length of the

string it should generate. See the universal generators in Section 3.7.

12 Anticipating that a sophisticated system will beat the simple baseline by

a substantial amount, and so the ratio can be large, we take the logarithm.

probabilities are not estimated well. In certain cases, it could be

beneficial to weight the two coherence and match components

of CORE differently. Finally, when different interpretations at

the top level result in the same matching scores, ranking them

based on average of CORE reduces to ranking based on prediction

probabilities, such as the product of the received probabilities if

context size is 1 and we always use one side (e.g., the left side)

for prediction.13

3.2. When does it pay to compose?

One way to see how the above CORE objective promotes

using composition (larger) concepts is to consider whether to join

primitive C1 (for a letter t1) with primitive C2. We denote the

holonym by C1C2 (more accurately, con1(t1t2)). A similar analysis

holds for larger string concepts. Let prior(Ci) denote the priors

and let PCi denote the historical average of the probability Ci

obtains, the average of pred(Ci) over interpretations it occurs in.

Let us assume the composition C1C2 would be predicted on average

with probability PC1C2 . Now, it is often the case that PC1C2 <

min(PC2 , PC1 ) (the system takes a hit in terms of raw probability,

by combining). However, on average, the system predicting the

holonym C1C2 does better in terms of interpretation average CORE

(Equation 1) than the system predicting C1 and C2 separately

if 1
2 (log(

PC1
prior(C1)

) + log(
PC2

prior(C2)
))) < log(

PC1C2
prior(C1)prior(C2)

).

This is equivalent to (prior(C1)prior(C2)PC1PC2 )
0.5 < PC1C2 . In

general, PCi > prior(Ci) (the context helps in predicting) and

replacing prior(C1)prior(C2) by PC1PC2 , we get that, often, as

long as PC1C2 > PC1PC2 (more accurately, whenever PC1C2 >

max(PC1PC2 , prior(C1)prior(C2))), we have improved the average

CORE of the system by composing.

Of course, in general, the historical prediction probability

of a composition is not available when composing: the system

needs to join first and, at some point, may get sufficient

evidence that, for instance, pC1C2 > pC1pC2 . We want to create

concepts for which an improvement in CORE is likely true (see

Section 2.3.1). Furthermore, there can be multiple competing

candidates, compositions (in an episode), and we may need

additional criteria to prefer one over the others.

3.3. Connections to character-level
entropy and KL divergence

If the system remained at the character level (did not generate

new concepts), then the maximum CORE possible would be

reached if it could predict each character with certainty (probability

1). The maximum achievable expected CORE, using Equation 2,

would then be the character-level entropy of the input stream:
∑

c∈V prior(c) log(prior(c)) (where the sum goes over all the

primitives or characters in the alphabet V). For instance, the

character-level entropy is approximately 4.45 bits on NSF abstracts.

13 In this respect, while the probability assigned to an individual top-level

concept goes down as concepts grow, the combined (product) probability

assigned to longer stretches of text (words, lines, passages) can go up as

higher level concepts are acquired and used (see Section 3.2).
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FIGURE 5

A picture of scoring via CORE. CORE is computed for each position in the highest level concept sequence. CORE combines two measures: a match

score to lowest level primitives (reality match) and how well the concept fits with its surround, or coherence, for which we use pred(C) (the

probability the concept attains from other predictors in its context). In this picture 1 = 2.

This maximum score is very hard to achieve at the character level,

and it is surpassed with higher levels, as shown in Figure 6A.

At level 0, the system reaches an average CORE of 0.7, but at

level 2, the CORE is approximately 5, and with level 3, it reaches

approximately 8.

One can define the utility of a concept C as a predictor for a

fixed position, let us say position 1, in terms of expected CORE.

At the character level, this is roughly the KL divergence of C’s

edges for that position:
∑

ci
wc,ci ,1 log

wc,ci ,1

prior(ci)
. Because wc,∗,1 ≤ 1,

this is an approximation to KL. However, an easy adjustment is to

assume the remaining mass is spread over remaining (0 weight)

concepts, proportionate to their prior concepts, Then, prediction

utility becomes KL divergence.

3.4. Uses of CORE

We use CORE during interpretation searches to find a good

top-level interpretation. Each higher level concept keeps a track

of its historical (average) CORE and this is used during bottom-

up interpretation search (Section 2.2.3). We use the interpretation

score (incorporating CORE, Equation 1) averaged over many

episodes as a measure of progress of the system (a measure of

prediction accuracy), as shown in Figure 6A.

In Table 3, a few concepts learned with a few statistics, such as

the number of times observed (in their layer) and their historical

CORE scores (a moving average over episodes they appear). Longer

concepts (longer strings) tend to get higher scores. We note that

“sand” appears to be mostly a concatenation of “s” and “and,” such

as “ projects and.” and the proper word “sand” occurs far less than

the frequency in the table indicates. This is an undesired use of

“sand” (recall that the system does not see blank spaces separating

words). With more training and inference, these errors go down.

For instance, we have observed that the ratio of bad to good splits

goes down with inference time (higher search width) and concept

level, and it is positively correlated with CORE (Madani, 2021a).

3.5. Other measures

We developed CORE as a principled smooth measure to guide

interpretation. Perplexity (or equivalently entropy) is widely used

in languagemodeling (Jelinek et al., 1977; Cover and Thomas, 1991;

Rosenfeld, 2000), but perplexity deteriorates, in general, with larger

vocabularies and requires an extension to handle vocabularies

where multiple patterns with a common prefix (e.g., “b,” “ba,” “bat,”

and “bath”) can occupy the same location of the input. Probability

loss measures such as quadratic loss are smooth too, but deteriorate,

in general, with a growing vocabulary (the loss can go up with level

Figure 6B), and similar to perplexity, do not reflect the benefits

of learning larger patterns. We experimented with quadratic loss

and saw it converge very quickly, while CORE kept improving

(Madani, 2021a). Measures such as the number of concepts in an

interpretation per episode, as shown in Figure 6C, are informative

but not smooth and can also converge quickly.

3.6. Beyond strings: Generative models

Let us assume now that concept C corresponds to a more

general probabilistic generative model. Let T = t1t2 · · · tk denote

a span of text or a string of characters, where ti ∈ V . Let

us assume Expedition wants to interpret (map) the string T in

the input line as concept C. We want to compute the CORE,

which we now denote by CORE(C,T). Let PC(T) denote the

probability that C generates T. When C corresponds to a string

s, as mentioned earlier, PC(T) ∈ {0, 1} (it is 1 if T is the string

s). The match (quality) score MatchReward(C,T) is defined as the

ratio of the probability of generating T to the baseline’s probability

for string T, and CORE is now defined with respect to the quality

of the match as follows (instead of assuming a perfect match

as earlier):

MatchReward(C,T) = log(
PC(T)

∏

1≤i≤k prior(ti)
)

(where string T = t1 · · · tk) (5)

CORE(C,T) = log(pred(C))
︸ ︷︷ ︸

coherence

+MatchReward(C,T)
︸ ︷︷ ︸

match (to reality)

(6)

For example, if C is the stochastic disjunction of the numeric

digits, {“0”,“1”, · · · , “9”}, each with (uniform) probability 0.1 and

each with prior 0.01, then MatchReward(C, “2”) = log( 0.1
0.01 ) =

log(10). We note that previously, with plain string concepts and

PC(T) ∈ {0, 1}, we would simply not consider any inexact

matching (the search process discards such). How efficiently

and accurately MatchReward(C,T) is computed depends on the
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FIGURE 6

(A) Progress in interpretation scores (average CORE) at di�erent levels (Equation 1). (B) Squared loss on predicted probabilities per level. (C) Number

of concepts, on average, per episode at each level (≈55 primitives). (D) A universal generator G(V ,α,β), to support approximate matching. With α, a

(small) positive probability, G(V ,α,β) can generate any string T ∈ V∗, with a positive probability. The two terminal states (when β > 0) are for flexible

transitioning see (E). (E) During a match attempt, a few versions of the universal generator can be inserted into a string concept C = c1c2 · · · ck , as

shown. This allows for skipping, replacing, prepending, or appending to each letter of C.

TABLE 3 Statistics on a few concepts in Model3: Left columns show “ther” concepts (two di�erent levels) and a few related ones (e.g., “whether”), and

right columns show a few most frequent. The frequency (number of times seen), how many episodes ago it was last seen in an interpretation, from the

time the snapshot was taken (e.g., con2(“ther”) was seen 22 episodes ago), and the historical CORE of the concepts are shown. The right column shows

non-clone concepts with the highest observation frequency at level 3, except for the last row, con3(“s”), which is the concept with the highest frequency

in level 3 (it is a clone).

Concept Frequency Last seen CORE Concept Frequency Last seen CORE

con2(“ther”) 57,890 25 14.0 con3(“sand”) 54,456 24 10.1

con3(“ther”) 6,370 106 8.0 con3(“research”) 50,353 20 25.3

con3(“there”) 4,023 58 10.4 con3(“project”) 42,501 22 28.0

con2(“with”) 84,643 16 17.1 con3(“ation”) 36,479 101 13.4

con3(“with”) 22,195 48 10.8 con3(“develop”) 28,092 85 25.5

con3(“whether”) 3,383 388 21.0 con3(“s”) 966,729 2 1.1

efficiency of computing PC(T), which, in turn, depends on the

general complexity of the structure of concept C. For instance, if

concept C corresponds to a string concept or an augmented version

of it (see next), (approximately) computing the match score is fast.

3.7. Approximate matching

Approximate matching is the ability to tolerate some amount of

noise or corruption in the input, such as a concept corresponding

to “apple” matching variations such as “aple” (a dropped letter) or

“applax” (the swap of the ending “e” with “ax”). The confidence

of such approximate matches will depend, in part, on the relative

number of matching characters and mismatches, and in part on the

context, as we explain. Approximate matching is essential for error

correction in real-world applications.

We note that the extensions we present here are tools used

during inference at scoring (matching) time, and the structure of

a learned concept is not (permanently) changed. The structure is

only augmented at matching time for a string concept, as shown

in Figure 6E. We will focus on string concepts. We expect that

similar augmentation is applicable to more general structures, such

as AND-OR trees.

For approximate matching, it is useful to think in terms of

probabilistic string generation, which also connects to the CORE

scoring. Figure 6D shows a universal generator, G(V ,α,β), i.e., a

probabilistic finite state machine that can generate any string in V∗,

with some positive probability, where V∗ is the Kleene closure.14

We use G(V ,αi,βj) to denote different variants of the universal

generator in the picture (e.g., they can differ in the transition

probability α). To tolerate different types of mismatches flexibly,

for string concepts, the inference engine in effect inserts variants

14 If V = {“a”, “b”} (an alphabet of size two), then V∗ is the infinite set of

all strings on a and b, i.e., {λ, “a,” “b,” “aa,” “ab,” “ba,” “bb,” “aaa,” · · · } (where λ

denotes the empty string).
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of G() between every two consecutive primitives, and one G() on

a branch skipping the entire character, as shown in Figure 6E. The

αi may depend on the length of the string and could be learned or

tuned over time, and it is possible that fixed values may suffice in

many domains.

In general, αi and βi are tiny, and the augmented automation

generates the intended string corresponding to the concept with the

highest probability. However, it also gives reasonable probability

to strings with small deviations from the intended string (such as

a single correct character swapped with another). Thus, whether

a deviation is selected also depends on how well the concept

is predicted (its coherence) and how well it predicts others and

the score of other alternative sequences (in particular, alternatives

include breaking the concept into two or more subconcepts).

As a concrete but rough example, let us imagine that the string

concept “apple” is being predicted and let us consider that it is

being matched against “abple” vs. “apple” (a single mistake, a

swap of “p” with “b,” in the second letter position). We will do

a rough calculation of the extent the MatchReward() score goes

down. For the augmented “apple” (the corresponding concept) to

generate “b” instead of “p,” the alternative path to G() needs to be

taken, with say α = 0.05 and assuming prior(b) / 0.04,15 thus

instead of getting a reward of roughly log 0.95
0.04 ' log(20), one gets

a cost of log
0.05prior(“b′′)
prior(“b′′) ≈ − log(20). So, a mismatch of one

letter costs (reduces the reward by) more than one letter, and it

may even lead to a net reduction in reward of two average letters.

However, the string concept for “apple” may best fit the context

compared with the alternatives (e.g., breaking into two concepts

“ab” and “ple”), ultimately leading the system to interpret “abple”

as “apple.”

We note that one could add this type of flexible inference

only after a period of learning, but we expect that it would

be best to have approximate matching work together with the

learning of concepts. We also note that finding the best alignment

during a (string) match can be a costly task (e.g., involving

dynamic programming), and an any-time search strategy that

would quickly stop a match for pairs of strings with a

highly likely large edit distance is preferred, especially when

there already exist good alternatives (discovered by different

search paths).

3.8. A comparison to language models

We have run a variety of experiments, as we develop the

algorithms (Madani, 2021a). In particular, in one experiment, we

converted the input text lines into binary sequences, i.e., the lowest

level having only two primitives. The system was eventually able

to recover higher level patterns. To situate Expedition with respect

to current methods, we conclude the section with a comparison

to two existing methods for statistical language modeling (SLM):

neural network transformers (ANNs) (Vaswani et al., 2017) and

n-grams (NGR) (Manning and Schutze, 1999; Rosenfeld, 2000).

15 Just under 100 unique characters, in our experiments, thus a uniform

prior of 0.01.

Transformers are the state of the art, and the progress in language

models based on neural networks has substantially expanded the

diversity of the applications of SLM (Dong et al., 2019; Brown

et al., 2020; Rogers et al., 2020). Our techniques are close to NGR

methods, in that they both use predictions of character strings

(further discussed below). We note that we view this research

as early stage, and both the problem formulations and algorithm

development require further investigation. However, empirical

comparisons such as those below help give an idea of where we

stand in terms of performance on traditional tasks, as well as help

to shed further light on the differences and similarities among

the techniques. We, next, describe the prediction tasks and the

evaluation criterion, and how each method is set up for the task

(parameter settings, etc), then discuss the findings.

3.8.1. The character prediction task
With our focus on starting concept learning at the level

of characters in this study, we compare the task of character

prediction. Unlike Expedition, neither (standard) ANN techniques

nor NGR “graduate” from predicting single characters, or in

general, they do not go beyond the vocabulary they start with,

though both techniques are powerful and can be extended to

predict further into the future by, in effect, simulation. In every test

episode, each model outputs a probability distribution, containing

|V| probabilities (summing to 1) (recall |V| =94). We use log-loss

(or cross-entropy) for evaluation: 1
N

∑

predM(c), where predM(c)

is the probability assigned to the observed (target) character c

(hidden and to be predicted) by model M (in nats, i.e., using the

natural log). This loss allows us to assess howmuch a trainedmodel,

with the help of a context, can reduce the raw (unconditioned)

entropy (three nats), on average (Table 4). ANNs are also trained

on the same loss (Section 3.8.4). The character string occurring

before (to the left of) the character to be predicted is the context

in these experiments and is the input to the model (an example is

given below). Different techniques process this input differently. In

all cases, blank spaces are removed, but before removal, they are

used to determine which letter to predict, as described next.

3.8.2. Three evaluation variations and an example
Each test line (not seen during training) yields one test episode.

We report test performance on three settings. In the 1st-letter

setting (column “1st” in Table 4), the task is to predict the first

letter of a word, where the context, fed to a model, is the string

characters from the words before. In the last-letter setting, the

task is to predict the last letter of a word, the context being the

remainder of the word and all previous words. Finally, the rand

task refers to picking a position uniformly at random (close to the

middle of the line). We used the middle so that a sufficiently long

context would be available. For example, for the line, “The proposed

project ends shortly.,” the word “project” is in the middle of the line.

The first-letter task is predicting the first letter “p” (of “project”),

given the (left/preceding) context “Theproposed” (which is fed to

the model). We note that a model may only use a portion of the

given context. For instance, a 1-gram model (limited to using only

unigrams) will only use the preceding letter “d” to predict the next

Frontiers inComputationalNeuroscience 13 frontiersin.org

https://doi.org/10.3389/fncom.2023.1082502
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Madani 10.3389/fncom.2023.1082502

letter (the rest of the context is ignored). If the model assigns say

0.2 to the correct letter “p” (predM(“p”) = 0.2), its loss in this

episode is− log(0.2). The last-letter task is predicting “d” given the

context “Thepropose” (thus, this task is a pure word- or pattern-

completion task). For all cases, for each test line, the middle of it

is first picked, and either a random offset (within ±5 positions)

from that point is picked to determine the testing (rand) or the

closest left blank space is located, and an appropriate first-letter

or last-letter task is generated. All models are tested on identical

episodes. As explained below, with our current implementation

of how interpretation is done, the first-letter task may be more

appropriate for Expedition. The distinctions among tasks also shed

light on the relative strengths of different methods.

3.8.3. The data splits
Approximately 21,000 text lines (of NSF abstracts), randomly

picked, are used for training, and another approximately 2,700 lines

are used for each validation and test split. In addition, for a brief

exploration of howmuch of what has learned transfers to a different

English language genre, we also evaluate the learned models on

lines from the newsgroups data (NEWS). These include discussion

postings under diverse topics, such as religion, science, politics, and

computers (Lang, 1995).16 All models are trained and tested on the

same splits of data: 200 test lines (from each of NSF and NEWS) are

used for the losses in Table 4. To get an idea of the learning curve

(trajectory), we trained on 500 lines (500 data), 5,000 lines, and the

full training set (roughly 21,000) or “20k data,” and we report on

the 500 and 20k data (similar findings on 5,000). Variances, due

to randomization inside an algorithm (such as during search for

interpretation), are not reported in the table to avoid clutter, as they

are relatively small and do not affect our findings. We discuss them

briefly when the algorithms are presented.

3.8.4. The ANN method
We use the PyTorch implementation of transformers for

language modeling (Paszke et al., 2019), using log-loss for training.

Every character position of every line in the training data, except

for the first character, becomes a training instance, thus different

training instances have different context sizes, up to a maximum.

We experimented with the following parameters: the (maximum)

context size (best was in 10s and we used 30), the number of

heads, the number of layers, the embedding and hidden layer

dimensions, and the learning rate and its decay schedule. We used

log-loss on the validation split (equivalent to the rand task) to

pick the best parameter setting. The performance change appeared

smooth for the most part, especially as the parameters are increased

(e.g., 50 dimensions vs. 100, or 10 heads vs. 15 heads). On the

20k training data, with 10 to 20 layers and 10 to 20 heads, the log-

loss was brought down to just under 1.5 on validation (requiring

nearly 100 epochs). The model with 20 heads and 200 hidden

nodes (5 million parameters) reached a log-loss of 1.468 in 90

epochs (its log-losses are shown in Table 4), while a model with

16 We did minimal preprocessing: we kept lines that began with a lower-

case letter and that were at least 10 tokens (space-separated words) long.

the same structure but with 50 hidden dimensions reaches just

above 1.5. The log-loss results were similar among these networks.

A network with 1 layer (200 dim) and 1 head reaches log-loss

of approximately 2. On the 500 training data, smaller networks

performed better, as would be expected: performance of a 2-layer 1-

head network is shown, which reached 2.49 log-loss on validation.

Training and inference are a function of model size, in addition

to the training size, and ranged from minutes (for 80 or 100

epochs) to hours. Thus, the total exploration of parameters took

several days. We note that character-based models may not in

general work as well as their word-level counter parts in terms

of prediction accuracy, but in some domains the equivalent of

words may not be available, and there is work on narrowing the

gap (Al-Rfou et al., 2019).

3.8.5. The NGR (n-grams) method
We implemented our own character-based n-grams (NGR)

technique, collecting all n-grams appearing with minimum

frequency of 5, and computing the distribution of the next character

(the next-letter distribution) for each. For instance, if the n-gram

“proposed” appears before “project” 90% of the time in the corpus

and the remaining time appears before “research,” then its next

letter distribution has two entries (or edges): it contains “p” with

0.9 and “r” with 0.1.We note that the number of distribution entries

(edges) for an n-gram can be at most |V| (94 in our experiments).

Longer n-grams can be more precise than the shorter counterparts

but can have a higher variance over what they predict due to lower

frequency and thus less reliable probabilities, and many legitimate

items (letters) may get 0 probability. In particular, log-loss does not

work with 0 probabilities (infinite loss), and a test or prediction

time, we smooth the distributions (also referred to as the backoff

technique), which improves log-loss performance. We do this by

mixing via a convex combination of the (next-letter) distribution

of the longest n-gram that matches a context with the distribution

derived (recursively) from all the shorter matching n-grams. Thus,

if the context is “projec” and the n-gram “projec” (a 6-gram) is

available (it passed the frequency threshold), then the next-letter

distribution computed for “projec” is mixed with the distribution

derived from recursively mixing all its shorter n-grams, i.e., “rojec,”

“ojec,” all the way down to the 1-gram ‘c’ (which also do pass the

frequency threshold). The weighting in the convex combination is

a function of the frequency of the longer prefix: if below cnt1, its

weight is w1 = 0.05, and the distribution of the shorter prefixes

gets 1 − w1 (or 0.95), while above cnt2, w1 is set to 0.95, and w1 is

linearly interpolated for in-between frequencies. We experimented

with a few variations and set cnt1= 5 and cnt2= 50. Finally,

we further smooth via mixing with the uniform distribution over

the vocabulary with a weighting of 0.01 (weight chosen by a bit

of experimentation) for the uniform prior (and 0.99 for n-grams’

predicted distribution). The same final smoothing is also performed

for the output of Expedition.

We made a few optimizations for faster training and testing,

and training on the 20k data takes approximately 5 min. The

number of n-grams generated and used rapidly grows with training

size, as observed in Table 5. Table 4 shows the performance of

NGR when n-grams are limited to unigrams (only use the single
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preceding character as predictor), up to 2-grams and with no limit,

i.e., use all that match.

3.8.6. Expedition (modifications and parameters)
Concepts (predictors) in Expedition predict strings of different

lengths. To compare prediction performance at the character level,

we added up the probabilities assigned to the first character of the

predictions. Thus, for example, if “a,” “apple,” and “banana” are

predicted, with probabilities of 0.2, 0.35, and 0.45, respectively, then

the letter “a” gets a probability of 0.55 and “b” gets a probability of

0.45. We used 1 = 1 (bidirectional) in these experiments.17 Once

the context is interpreted and a final top-level concept sequence

is determined, the last (right-most) concept is used to predict the

hidden character to the right. Its predictions are mixed with a

uniform prior (0.01 weight for prior) for NGR, as explained earlier.

We organized Expedition training into rounds, each round

involving three passes over the training data. In the first round,

unigrams (primitives) are available, prediction weights among

them are learned in the first pass, and compositions (bigrams)

are generated, and statistics for these new concepts are learned in

the second and third passes within the round, and a final set of

bigrams is selected but used for performance evaluation in the next

round only. Thus, the performance of Expedition in first round

is that of 1 g NGR, as shown in Table 4. In the second round,

final prediction weights among the selected bigrams and existing

primitives (unigrams) are learned, and the performance is reported.

Then, in a second pass, new compositions (up to 4-grams) are

generated to be selected, and then used in the next (third) round.

Concepts need to be matched and seen sufficiently often, to develop

a sufficiently reliable distribution for use in interpretation, or to be

fully incorporated, and therefore, the number of used concepts is

far below what NGR generates and uses, as presented in Table 5.

The top 4-grams used, the highest by frequency (number

of times used in final selected interpretations) are “tion” (1,085

frequnecy), “will” (459), and “ment” (417). Similarly, most frequent

3-grams learned are “and” (1,913), “pro” (1,546), and “ate” (1,430),

and the three most frequent bigrams are “ti” (22,191), “he” (22,140),

and “th” (19,574) (generated in round 1 and used in round 2).

Timing: A pass over 20k lines with a totality of a few thousand

concepts, each line requiring an interpretation with a beam width

of 5, takes several hours, and the whole training of more than three

rounds took 1.5 days. The final set of concepts was ≈1k (Table 5),

with ≈4k part-related (vertical) edges and ≈100k prediction edges

in each direction.18 In these experiments, after the third round, on

average, a training text line led to≈ 30 top-level concepts. Thus, on

average, active concepts are just below two characters long (as lines

are 55 characters long).

17 Larger window size can improve prediction performance, but can

requiremoreweight tuning. For speed of training and simplified comparisons,

we set 1 = 1.

18 Both directions are used in the process of generating the best

interpretation, but one direction is needed for assessing log-loss

performance.

TABLE 4 Log-loss performances for predicting the next character (the

lower, the better, Sections 3.8.1, 3.8.2). NGR refers to using n-grams,

losses shown for n-gram, length limits of 1, 2 (bigrams), and no limit

(Section 3.8.5), ANN is a neural network (Section 3.8.4) and the setup for

Expedition is described in Section 3.8.6. All losses except for a few

improve as we go from 500 to 20k data, and the 1st-letter (“1st”) task,

especially on (out-of-domain) NEWS, is the most di�cult.

Tasks (on 200
lines) →

1st Last Rand 1st Last

Methods ↓ NSF NEWS

Train on 500 lines (500 data)

Unigrams only 3.84 2.2 2.7 4.1 2.85

Up to bigrams 3.82 1.7 2.5 4.3 2.75

NGR (all n-grams) 3.90 1.4 2.4 4.4 2.7

ANN (Transformer) 3.76 2.1 2.6 4.0 2.6

Expedition, 2 rounds 3.79 2.4 2.7 4.1 2.9

Expedition, 3 rounds 3.89 2.6 2.8 4.2 3.0

Train on ≈21k lines (20k data)

Unigrams only 3.72 2.2 2.7 3.8 2.6

Up to bigrams 3.49 1.6 2.4 3.9 2.45

NGR (all n-grams) 3.47 0.68 1.8 4.3 2.3

ANN (Transformer) 3.22 0.76 1.6 4.1 2.1

Expedition, 2 rounds 3.43 2.1 2.5 3.9 2.7

Expedition, 3 rounds 3.52 2.1 2.6 3.95 2.7

TABLE 5 Number of n-grams used by NGR and Expedition (Expd), in three

rounds on 500 and 20k data. Expedition generates and uses far fewer

concepts. The number of prediction edges of NGR (trained on 20k) is ≈ 1

million (or 5 edges per n-gram on average), while for Expedition

(bidirectional, 1 = 1) it is ≈200k.

n-gram length → 2 3 4 All

NGR 500 439 1.3k 1.2k 5.4k

NGR 20k 2.3k 9k 24k 264k

Expd 500 375 381 77 927

Expd 20k 433 266 405 1,198

COherence + REality match CORE improves on training and

test splits (Table 6), although after a few rounds, possibly due to

overfitting, it starts to degrade somewhat on test splits (not shown).

The overfitting occurs later on larger training sets. Expedition does

not optimize log-loss directly, but log-loss shows a similar pattern

to CORE, though it tends to degrade (on the test lines) sooner (in

earlier rounds). Interpretation is a randomized search, and we used

five tries (beam width) for each (test) line. The standard deviation

(std) over log-loss (averaged over 200 lines) was low, for example,

std=0.02 for Expedition, trained on 20k, on the first-letter task,

with 10 trials (3.89 ± 0.02 in Table 4, and lowering beam-width of

interpretation to 1, increases the std to 0.025). The model learned

by Expedition performed similarly under many different runs on

500 data and a few runs on 20k (low variance).
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TABLE 6 Expedition trained on NSF, always improves CORE on NSF tests,

with more rounds or more data. CORE improves on NEWS test with more

rounds too, but only on 20k data.

NSF NEWS

500, round 1 0.93 0.78

500, round 2 1.56 0.70

500, round 3 1.97 0.77

20k, round 1 1.03 0.87

20k, round 2 2.99 1.66

20k, round 3 3.37 1.50

3.8.7. Findings and discussion
Table 4 shows the log-loss results. The character entropies

of both the NSF and NEWS texts are ∼ 3 nats.19 All methods

perform better with more training instances (20k vs. 500), and for

almost all tasks, the loss is well below the (raw or unconditioned)

entropy of 3 nats, with the exception of first-letter tasks. NGR is a

simple method that performs very well, especially in the last-letter

task (or the word/pattern completion). The rand task is basically

what NGR and ANN are trained for, and its difficulty (as seen

by the loss numbers) lies somewhere in between the first-letter

and last-letter tasks. The Expedition is competitive on the first-

letter task, on both test sources, but has room to progress for

the other tasks. With our constraints on concept generation and

usage (i.e., final incorporation into interpretation requires being

matched at least 60 times), only a few 1,000 concepts are generated

on the 20k data and close to 1,000 are used, in contrast to NGR

(Table 5). For NGR, one can raise the threshold on the required

n-gram frequency, but at the expense of prediction performance,

in general, all prefixes of a word need to be kept (much overlap

and unnecessary redundancy). Expedition finds substantially fewer

patterns but patterns that likely better generalize. A (near) perfect

Expedition system would discover the words and phrases, and

prediction relations among them, with superior space efficiency

compared with NGR (and with competitive first- and last-letter

performances). However, Expedition transfers the space savings

to the time cost of interpretation. While we seek to advance the

capabilities in interpretation (e.g., as further discussed next), the

efficiency of interpretation needs to be taken into account, and

there will always be some overhead associated with it.

Our current interpretation method can do a better job of the

possibility that an acquired concept (a pattern) is only revealed

partially.20 Even though such a concept only matches partially

19 Equivalent to a confusion among roughly exp(3) or ≈ 20 equally likely

possibilities, on average (while |V| = 94).

20 In our current set up, during training after a final interpretation data

structure is selected, in part for e�ciency, only concepts at the top level

update prediction edges to one another, and the lower level concepts only

update their scores so that the search to top level interpretation would

be more successful in future interpretations. Thus the prediction weights

of lower level concepts can become stale. During testing, our current

interpretation method only interprets into whole concepts, which may lead

to a left-most concept that is at low level (with inferior prediction weights),

what is revealed, it can be the best option considering the context.

We leave the investigation of how to make such decisions during

interpretation to future work. More generally, smart segmentation

and interpretation can allow for more flexibility and adaptation

at model deployment time (changing future environments). For

instance, let us assume that there is additional noise (than present

during training) at model execution time. For example, a simple

type of corruption is when the letters in the context are replaced

with other randomly selected letters at a certain (noise) rate. We

measured how the log-loss of ANN and NGR suffers in such a

testing setting, and both rapidly degrade, as we corrupted the test

contexts.21 Expedition acquiring larger patterns, and as Section 3.7

outlined, with approximate matching (at interpretation time) could

better tolerate some amount of noise.

The NGR performs very close to ANN. The size of the training

data is relatively small, and most of the regularity is captured via

concatenation at this level. Thus, we expect the gap to grow with

more data. We expect that we need to extend Expedition to go

beyond concatenation in capturing more diverse regularities.

4. Related work

Our work builds on large-scale online supervised learning,

especially when the number of features is large and problem

instances are sparse (Rosenblatt, 1958; Littlestone, 1988; Yang

et al., 1999; Hoi et al., 2018). We investigated efficient online

learning under a large, possibly growing, set of classes (concepts),

via (sparse, associative) index learning (Madani and Huang, 2008;

Madani et al., 2009). For example, in some applications, the set

of predictors (features) could range in the millions, the set of

concepts in the hundreds of thousands, while in an episode (e.g.,

an instance to classify) 10 s to 100 s of features would be active. In

our view, this is a fundamental problem for an intelligent agent

with many concepts: which, relatively a few, of myriad concepts

are active or relevant, given an episode (a sentence, a visual

scene, etc.)22 (see also Goode et al., 2020 on the index analogy

and engrams). A natural followup question, considering human

intelligence, is how one can acquire so many concepts in the first

place, i.e., whether one could implement a system that could build

or discover its own many concepts over time, without external or

manual supervision. The goal of predicting one’s input and getting

better with time appeared powerful and promising, and prediction

is fundamental to brain functioning (Ballard, 2000; Hawkins and

Blakeslee, 2004; Bubić et al., 2010; Siman-Tov et al., 2019; Gatti

et al., 2021). We began investigating prediction games, a fill-in-

the-blank or a sequence prediction task, where concepts would

serve both as predictors as well as targets of prediction (Madani,

and this could deteriorate performance on the last-letter (word-completion)

task.

21 A solution for this in ANN training is training with data augmentation,

such as injecting noise into training instances, but not all future contingencies

can be anticipated at training time.

22 Or, out of so many (random) variables, almost all needing to be 0,

determine which ones should be 1 (significantly positive, i.e., relevant to the

episode). One could then ask howmight a system create and expand its own

set of many variables.
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2007). The system could use any efficient technique (clustering,

concatenating, and so on) in an online manner to build and

use concepts and validate and shape them for purposes of better

prediction. The present study in particular was motivated by the

problem of robustly figuring out which concepts are active in an

episode, taking into account how they fit or constrain one another

in addition to how well they match the lowest level (matching alone

is insufficient) and led to investigating interpretation methods

with appropriate (unsupervised) objectives. Our study also took

inspiration from the neuroidal model of the neocortex, and in

particular random access tasks (Valiant, 1994). These tasks involve

associating pairs or multiplicities of arbitrary concepts (learning to

associate stored items) from a large space of acquired concepts,

where network nodes are more programmable than commonly

studied neural network models (Hetz et al., 1991; Marcus, 2001)

(but see also Natschĺ’ager and Maass, 2002). Interpretation is

a central component of the semiotics approach to cognition

and meaning making (Konderak, 2018; Kull, 2018; Raczaszek-

Leonardi and Deacon, 2018), and our work also aligns with the

constructivism theory of epistemology and learning (Fosnot, 2005).

From a biological viewpoint, how high may the inference in our

approach go? There is evidence that inference from higher level

cognition does not penetrate the inside of the so-called early vision

system, while early vision itself may be complex and support its

own top-down inference with some problem-solving capabilities,

providing structured representations (of objects) to its consumers

in other parts of the brain (Pylyshyn, 1999).

The working of the Expedition system is closely related to

language modeling via n-gram methods (Manning and Schutze,

1999; Rosenfeld, 2000), but the vocabulary there is fixed and given.

Learning structure and in particular finite state machines can be

prohibitive computationally and in terms of sample complexity,

but there is progress and positive results empirically and in

special cases (Ron et al., 1998; Verwer et al., 2013; Castro and

Gavaldà, 2016), though the focus has traditionally been on learning

a single machine vs. many. Vector symbolic architectures, or

hyperdimensional computing, also begin with a finite alphabet

(Gayler, 2004; Kanerva, 2009; Kleyko et al., 2021), but we are

not aware of work attempting to expand such vocabulary in

an unsupervised manner. Much work in computer vision also

attempts to build and grow compositional hierarchies of visual

features with a mix of supervised and unsupervised techniques and

objectives (Bienenstock et al., 1996; Fidler and Leonardis, 2007; Zhu

et al., 2008; Si and Zhu, 2013), inspired by earlier work, e.g., Geman

(1999) and Biederman (1987), and inspired in part by findings

about hierarchies in primate vision (Krüger et al., 2013). We hope

to advance and complement this line of work with our emphasis on

prediction and coherence as a driver for learning.

Artificial neural networks (ANNs) are universal function

approximators (Hornik et al., 1989), and with advances of the past

few decades (diverse architectures, development and advancement

of backpropagation), ample data and computation have become

highly powerful for extracting diverse regularities. Following the

success of ANNs in (supervised) vision and speech domains

(Hinton et al., 2012; Krizhevsky et al., 2012; LeCun et al.,

2015), large language models via deep ANNs, using a number

of techniques such as embeddings, prediction, and attention,

have had substantial recent successes in various diverse NLP and

related problems (Collobert et al., 2011; Vaswani et al., 2017;

Dong et al., 2019; Brown et al., 2020; Rogers et al., 2020). In

much of current study on the text, the networks begin with an

existing vocabulary and the embeddings of that vocabulary as

input, and it is remarkable that much powerful learning is achieved

without the need of the complexity of segmenting. The regularities

and constraints in the input become highly distributed in the

connection patterns of the network, providing advantages not only

in making connections among similar patterns but also potentially

losing some structure (leading to slow learning, see below) and

interpretability. A sparse mixture of experts (MOEs), that attempt

to activate a small portion of the ANN on a per-example basis

(conditional learning or gating), trained via backpropagation, have

had success in further scaling and speeding up of ANN training

and inference (Fedus et al., 2021). Our approach could be viewed

as a discrete (and a more structured) solution to large-scale

unsupervised learning.

Concepts are, on one hand, foundational to human cognition

(Murphy, 2002; Rakison and Oakes, 2003; Cohen and Lefebvre,

2017) and are, on the other hand “maddeningly complex”

(Murphy, 2002). Concepts are interrelated in diverse ways (part-

whole, taxonomic, spatiotemporal, domain-specific, and so on),

or put another way, concepts seem to enjoy rich “content” (or

attributes, in terms of other concepts). The nature of concepts

and how they are acquired and adapted over time, along with

their rich relations and flexible use, remain largely a mystery.

Considering the importance and utility of concepts for solving

advanced information processing tasks, or symbolic computation

under uncertainty, and the complexity of conceptual phenomena,

a diversity of algorithms or (sub)systems, working together, is

likely required (Marcus et al., 2014). It is a major open question

whether existing ANN techniques, based on backpropagation

which have now substantially advanced many machine learning

applications, can be extended (e.g., perhaps in a post hoc manner)

to support concepts or provide a basis for reaching the flexibility of

human-level cognition. Symbolic and relation learning and symbol

manipulation tasks, such as variable binding, are described and

reviewed byMarcus (2001), and limits of backpropagation of ANNs

(and several other ANN approaches), in this regard, are discussed

(see also Marcus, 2018). The brain performs extensive internal

communications, possibly via a symbolic language, among its parts

(not just externally), and based on the analyses of the reliability

(to noise) properties of discrete vs. continuous representations

for the purposes of communications within the brain, Tee and

Taylor (2020) conclude that the basic information representation is

likely discrete. The extensive research study on the interpretability

of the models learned (Carvalho et al., 2019) and the related

issues of model robustness and brittleness (adversarial attacks)

(Szegedy et al., 2014; Ilyas et al., 2019) may also be linked

to the major question of whether (backpropagation) ANNs can

efficiently learn explicit discernible concepts with some robust

internal structure.

5. Conclusion

We presented a system, composed of multiple learning

and inference components, that over time learns to better
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interpret and predict its text world, by acquiring larger string

concepts. The networked vocabulary of concepts that it

maintains and grows includes a part-whole hierarchy and an

association network. An unsupervised information-theoretic

objective drives the learning of new concepts and their use

when interpreting. We conjecture that learning concepts,

or explicit structures, offer a number of advantages, such as

learning (meta) patterns over concept structures downstream,

for interpretability and communication, and for easier adapting

to changes when deployed (robustness). More generally, we

hypothesize that acquiring such vocabularies is an essential step for

symbolic computations.

We highlight and summarize a few aspects of the approach that

are differentiating, from themain current work on neural networks,

and also ask whether the functions are biologically plausible.

• Open Ended, Sparse Network: The learning is open-ended

in that the sparse network grows over time without a priori

bounds, as a function of training data: edges and nodes are

added (and discarded) as needed.23 While the brain is a

physically bounded structure, it may be useful to model some

of the learning processes as online tasks without a priori

bounds on the structure.

• Sophisticated Book Keepers: Nodes, and to a lesser extent

edges, do significant processing, e.g., to make connections and

update weights (conditional probabilities), and they keep rich

state in terms of several variables, such as their own learning

rates and historical (prediction-related) rewards.

• Complex Costly Interpretation: The approach presented

requires significant complexity in data structures, especially

during interpretation, such as keeping and updating accurate

pointers to active (matching) concepts and the portions of the

input buffer they cover, and the associated serial processing

necessary (code/engineering complexity).

• Systems Learning: From the outset, the idea of a system

that used multiple interacting components, such as one for

building concepts and another for learning to use them (e.g.,

for prediction), appeared promising, even at an early stage and

for the relatively lower level (but complex) pattern recognition

tasks. There is much evidence that learning, even for the

same general goal, is achieved via multiple (cooperating and

competing) processes in the brain (Ashby et al., 1998; Poldrack

and Packard, 2003; Ashby and Valentin, 2017). Investigating

the interactions in terms of game theoretic ideas should

be fruitful.

We hope that this research can complement findings in

neuroscience and cognitive psychology, in particular in the area of

perceptual learning and development.

We plan to explore and advance interpretation further

(such as exploring approximate matching). We are also

investigating concept generation and assimilation, and in

particular algorithms that learn patterns with more elaborate

23 The work on neurogenesis is relevant (Nogueira et al., 2021). Others

propose ways that existing “free” (unallocated) nodes can be allocated for

new concepts (Valiant, 1994).

internal structure, e.g. containing variants of disjunctions.

The external world enjoys a hierarchical structure (Simon,

1996; Callebaut and Rasskin-Gutman, 2005), and that

aspect may allow for a more powerful learning that also

benefits from a hierarchical as well as a modular nature. The

current n-gram learning is a special case of learning pure

conjunctions (spatiotemporal conjuncts). We hypothesize that

supporting learning disjunctions in concept structure, such as

discovering the numeric digits as a concept at some time point

({0, 1, 2, · · · , 9}) and building upon such to acquire patterns such

as calendar dates and phone numbers, is feasible and would

be powerful.

Future directions also include extending the approach to

other modalities, such as sounds and images. Keeping the

code complexity, the complexity of the algorithms, in check,

in addition to efficiency, will remain a challenge, as we strive

to extend functionality. The various dimensions of control,

such as making the choice of what to input or to attend

to, and to learn from, in a rich environment, as well as

how to act externally (using what has been learned) are all

important and fundamental directions. We hope to contribute

to an understanding of how different processes, of learning and

inference, could interact with one another, over the short and

long term, and lead to robust development, through advancing the

prediction games approach.
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