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Mureşan. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Improved space breakdown
method – A robust clustering
technique for spike sorting
Eugen-Richard Ardelean1,2*, Ana-Maria Ichim1,
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Space Breakdown Method (SBM) is a clustering algorithm that was developed

specifically for low-dimensional neuronal spike sorting. Cluster overlap and

imbalance are common characteristics of neuronal data that produce difficulties

for clustering methods. SBM is able to identify overlapping clusters through its

design of cluster centre identification and the expansion of these centres. SBM’s

approach is to divide the distribution of values of each feature into chunks of

equal size. In each of these chunks, the number of points is counted and based

on this number the centres of clusters are found and expanded. SBM has been

shown to be a contender for other well-known clustering algorithms especially

for the particular case of two dimensions while being too computationally

expensive for high-dimensional data. Here, we present two main improvements

to the original algorithm in order to increase its ability to deal with high-

dimensional data while preserving its performance: the initial array structure was

substituted with a graph structure and the number of partitions has been made

feature-dependent, denominating this improved version as the Improved Space

Breakdown Method (ISBM). In addition, we propose a clustering validation metric

that does not punish overclustering and such obtains more suitable evaluations

of clustering for spike sorting. Extracellular data recorded from the brain is

unlabelled, therefore we have chosen simulated neural data, to which we have

the ground truth, to evaluate more accurately the performance. Evaluations

conducted on synthetic data indicate that the proposed improvements reduce

the space and time complexity of the original algorithm, while simultaneously

leading to an increased performance on neural data when compared with other

state-of-the-art algorithms.

Code available at: https://github.com/ArdeleanRichard/Space-Breakdown-

Method.
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1. Introduction

1.1. Spike sorting

One of the most prominent techniques for recording the
activity of the brain is extracellular electrophysiology (Carter
and Shieh, 2015). The technique takes advantage of extracellular
contacts, usually inserted into the cortex, which pick up the firing
signals (spikes) of neighbouring neurons as well as the local-
field potential. Since the spikes of many surrounding neurons are
captured by the same recording electrode, the problem arises to
identify which spike comes from which neuron. This is called spike
sorting (Rey et al., 2015) and it can be more formally defined as
the process of grouping spikes into clusters corresponding to their
emitting neurons.

The main assumption behind spike sorting is that individual
neurons tend to fire spikes of a similar waveform shape, but which
are also different among different neurons. Nevertheless, under
realistic conditions, the shape of a neuron’s spikes gets mixed with
noise in the extracellular recording, and the spike can also exhibit
some degree of variability (Rey et al., 2015). As a result, the spike
shapes of that neuron form a cluster in a feature space and not a
single point.

In the ideal case, each identified cluster corresponds to all and
only the spikes of a neuron, recorded within a given amount of
time. In reality, different phenomena can affect the data, leading
to overlapping clusters. Moreover, the disparate firing rates of
different neurons lead to clusters of different sizes, leading to an
inherent imbalance in the data to be clustered. Furthermore, due
to the fact that all neurons within a certain neighbourhood are
recorded and that neurons fire at intervals of milliseconds, even a
short time duration can result in a high volume of data.

The Spike Sorting procedure can be compartmentalised into a
pipeline of four steps starting with the raw signal provided by the
extracellular recording of neuronal activity to the final labelling of
clusters (Quiroga, 2007). The steps have been delineated as follows:
filtering, spike detection, feature extraction, and finally clustering.
The filtering consists of applying a band-pass filter (usually 300–
5,000 Hz) to limit the signal components to the frequency band
corresponding to spikes. The next step is spike detection, which is
most commonly done by thresholding by amplitude. This step is far
from perfect because the choice of a threshold has to be performed
by finding a trade-off between sensitivity and specificity. The third
step consists of feature extraction and is used to extract the most
informative features of the spikes and to reduce dimensionality in
order to ease the workload of the clustering method. Features can
be defined in many ways, and there is no single golden rule on how
to achieve this (Mishra et al., 2017). Most commonly, features are
extracted by applying principal component analysis (PCA) on the
spike waveforms (Adamos et al., 2008). The last step of spike sorting
is the clustering in the feature space, and this is the step that our
study focuses on.

Importantly, the separability of the clusters is determined by the
feature extraction step and is received by the clustering technique
as an input. Here, we do not address the feature extraction step.
In addition, because the clustering technique is a labelling tool, it
will not modify the space it receives, but it will attempt to properly
label it. For the case of spike sorting—where overlap is a constant

difficulty—the quality of a clustering algorithm is given by its ability
to identify overlap and assign as many samples as possible to the
correct cluster.

Extracellular recording of neuronal spikes is by its nature a
“blind” technique. Indeed, in the absence of other supplementary
techniques, such as intracellular recording or optical imaging, it
is impossible to determine with total objectivity what spike is
generated by what neuron. Therefore, in extracellular data ground
truth labels are absent. As a result, spike sorting of recorded neural
data is an inherently unsupervised problem.

1.2. Space breakdown method

Space Breakdown Method (SBM) (Ardelean et al., 2019) was
developed as a deterministic clustering algorithm specialised for
spike sorting. It was designed to deal with some of the major
characteristics of such data: imbalanced clusters, overlapping
clusters, and high data volume. First, imbalanced clusters arise
because neurons can have markedly different firing rates. For
example, inhibitory fast spiking basket cells fire at much higher
rates than their excitatory, pyramidal counterparts, even when
they are directly neighbouring each other (Moca et al., 2014).
This results in more discharges from some neurons than others,
translating into clusters with more or less points, respectively.
Second, overlapping clusters can appear due to phenomena such
as electrode drift and similarity of features between spikes of
different neurons (Lewicki, 1998). The input of the Clustering
step is provided by the Feature Extraction step of Spike Sorting.
Clustering does not inherently modify the data, it only assigns
labels to each point of the dataset. It would be unrealistic to
assume that Feature Extraction would produce perfectly separated
clusters with no overlapping. Third, the large volume of data
emerges because of multiple reasons. Brain tissue is dense, and
a single electrode can register the action potentials of multiple
neurons (Bear et al., 2015). Additionally, under stimulation some
neurons can fire vigorously. Moreover, the recording duration
usually spans tens of minutes or hours, which leads to putative
observation of many spiking events. Consequently, in a recording
of minutes, there is a possibility to observe thousands of spikes even
on a single electrode. In addition, recent high-density probes, for
example the Neuropixels (Jun et al., 2017), can exhibit hundreds
to thousands of electrodes, yielding extremely large datasets. With
recent developments, in both hardware and software, investigators
have started using automated spike sorting pipelines, such as
KiloSort (Pachitariu et al., 2016), that allow for the real time analysis
of high-density probes. Moreover, the results of such pipelines can
be inspected and curated, if necessary. Soon, if not already, manual
sorting will become obsolete and automatic methods will become
the standard.

The aim of SBM is to tackle the difficulties of neural data
in order to correctly assign spikes to the neuron that produced
them. Therefore, SBM operates under the assumption that the
clusters have the characteristics of neural data, SBM’s mechanism
identifies clusters as unimodal, as shown in Supplementary Figure
A1. For spike sorting, overclustering (defining more clusters than
the number of neurons), is more acceptable than the mixing of
clusters because spikes from the same neuron, split into two or
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FIGURE 1

(A) Exemplification of the difference between the chunkification steps of the original SBM and the improved version, the space presented has been
normalised, in the lower left corner of each grid cell is presented the corresponding value of the cell in the array structure, while the nodes and
edges of the graph structure are indicated by circles and lines, respectively. In this case, the partitioning number is equal to 5. (B) Highlights the
differences and commonalities between the original and improved versions of SBM based on the main processing steps.

TABLE 1 Number of chunks/Nodes evaluation – Sim4.

Number of
dimensions/Features

SBM (array structure) First improvement (graph
structure)

ISBM (graph structure + adaptive
partitioning)

2 625 343 188

3 15,625 1,659 321

4 390,625 4,072 532

5 9,765,625 4,981 744

6 244,140,625 5,111 988

TABLE 2 Execution time (100 runs) by number of dimensions – Sim4.

Number of
dimensions/
Features

K-Means
(s)

DBSCAN
(s)

MeanShift
(s)

Agglomerative
Clustering (s)

FCM (s) HDBSCAN
(s)

ISO-SPLIT
(s)

SBM (s) ISBM (s)

2 0.039 0.036 1.450 0.475 0.068 0.084 0.083 0.133 0.031

3 0.043 0.039 1.685 0.496 0.080 0.168 0.143 0.161 0.072

4 0.038 0.043 1.946 0.515 0.119 0.205 0.145 0.445 0.146

5 0.043 0.050 2.416 0.526 0.187 0.253 0.135 2.204 0.652

6 0.043 0.056 3.118 0.546 0.334 0.306 0.151 59.311 2.780

more clusters, can be manually (or automatically) joined in a later
stage by merging the clusters. By contrast, mixing the spikes from
multiple neurons in the same cluster usually makes it very hard, if
not impossible, to segregate them later.

Taking these challenges into consideration, SBM was designed
to have linear time complexity in relation to the number of samples
in the dataset. This performance resulted in a compromise, as SBM
has an exponential complexity of execution time and memory with
the number of dimensions of the dataset. Our first aim was to
improve the exponential complexity of the execution time and of
memory of SBM without losing its accuracy. Our second goal was
to improve the accuracy of the algorithm for datasets that present
characteristics that are similar to those of neural data.

2. Materials and methods

2.1. State of the art methods

In this section, we will present a short description of a number
of clustering algorithms along with the original SBM that will be
used in the analysis, whereas a critical view of each will be presented
in the discussions section. We have evaluated the original and
improved version against classical and recent clustering algorithms.
DBSCAN (Ester et al., 1996) and K-Means (MacQueen, 1967) are
two commonly used classical clustering algorithms that have been
used in spike sorting for a long time. K-Means has been first used
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TABLE 3 Clustering execution time (100 runs) for varying the sample size of UO (two-dimensional synthetic dataset).

Number of
samples

K-Means
(s)

DBSCAN
(s)

MeanShift
(s)

Agglomerative
Clustering (s)

FCM (s) HDBSCAN
(s)

ISO-SPLIT
(s)

SBM (s) ISBM (s)

4,300 0.048 0.068 1.650 0.254 0.204 0.066 0.65 0.079 0.038

8,600 0.054 0.174 2.154 1.183 0.384 0.143 0.78 0.119 0.060

12,900 0.079 0.300 2.389 2.930 0.636 0.221 0.103 0.184 0.079

17,200 0.091 0.485 2.636 5.133 0.952 0.345 0.141 0.227 0.102

21,500 0.107 0.686 2.728 7.970 1.224 0.496 0.156 0.263 0.119

25,800 0.124 0.873 2.911 12.075 1.637 0.622 0.198 0.305 0.138

30,100 0.155 1.153 3.295 16.499 2.012 0.705 0.236 0.361 0.165

34,400 0.166 1.564 3.613 21.577 2.323 0.798 0.278 0.412 0.187

38,700 0.200 1.783 4.040 29.510 2.537 0.947 0.312 0.441 0.205

for sorting spikes in 1988 (Salganicoff et al., 1988). MeanShift,
Agglomerative Clustering, and Fuzzy C-Means (FCM) have also
been used in spike sorting (Veerabhadrappa et al., 2020) and to
evaluate the performance. Having such a diverse collection, we
are able to compare our algorithm against partitional, hierarchical,
and density-based clustering methods. Although K-Means has been
around for a long time and can be in no way considered a recent
algorithm, uses for it and variations of it can be found even in
today’s tools and pipelines (Pachitariu et al., 2016; Caro-Martín
et al., 2018), which renders them viable candidates for comparative
analysis. We compared the performance of these algorithms with
the original SBM and with its improved version on multiple
datasets using several clustering performance metrics.

K-Means (MacQueen, 1967) is a partition-based clustering
algorithm that divides the space into k partitions, each point being
assigned to the cluster with the nearest centroid. A disadvantage of
K-Means is that it requires the number of clusters as a parameter.
K-Means is not deterministic in its original design, but through
optimisations it can become more stable. K-Means has a time
complexity of O(ndki), where n is the number of samples, d is
the number of dimensions, k is the number of clusters given as
input, and i is the number of iterations. Within spike sorting, where
high overlap can appear, K-Means has trouble in separating such
clusters and requires the number of clusters which can be difficult
to estimate.

DBSCAN (Ester et al., 1996) is a clustering algorithm based on
density. It defines clusters as regions with high densities and it labels
low density regions as noise. An advantage of DBSCAN is that it
does not require the number of clusters as a parameter. Moreover,
it is able to identify clusters of arbitrary shapes, but it is unable to
identify clusters with different densities. DBSCAN is deterministic
with the exception of the “border points” (points at the edge of
the cluster). DBSCAN has a time complexity of O(n2), where n is
the number of samples. Within spike sorting, where imbalance is
given by the nature of neural activity, DBSCAN may have trouble
identifying lower density clusters when high density clusters are
present.

K-TOPS is a clustering algorithm (Caro-Martín et al., 2018)
introduced in 2018, based on K-Means. K-TOPS relies on features
based on the shape, phase, and distribution of spikes in order to
achieve the clustering. In order to estimate the number of clusters
for K-Means, in K-TOPS the number of clusters is varied from two

to the square root of the number of spikes and is validated through
the use of internal performance metrics, namely Davies-Bouldin,
Sillhouette, and Dunn. The first two have also been used to evaluate
our method. The final clustering is achieved through the use of
template optimisation in the phase space. Overall, K-TOPS is more
than a clustering algorithm as it implies the use of a specific set of
features and a step of post-processing.

In Veerabhadrappa et al. (2020), the authors present a historical
compendium of clustering algorithms used in spike sorting and
evaluate their performance using external metrics. Their results
show that ISO-SPLIT, a recently developed method, has the best
performance for the datasets used. Nonetheless, K-Means, the
oldest clustering algorithm used, places third out of 25 tested
algorithms, while Agglomerative Clustering is the fifth, FCM the
seventh, MeanShift the twelfth, and DBSCAN is the last.

MeanShift (Cheng, 1995) is a centroid-based clustering
algorithm that finds clusters by updating centroid candidates to
the mean of the points within their region and it is exclusively
employed in spike sorting (Veerabhadrappa et al., 2020). As a post-
processing step, it eliminates duplicate candidates to identify the
final clusters. It does not require the number of clusters as input,
which is an advantage. With regard to the complexity, it has a time
complexity of O(n2), where n is the number of samples. Within
spike sorting, where overlapping clusters is common, MeanShift
may undercluster and identify spikes from different neurons as a
single cluster and as such as being produced by the same neuron.

Agglomerative Clustering (Ackermann et al., 2014) is a
hierarchical clustering algorithm, more specifically it approaches
the problem in a “bottom-up” manner. The algorithm starts by
assigning each sample to an individual cluster, throughout the
iterations clusters are merged based on a proximity matrix until a
certain number of clusters are formed. The linkage method chosen
is Ward, which analyses the variance of clusters instead of the
distance directly. A disadvantage of the algorithm is that it requires
the number of clusters as input. Agglomerative Clustering has a
time complexity of O(n3) and a space complexity of O(n2), where
n is the number of samples. Within spike sorting, the elevated time
complexity can become a problem with long recordings and the
possibility of underclustering, due to overlap, is a problem for the
correct identification of neuronal activity.

Fuzzy C-Means (Bezdek et al., 1984), in contrast to the other
methods, is a soft-clustering algorithm where instead of receiving
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FIGURE 2

(A) Unbalance-Overlapping (UO), a synthetic dataset with its ground truth. (B) The result of K-Means on the UO dataset. (C) The result of DBSCAN
on the UO dataset. (D) The result of MeanShift on the UO dataset. (E) The result of Agglomerative Clustering on the UO dataset. (F) The result of
FCM on the UO dataset. (G) The result of HDBSCAN on the UO dataset. (H) The result of ISO-SPLIT on the UO dataset. (I) The result of the original
version of SBM on the UO dataset. (J) The result of the improved SBM (ISBM) on the UO dataset.

a label, a sample receives a probability and therefore a sample
can be assigned to more than one cluster. The inner workings
of the algorithm are similar to those of K-Means and just as its
precursor it requires the number of clusters as an input. Being a
successor of K-Means, it brings the same difficulties when applied
in spike sorting. Variants of FCM are still being created improving
its performance for specific tasks (Zhang et al., 2019) and it is still
being used in a number of clustering applications, such as pipelines
for image segmentation (Tang et al., 2020).

HDBSCAN (Campello et al., 2013) is an extension of the
DBSCAN algorithm that modifies the algorithm from a density-
based into a hierarchical type. Similar to the original, it identifies
spikes as dense population among sparser ones and it classifies a
subset of the samples as noise. Conceptually, the algorithm links
points together as a weighted graph. An efficient implementation
can use Prim’s greedy algorithm to build the minimum spanning
tree that connects the points of the graph. The algorithm has
one impactful parameter, the min cluster size that determines the
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TABLE 4 Clustering execution time (100 runs) on all datasets (reduced to two dimensions using PCA).

Dataset K-Means
(s)

DBSCAN
(s)

MeanShift
(s)

Agglomerative
Clustering (s)

FCM (s) HDBSCAN
(s)

ISO-SPLIT
(s)

SBM (s) ISBM (s)

UO 0.048 0.067 1.665 0.260 0.222 0.066 0.083 0.110 0.038

Sim4 0.038 0.036 1.452 0.466 0.089 0.084 0.117 0.132 0.054

Sim1 0.298 0.095 1.473 2.823 3.832 0.423 0.732 0.353 0.109

Sim22 0.061 0.053 1.463 0.906 0.200 0.357 0.175 0.310 0.068

Sim21 0.035 0.032 1.451 0.316 0.051 0.077 0.054 0.104 0.034

Sim30 0.072 0.121 1.513 0.478 0.145 0.101 0.132 0.207 0.050

minimum number of points needed by a group to be considered a
cluster. The HDBSCAN algorithm has a space complexity of O(dn)
and a time complexity of O(n2), where n represents the number of
samples and d the dimensionality of the dataset.

ISO-SPLIT is a clustering algorithm developed in 2015 that
has been designed for spike sorting (Magland and Barnett, 2016,
Veerabhadrappa et al., 2020). It is able to operate on an unknown
number of clusters, assuming the unimodality of the clusters.
Through repeated iterations, it establishes the unimodality by
using isotonic regression. It has been shown to outperform
classical algorithms such as K-Means of Gaussian Mixture Models
(Magland and Barnett, 2016). Its advantages are that it can handle
non-Gaussian clusters and that it requires no parametrisation.
Moreover, in Veerabhadrappa et al. (2020), the authors proclaim
it as the best algorithm for their tests.

By contrast to clustering, spike sorting algorithms are more
complex techniques, where clustering is just one step in the sorting
pipeline, which also includes, among others, spike detection,
feature extraction, cluster merging, etc. Along the years, many
spike sorting algorithms have been developed. Among the most
prominent are KiloSort (Pachitariu et al., 2016), SpykingCircus,
and WaveClus. KiloSort is an automated spike sorting pipeline that
has the ability to analyse recordings of high-density electrodes in
real-time and offers the possibility of human intervention through
a manual user interface for post-processing curation (Pachitariu
et al., 2016). The detection of spikes is made using template
matching and spike prototypes are stored based on the L2 norm
difference. KiloSort uses these spike templates to initialise a variant
of K-Means that has a modified loss function, which is invariant
to the amplitude changes of spikes (Pachitariu et al., 2016). Its
main advantage is computational, through the use of mathematical

TABLE 5 Metrics analysis on Sim4 (reduced to two dimensions using
PCA).

Sim4 SBM ISBM SBM ISBM

PN = 10 PN = 25

ARI 77.5 80.2 53.9 57.8

AMI 80.2 85.0 72.1 79.2

Purity 90.5 92.0 93.2 96.5

FMI 85.3 87.1 68.8 71.6

VM 80.2 85.0 72.1 79.2

SCS 89.7 89.8 93.8 94.9

Bolded values indicate the highest score obtained for each metric.

models for the creation of spike templates. The introduction of
template matching is the main feature of KiloSort, that substituting
the spike detection and feature extraction steps of the classical
spike sorting pipeline structure. Thus KiloSort would not be a
fair candidate for comparison with our clustering algorithm as it
contains other steps of the spike sorting pipeline besides clustering
and as such it falls beyond the scope of this work.

2.2. Space breakdown method

Space Breakdown Method (Ardelean et al., 2019) is a grid-based
clustering algorithm that divides the N-dimensional feature space
through the use of a grid with equidistant grid lines. Following
a min-max normalisation given by Equation 1, the algorithm will
convert the sample space into an N-dimensional array, where each
N-dimensional hypercube has an equivalent in a cell of said array,
this is done through the grid. The min-max normalisation was
chosen as it is easy to translate the points into a chosen range.
The disadvantage of this normalisation is that it is sensitive to
outliers. The addition of a pre-processing step of outlier detection
and removal before applying the algorithm can be added in extreme
cases. In each cell, the algorithm will store the number of points that
can be found within the corresponding hypercube. An illustration
of this conversion in a two-dimensional case can be found in
Figure 1A, the values of chunks are shown in lower-left of each cell.

normalise(X) =
X − min(X)

max(X) − min(X)
(1)

The next step is the finding of centroid candidates, through
the traversal of the array, these are cells that have values higher
than all neighbours. Neighbours are defined as adjacent cells in
the array, thus, cell (0, 0) is a neighbour of (0, 1), (1, 0), and
(1, 1). Using Breadth-First Search (BFS) these centroid candidates
are then expanded based on their neighbours to create the actual
clusters. SBM through its design is able to surpass the limitations of
other algorithms, such as K-Means’s inability to correctly identify
overlapping clusters or DBSCAN’s tendency to assign noise to
lower density clusters when high density clusters are present. It
does not require the number of clusters as input as K-Means and
other algorithms do and it has linear complexity with regard to
the number of samples. However, it has an exponential complexity
when it comes to the dimensionality of the data set.

A dataset is defined as having n samples in an N-dimensional
space. The first step of SBM is the normalisation of every point in
a range [0, PN] for all the N dimensions, where the partitioning
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FIGURE 3

Simulation 4 (Sim4), a synthetic dataset reduced to two dimensions using PCA with its (A) ground truth. (B) The result of ISBM with PN = 10 on Sim4.
(C) The result of ISBM with PN = 25 on Sim4.

number (PN) is a parameter. Each feature is divided into PN equal
partitions, referred to as “chunks.” For a two-dimensional space, the
chunks could be visualised as squares, while they would correspond
to cubes for a three-dimensional space.

It can be inferred from the previous statement, that for
an N-dimensional space, an N-dimensional array of size PNN

is required to store the chunks. Each of these chunks will be
represented in the array by the number of points contained by its
interval. The process, which transforms the points of the dataset
into an array representing the number of points in each interval,
was named “chunkification.” Through the traversal of this array,
the algorithm is searching for possible cluster centroids. The
requirements of a chunk to become a cluster centroid are the
following: to surpass the minimum threshold (another parameter)
and to contain a larger number of points than its neighbours.
The minimum threshold was added as a security measure for
identifying conglomerations of isolated noise points as clusters.
The local maxima are regarded as candidates for centroids of
clusters in the dataset—nonetheless they may be merged later on,
in the expansion step.

Once the candidates have been discovered, a BFS is applied
on each centroid in order to expand the cluster to its neighbours.
Through this process, chunks are receiving labels based on the
cluster they have been assigned to. The labels are stored in an array
of the same shape as the chunks. This requires another auxiliary
array of size PNN . The last step is the assignment of labels to each
point in the dataset. This step was named “dechunkification.” The
translation is performed by identifying, for each point, the chunk it
belongs to, and receiving the label of that chunk. Each point of the
original dataset belongs to a chunk. To determine to which chunk a
point belongs to, flooring of the point is applied.

The original SBM pipeline was modified to integrate the
transition to the graph structure, this new structure allows for the
reduction of spatial complexity which also results in a lessening of
the processing time needed as fewer chunks need to be traversed.
But the main steps of the algorithm have remained unchanged.
The pseudocode for the improved SBM, modified to use a graph
structure instead of the original array structure (Ardelean et al.,
2019), is shown next:

1 SBM (dataset, PN, threshold)
2 X = normalise (dataset, PN)
3 graph = chunkification (X, PN)
4 ccs = findCentroids (graph, threshold)
5 for cc in ccs:

6 expand (graph, cc, label, ccs)
7 labels = dechunkification (graph, X)
8 return labels
To sum up, SBM consists of five sequential steps: normalisation,

chunkification, centroid search, expansion, and dechunkification.
The pseudocode of each step and the modifications made for the
improvements can be found in Supplementary Appendix B. SBM
has a time complexity of O(n) for the normalise, chunkification, and
dechunkification algorithms, and O(PNN ) for the cluster centroid
search and expansion algorithms. Using the addition rule, due to
the sequential application of these operations, the overall time
complexity is O(n + PNN ).

As the number of dimensions increases, not only does the time
complexity increase, but also the space complexity, defined as the
additional amount of memory required. As previously mentioned,
the space complexity is exponential with regard to the number of
dimensions N, and it is equal to PNN . This happens due to the
required auxiliary N-dimensional array. Therefore, in certain cases
of high dimensionality, a regular workstation may not be able to
hold the amount of information needed for the auxiliary structure.
An example was given in the discussion section of Ardelean et al.
(2019): for a dataset with 1,000,000 points and 10 dimensions, even
for a partition number as low as 5, 510 chunks are created of which
the majority are empty. Empty chunks do not need to be stored
because no operations are performed on them. Removal of these
chunks when an array structure is used can be difficult without
the additional traversal of those chunks which would increase the
execution time.

2.3. The improved space breakdown
method

2.3.1. Solution overview
As mentioned before, a proportion of the chunks that are

created will contain the value 0. These zero-valued chunks will
not influence the result, but they will increase the complexity of
the algorithm. By transitioning from an N-dimensional space to a
graph, we can create nodes only for those chunks that have a value
different from 0. Therefore, by using a graph structure, we limit the
amount of chunks that can be created to the number of samples.
This greatly reduces the amount of memory needed to run the
algorithm for high dimensional datasets. A simple example of this

Frontiers in Computational Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fncom.2023.1019637
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1019637 February 14, 2023 Time: 14:22 # 8

Ardelean et al. 10.3389/fncom.2023.1019637

TABLE 6 Clustering performance by number of dimensions – Sim4 (reduced to chosen dimensionality using PCA).

Dimensions Metric K-Means DBSCAN MeanShift Agglomerative
Clustering

FCM HDBSCAN ISO-
SPLIT

SBM ISBM

2 ARI 57.3 75.5 58.6 59.1 52.6 79.9 91.7 77.5 80.2

AMI 79.6 77.9 80.5 77.7 73.4 87.0 91.6 80.2 85.0

Purity 91.3 88.6 96.3 90.9 87.1 91.0 96.9 90.5 92.0

FMI 71.1 85.2 72.3 72.4 67.6 88.5 94.6 84.9 87.1

VM 79.6 77.9 80.5 77.8 73.5 87.0 91.6 83.8 85.0

SCS 85.6 80.0 94.0 85.0 85.2 79.8 94.9 93.8 94.9

3 ARI 57.2 74.8 81.2 53.3 55.3 81.8 99.5 66.1 84.2

AMI 79.4 82.5 86.1 78.3 77.9 82.0 99.0 69.4 87.6

Purity 91.4 90.7 95.9 91.3 91.4 95.1 99.8 89.2 93.9

FMI 71.0 84.8 87.8 68.3 69.7 88.2 99.7 80.7 89.7

VM 79.5 82.5 86.1 78.3 77.9 82.1 99.0 73.4 87.6

SCS 85.5 30.9 98.9 84.6 64.5 99.8 99.6 87.1 91.4

4 ARI 56.8 75.4 83.1 59.2 53.3 69.2 99.7 49.4 80.3

AMI 79.5 80.3 87.1 80.1 75.0 78.0 99.2 59.3 82.4

Purity 91.4 82.6 96.7 91.3 88.4 90.9 99.9 84.1 90.6

FMI 70.8 86.3 89.1 72.5 68.2 80.4 99.8 60.8 88.5

VM 79.5 80.3 87.1 80.2 75.0 78.1 99.2 62.2 82.5

SCS 85.5 20.0 93.7 85.9 63.6 79.9 99.7 52.6 76.7

Bolded values indicate the highest score obtained for each metric.

trimming can be viewed in Figure 1, where the grid cells represent
the cells of the array that would result from the original step of
chunkification, while the circles indicate the nodes or chunks of the
graph (the number of chunks for the improved version has been
more than halved). Through this change of the data structure, the
main logical steps of the algorithm do not need to be substituted in
order to accommodate the modification.

The second improvement consists of modifying the
partitioning number into a partitioning vector (PV). In the
original version the chosen partitioning number was applied to
all features (dimensions). This modification implies using the
given partitioning number as the maximum number of partitions
of a feature, in order to maintain the parameters of the original
algorithm unchanged. The features that have the most information
will retain the original partitioning number, while the other features
will receive a partitioning number proportional to the information
they contain. In this case, information is defined as variance.

2.3.2. Detailed algorithm
The first improvement can be defined as the replacement

of an N-dimensional array structure for a graph structure. This
adaptation improves the space complexity of the algorithm and
reduces the execution time for high-dimensional datasets. The first
modification in the algorithm intervenes in the chunkification step.
Therefore, the first step of the algorithm, that of normalisation,
remains unchanged from the original version (Ardelean et al., 2019)
and it consists of min-max normalisation of the input data X.

The normalisation is used to distribute the points within an
interval that is easier to be split into chunks. With this in mind,
the chosen technique was min-max normalisation as it allows for

scaling afterward in an interval from 0 to a chosen number. Other
techniques such as Z-score will produce different scales for each
feature which would require an additional step of processing.

The graph structure is created as a dictionary that stores items
in pairs of key and value. For our purposes, the key is a string value,
while the value is another dictionary containing keys such as: count,
label, and visited. At first, the graph is initialised as empty. Through
the normalisation and rounding down step, the dataset shall have
duplicates. Therefore, if a point has already been added as a node
in the graph, we will increase its count. Otherwise, it will be added
to the graph with a count of 1. By also initialising here the label of
each node as 0, we remove the need of another graph to store the
labels, as was the case for the original version of SBM that required
another array. The visited key is used in the expansion step of the
algorithm and is initialised to 0. The nodes of this graph are the
equivalents of the chunks from the N-dimensional array that have
a non-zero value, while the edges link two nodes that are immediate
neighbours equivalent to the neighbouring cells from the previous
array structure.

Through this change, the original required storage space of
O(PNN ) has been reduced to a maximum of the number of samples.
Because we do not store nodes with a count of 0, we are able to
reach the maximum only if each sample becomes its own node
with a count of 1. Therefore, even in this particular case, the space
complexity does not surpass the dataset size, being reduced to
a maximum complexity of O(n). This change also has an effect
on the time complexity of the centroid search, expansion. In the
original version, the centroid search had to traverse the whole space
returned by the chunkification, which was PNN , while with the
graph structure it would only need to check all the nodes created,
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TABLE 7 Clustering analysis on all datasets (reduced to two dimensions using PCA).

Dataset Metric K-Means DBSCAN MeanShift Agglomerative
Clustering

FCM HDBSCAN ISO-
SPLIT

SBM ISBM

UO ARI 66.2 56.7 81.0 76.3 66.7 88.3 83.3 83.5 95.0

AMI 77.0 75.5 83.5 83.0 77.3 85.9 86.8 82.5 92.7

Purity 88.4 70.7 89.0 91.9 88.5 97.0 89.9 92.9 97.5

FMI 73.9 73.0 85.6 81.9 74.3 91.1 87.7 87.4 96.2

VM 77.0 75.6 83.5 83.0 77.3 85.9 86.8 82.5 92.8

SCS 71.1 66.6 84.4 73.6 71.5 96.6 80.8 97.8 95.2

Sim4 ARI 57.3 75.5 58.6 59.1 52.6 79.9 91.7 77.5 80.2

AMI 79.6 77.9 80.5 77.7 73.4 87.0 91.6 80.2 85.0

Purity 91.3 88.6 96.3 90.9 87.1 91.0 96.9 90.5 92.0

FMI 71.1 85.2 72.3 72.4 67.6 88.5 94.6 85.3 87.1

VM 79.6 77.9 80.5 77.8 73.5 87.0 91.6 80.2 85.0

SCS 85.6 80.0 94.0 85.0 85.2 79.8 94.9 93.8 94.9

Sim1 ARI 50.4 5.3 26.2 47.4 47.6 15.0 23.4 41.2 52.9

AMI 74.1 26.9 58.1 72.1 73.3 50.5 62.0 68.4 75.4

Purity 79.2 34 51.3 76.7 79.2 44.5 55.6 72.3 75.1

FMI 55.6 33.7 46.9 52.6 52.9 41.4 46.5 46.8 57.4

VM 74.2 41,2 58.2 72.2 73.4 50.6 62.1 68.6 75.5

SCS 73.1 20.6 32.1 67.2 69.7 29.2 40.2 69.5 73.9

Sim22 ARI 66.1 50.3 81.8 63.6 65.5 59.1 90.1 80.6 89.0

AMI 81.2 56.5 84.3 79.6 81.1 72.8 89.1 77.9 85.7

Purity 91.3 74.2 88.9 90.3 91.3 78.2 91.4 86.1 93.4

FMI 73.7 61.4 86.0 71.8 73.3 72.4 92.5 85.0 91.6

VM 81.3 57.0 84.3 79.6 81.1 72.8 89.2 77.9 85.8

SCS 80.8 60.7 78.9 77.8 80.0 70.8 83.7 95.5 90.8

Sim21 ARI 49.9 90.2 96.4 57.7 37.1 93.6 97.1 86.5 97.6

AMI 71.8 80.1 93.1 76.2 62.2 90.2 93.1 77.9 91.2

Purity 97.2 93.1 98.8 97.8 95.3 98.9 97.5 95.7 99.1

FMI 71.7 95.3 98.3 76.9 62.2 96.9 98.6 93.4 98.9

VM 71.8 80.1 93.1 76.3 62.3 90.2 93.1 78.0 91.2

SCS 95.1 56.1 97.1 79.7 78.5 99.6 79.2 99.9 98.5

Sim30 ARI 55.4 50.6 90.5 56.2 54.8 81.7 82.8 47.3 95.7

AMI 77.0 61.1 89.8 78.3 76.5 85.0 88.2 69.9 92.9

Purity 92.2 75.0 96.1 92.0 92.1 91.4 92.4 93.5 97.8

FMI 69.1 73.6 93.8 69.8 68.7 88.7 89.8 63.4 97.2

VM 77.1 61.2 89.9 78.3 76.6 85.0 88.2 70.0 93.0

SCS 87.1 63.3 92.2 82.0 79.4 82.8 82.6 95.3 96.7

Bolded values indicate the highest score obtained for each metric.

denoted by V, where V < n. For the expansion step, because of the
reduced number of neighbours of each chunk, where neighbours
are found by using the edges of the graph, denoted by E, there
is a reduction from PNN to (V + E), but the time complexity
remains exponential, due to the exponentially increasing number
of neighbours with the number of dimensions.

The second improvement is applied in the normalisation step
and will not have an impact on the implementation of the following
steps. This modification consists of an adaptive partitioning

number. In the original version, the same PN was applied for all
dimensions of the dataset. By changing the partitioning number for
each dimension, the space complexity is further improved. Due to
the fact that each dimension will have its own partitioning number,
it may be called a PV that has the length equal to the number of
dimensions of the dataset.

The required parameter of the algorithm remains the PN.
However, it becomes the maximum number of partitions for a
dimension. In order to identify the actual partitioning number of
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FIGURE 4

Original version and improved SBM comparison, the datasets were reduced to two dimensions using PCA. (A) Simulation 1 (Sim1), a synthetic dataset
with its ground truth. (B) The result of the original SBM (PN = 46) on the Sim1 dataset. (C) The result of ISBM (PN = 46) on the Sim1 dataset.
(D) Simulation 22 (Sim22), a synthetic dataset with its ground truth. (E) The result of the original SBM (PN = 46) on the Sim22 dataset. (F) The result of
ISBM (PN = 46) on the Sim22 dataset. (G) Simulation 21 (Sim21), a synthetic dataset with its ground truth. (H) The result of the original SBM (PN = 20)
on the Sim21 dataset. (I) The result of ISBM (PN = 20) on the Sim21 dataset. (J) Simulation 30 (Sim30), a synthetic dataset with its ground truth.
(K) The result of the original SBM (PN = 40) on the Sim30 dataset. (L) The result of ISBM (PN = 40) on the Sim30 dataset.

each dimension, the variance of each dimension is calculated by
using normalised data, such that variances of the dimensions are
comparable. The idea behind this modification is that a dimension
with a lower variance will require a lower number of partitions
to cluster correctly. In order to bring the variances into the range
of PN, the variances are divided by the highest variance, bringing
them in the [0, 1] interval. Then, by multiplying the variance
array with PN, the variances are brought in the [0, PN] interval.
In this way, the dimension with the highest variance receives
the highest partitioning number and each dimension can have
a different partitioning number. As previously mentioned, SBM’s
original chunkification step could be visualised as partitioning the

dataset into squares for two-dimensional and cubes for three-
dimensional. Through this improvement, the chunkification step
would partition the dataset into rectangles and cuboids for two-
dimensional and three-dimensional, respectively. Through the
min-max normalisation, the dataset is brought in the [0, 1] interval.
Subsequently, the N-dimensional array of the dataset is multiplied
with the PV of size N, thus each dimension being divided into its
own number of partitions.

The labelling of SBM has been changed for the improvements.
As a consequence, the improvements that constitute the Improved
Space Breakdown Method are denoted as ISBM, have the clusters
labelled starting from 0 as K-Means and DBSCAN have, while the
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FIGURE 5

The result of improved SBM on four different selected channels of a real dataset recorded from the visual cortex of a mouse during a visual task. The
probe used contained 32 single-channel electrodes.

noise is now labelled −1, just as DBSCAN. The original version
of SBM had the clusters labelled starting from 1 and the noise as
0. In the figures presented, the noise will be coloured as grey for
DBSCAN and ISBM and white for SBM.

We believe that noise points would be acceptable at least in two
cases. First, for problems where one cannot recover the identity of
all points due to the difficulty of assigning a border between clusters
and where it is acceptable to lose a small fraction of the points
(e.g., when one is more interested to find cluster centres for some
post hoc computation, like data compression, etc.). The second case
is when such noise points can be later manually curated by a user
and assigned to a cluster or another based on some extra criteria,
which are not apparent in the feature space. We now clarified this
in the manuscript.

2.4. Clustering metrics

Multiple metrics were considered when analysing the
performance of the clustering methods in order to have a robust
view. These metrics are:

• Adjusted Rand Index (ARI) (Hubert and Arabie, 1985;
Steinley, 2004; Vinh et al., 2010)

• Adjusted Mutual Information (AMI) (Strehl and Ghosh, 2002;
Vinh et al., 2010)
• Purity (Manning et al., 2009)
• Fowlkes-Mallows Index (FMI) (Fowlkes and Mallows, 1983)

V-Measure
• (VM) (Rosenberg and Hirschberg, 2007)

Adjusted Rand Index is based on the Rand Index (RI) metric
with an added adjustment for chance. RI compares pairs of labels
to see if they belong in the same cluster (called an agreement)
or different clusters (called a disagreement) between the true and
predicted labels. The clustering quality is given by the division of
the agreements by the sum of the agreements and disagreements.
ARI has a range of [−1, 1], where a score of 0 represents random
assignment, a score of −1 represents independent labelling and a
score of 1 represents the perfect match.

Adjusted Mutual Information is based on the Mutual
Information (MI) metric with an added adjustment for chance.
Moreover, the adjusted version of MI also has the normalisation
step of Normalised Mutual Information (Vinh et al., 2009;
Lazarenko and Bonald, 2021). MI is calculated between two clusters
U and V using the count of their intersection, the count of each
cluster and the total number of points in the dataset. AMI has a
range of [−1, 1], where a score of 0 represents random assignment,
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FIGURE 6

Real data from tetrode cleaned and sorted using K-Means with 4 clusters, electrode 1 has been selected as it offers the most separation.
(A) Electrode 1 of the tetrode with the ground truth from the tetrode. (B) K-Means applied on electrode 1. (C) DBSCAN applied on electrode 1.
(D) MeanShift applied on electrode 1. (E) Agglomerative Clustering applied on electrode 1. (F) FCM applied on electrode 1. (G) HDBSCAN applied on
electrode 1. (H) ISO-SPLIT applied on electrode 1. (I) SBM applied on electrode 1. (J) ISBM applied on electrode 1.
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TABLE 8 Metrics analysis.

K-Means DBSCAN MeanShift Agglomerative
Clustering

FCM HDBSCAN ISO-SPLIT SBM ISBM ISBM
tetrode

ARI 98.8 97.0 97.7 98.4 53.7 98.0 98.9 49.3 98.2 94.6

AMI 96.3 90.5 91.1 95.8 70.8 92.9 96.6 64.0 93.9 92.7

Purity 99.3 97.8 99.0 99.2 91.5 98.8 99.3 85.9 98.7 98.1

FMI 99.4 98.4 98.7 99.1 71.9 98.9 99.4 84.0 99.0 97.0

VM 96.4 90.5 91.2 95.8 70.8 92.9 96.6 64.0 93.9 92.7

SCS 98.9 96.5 99.5 98.9 74.8 98.6 99.0 62.2 97.2 97.0

a score of −1 represents independent label assignments and 1
represents the perfect labelling.

Purity is calculated as the sum of the maximum intersection
between the true and predicted labels for a cluster divided by
the number of samples. Purity has a range of [0, 1] where a
perfect clustering has a value of 1. The disadvantage of Purity is
that if each point is considered its own cluster, purity is 1. Thus,
purity cannot estimate the correctness with regard to the number
of clusters.

Fowlkes-Mallows Index is defined as the geometric mean of
the pairwise precision and recall. Where precision is the number
of true positives divided by the sum of true positives and false
negatives, and recall is the number of true positives divided by the
sum of true positives and false positives. FMI has a range of [0,
1], makes no assumption of cluster structure and random labelling
receives a value of 0.

V-Measure is based on two other metrics, namely homogeneity
and completeness. Both of these have a range between [0, 1]. VM
is defined as their product divided by their sum with relation to a
constant. VM also has a range of [0, 1] and makes no assumption
of cluster structure, but random labelling will not yield zero scores
for a high number of clusters.

2.5. Spike cluster score

In a preliminary analysis, the commonly used metrics, such
as ARI and others, have been deemed unfitting for the evaluation
of the accuracy for the following reasons. These metrics punish
overclustering, which we considered acceptable within the context
of spike sorting. The proposed metric is evaluated against classical
clustering performance evaluation metrics in section 3.5. The
metric developed can be categorised as an external metric and
it takes as inputs the clustering labels and the ground truth. It
represents the “purity” of the predicted label (P) with regard to
the corresponding true label (T). For each unique true label Ti, we
can define the subset of the predicted labels corresponding to the
subset of true labels with a value of Ti as P(Ti). In this subset of
the predicted labels, we can calculate how many occurrences are of
each label and we define the number of occurrences of a predicted
label j in this subset as count (P(Ti) = Pj). The score of the predicted
labels for a unique true label is calculated as the division between
the highest count of occurrences of a predicted label in the subset of
true labels and the number of labels from the predicted labels that
are equal to said predicted labels with the highest count. We can
define the score of such a unique true label by the Equation 2. The

overall score is calculated as the mean of all scores for all unique
true labels.

Score(Ti) =
count(P(Ti) = Pj)

count(P = Pj)
, (2)

where Pj is the predicted label with highest count.
Spike Cluster Score (SCS) is similar to the Purity metric.

Like Purity, it will evaluate the clustering of each sample as its
own cluster as a perfect clustering. SCS was developed to not
punish overclustering, as overclustering is acceptable for some
applications. We developed SCS instead of using Purity because
we considered underclustering unacceptable and Purity did not
penalise enough the underclustering of K-Means and DBSCAN.
As a result, the score of Purity was similar across all algorithms.
It is the user’s responsibility to evaluate how much overclustering
is acceptable for each dataset. Clustering each sample as its
own cluster will receive a perfect score but will not provide
information. We recommend using SCS together with other
performance evaluation metrics, while taking into consideration
the weaknesses of each metric.

Moreover, SCS is unaffected by noise. Therefore, removing the
points clustered as noise (for example, DBSCAN labels noise as−1,
SBM as 0, and ISBM as −1) will not change the score. This is an
advantage of SCS. For other metrics, it is necessary to first remove
the samples labelled as noise to prevent contaminating their results.

2.6. Datasets

In the original study (Ardelean et al., 2019), SBM was evaluated
for different types of datasets with different characteristics. Here,
we used datasets that exhibit characteristics of neural data.
The improvements added to the algorithm will be evaluated
in comparison with the original version, and with K-Means,
DBSCAN, MeanShift, Agglomerative Clustering, and FCM, on
multiple datasets. In the following pages, we will present each of
the datasets that will be used for the analysis.

2.6.1. Unbalance-overlapping
The Unbalance-Overlapping (UO – Supplementary Figure

A3a) dataset was generated to emulate the difficulties of neural data
(Ardelean et al., 2019) and it was used to estimate the performance
of the original version of SBM. It is a synthetic dataset with two
dimensions containing 4,300 points divided into 6 clusters with
Gaussian distributions with the following characteristics:
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• Cluster of 500 points (red) with the centre at [−2, 0]
• Cluster of 50 points (black) with the centre at [−2, 3]
• Cluster of 1,000 points (yellow) with the centre at [3,−2]
• Cluster of 1,250 points (cyan) with the cluster centre at [5, 6]
• Cluster of 250 points (blue) with the centre at [4,−1]
• Cluster of 1,250 points (green) with the centre at [1,−2]

2.6.2. Simulations
Another batch of datasets (called simulations) for testing

was generated by the Department of Engineering, University of
Leicester, UK. The creation of these simulations was based on
recordings from the monkey neocortex. The datasets contain 594
different spike shapes (Pedreira et al., 2012). For these datasets, the
noise was considered to be a distinct cluster, named a multi-unit
cluster. The amplitude of the spike of each cluster was modelled
through random selection from a normal distribution (µ = 1.1,
σ = 0.5) bounded within the 0.9–2.0 range. With the exception of
the multi-unit cluster, which consists of 20 random spike shapes
that have had the amplitude scaled to 0.5. Each spikes contains
79 samples that define its waveform. We used the following
simulations for testing:

• Simulation 4 (Sim4 – Supplementary Figure A3b), containing
4 single-unit clusters and a multi-unit cluster (in total 5) with
5,127 points
• Simulation 1 (Sim1 – Supplementary Figure A3c), containing

16 single-unit clusters and a multi-unit cluster (in total 17)
with 12,012 points
• Simulation 22 (Sim22 – Supplementary Figure A3d),

containing 6 single-unit clusters and a multi-unit cluster (in
total 7) with 7,101 points
• Simulation 21 (Sim21 – Supplementary Figure A3e),

containing 4 single-unit cluster and a multi-unit cluster (in
total 5) with 4,293 points
• Simulation 30 (Sim30 – Supplementary Figure A3f),

containing 5 single-unit clusters and a multi-unit cluster (in
total 6) with 5,210 points

The synthetic datasets have been generated such that no
overlapping waveforms occur (Pedreira et al., 2012). This is a
simplification of the classical data characteristics in spike sorting.
Nevertheless, the authors (Pedreira et al., 2012) show that, even
with such simplifications as a single multi-unit and no overlapping
waveforms, no clustering algorithms were able to identify more
than 8–10 clusters out of a maximum 20.

2.6.3. Real data
In vivo electrophysiological data was recorded from the visual

cortex of anaesthetised adult C57/Bl6 mice using A32-tet probes
(NeuroNexus Technologies, Inc.) and 32-linear probes (Cambridge
NeuroTech) at 32 kSamples/s (Multi Channel Systems MCS
GmbH) during a visual perception task with moving stimuli. Visual
stimuli consisted of full-field drifting gratings (0.11 cycles/deg;
1.75 cycles/s; variable contrast 25–100%; 8 directions in steps
of 45◦) presented monocularly on a Beetronics 12VG3 12-
inch monitor with a resolution of 1,440 × 900, at 60 fps. All
animals subjected to in vivo extracellular recording experiments

were anaesthetised using isoflurane (5% for induction, 1–3% for
maintenance) and placed in the stereotaxic holder (Stoelting Co.,
IL, United States). Heart rate, respiration rate, body temperature
and pedal reflex were monitored throughout the experiment.
Following a midline incision, a circular 1 mm craniotomy was
performed over the left visual cortex of the animal (0–0.5 mm
anterior to lambda, 2–2.5 mm lateral from midline). The multi-unit
activity (MUA) was obtained by band-pass filtering the extracellular
recorded data using a bidirectional Butterworth IIR filter, order 3
with cut-off frequencies between 300 Hz and 7 kHz. Subsequently,
an amplitude threshold was calculated based on the standard
deviation (SD) of the filtered signal and set at a factor of the SD
[typically between 3 and 5 (Bârzan et al., 2020)]. All threshold
crossings were identified as spikes and subsequently used as input
for the feature extraction algorithm. To extract each spike, a
window of 1.8 ms was extracted around threshold crossing (0.6 ms
before and 1.2 ms after). At 32 kSamples/s this yielded 58 samples
per spike. For each spike, these samples were used to create a
two-dimensional feature space through PCA for the clustering
algorithms.

To minimise animal use, multiple datasets were collected over
4–6 h from each animal. All experiments were performed in
accordance with the European Communities Council Directive
of 22 September 2010 (2010/63/EU) and approved by the Local
Ethics Committee (approval 3/CE/02.11.2018), and by the National
Sanitary and Veterinarian Authority (approval 147/04.12.2018).

3. Results

3.1. Parametrisation

The improvements of SBM, denoted as ISBM, were compared
with the original version of SBM and with DBSCAN and K-Means
on multiple datasets. SBM has already been established to have
similar results to K-Means and DBSCAN on datasets that do
not contain the characteristics of neural data. It has also been
shown that it has a better performance on datasets with these
characteristics (Ardelean et al., 2019).

The parameters for the clustering algorithms have been chosen
in order to fit each dataset. For K-Means, the k parameter will
be equal to the number of clusters in the dataset, equivalently
for Agglomerative Clustering and FCM. In our experiments, we
have found that the ward linkage of the Agglomerative Clustering
gives the best results. For DBSCAN, the eps parameter was set
using the elbow method for each dataset, while the minsample
parameter was set to the logarithm of the number of samples. The
eps parameter is quite sensitive to change, a higher value would
result in underclustering, while a lower value in overclustering. To
ensure the replicability of the results, we specify the parameters of
each algorithm used for every dataset in Supplementary Table A1.

3.2. Evaluation of space complexity

One of the main concerns is the number of chunks. An
evaluation of the number of chunks for a variable number of
dimensions of the Sim4 dataset (containing 5,127 points) and
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FIGURE 7

Tetrode analysis of ISBM, panel (A) shows a snippet of ∼50 ms of a tetrode recording from the mouse visual cortex during a visual stimuli
presentation, panel (B) shows each of the four electrodes of the tetrode reduced to three dimensions by using PCA, the colours show a “ground
truth” that was obtained by applying K-Means on the four-dimensional amplitudinal space, panel (C) presents the same “ground truth” on the space
created by applying PCA on the whole tetrode, while panel (D) presents the labelling of ISBM on an eight-dimensional space extracted by PCA from
the tetrode that is presented on the three-dimensional space for visualisation.

for a partitioning number of 25 is presented in Table 1. The
variable number of dimensions was obtained through the use of
PCA (Mishra et al., 2017). Because the two improvements do not
exclude each other, we will evaluate the algorithm containing both
improvements as ISBM. As can be seen, the number of chunks
increases exponentially with the number of dimensions for the
original SBM, while it remains bounded for ISBM. In order to prove
that both improvements have intrinsic value to the performance,
Table 1 also includes the evaluation of number of chunks for
only the graph structure improvement. The number of chunks,
through the partitioning number, is part of the space and the time
complexity equations, thus this cutback will improve performance.

There are a couple of factors that can indicate the choice of
partitioning number. Intuitively, the partitioning number slices a
feature, and the user is able to choose how fine or coarse this slicing
is. The variance of the feature space and the number of points in
the dataset indicate how dispersed the points are in that feature,
thus we suggest the following formula to estimate a nearly optimal
partitioning number:

PN =
N ∗max(variance of features)

10

where, PN is the partitioning number and N is the number of
samples in the dataset. The formula only uses the maximal variance
of all features due to the second improvement brought to the
algorithm that will change the partitioning number for the other
features. By evaluating both synthetic and real datasets, we have
found that the given formula can estimate the optimal partitioning
number for some datasets, but only suboptimal for others. Thus, we
recommend an exploratory search, starting from the partitioning
number given by the formula.

3.3. Evaluation of time complexity

The second concern was the exponential time complexity
in relation to the number of dimensions. This was evaluated on
the Sim4 dataset and is shown in Table 2. A related inherent
concern that validates the viability of the improvements
is the evaluation of the linear time complexity in relation
to the number of samples. This evaluation can be found
in Table 3, and it is also illustrated in Supplementary
Figure A2.
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Through these evaluations, we have demonstrated that the first
improvement brings about a significant reduction of the time and
space complexity. The second improvement further reduces the
space complexity. Finally, none of the improvements squander the
linear execution time of the original version in relation to the
number of samples—they actually improve it. The results of all
clustering algorithms on the UO dataset are presented in Figure 2,
the colours indicate the cluster assignment of each algorithm.
The corresponding display on the Sim4 dataset can be found in
Supplementary Figure A4. In Figure 2D, the results of SBM are
presented on the UO dataset. It can be observed that the colours
used are different. Furthermore, in Figure 2F, it can be observed
that ISBM does not overcluster the top-right cluster as SBM does.

We also evaluated the duration of the execution for each
algorithm for the chosen datasets with the following results
(average over 100 runs) presented in Table 4:

The implementation was written in Python (version 3.7) with
the following libraries: NumPy (version 1.21.4), matplotlib (version
3.5.0), sklearn (version 1.0.1) and pandas (version 1.3.4). All
evaluations of the algorithms were run on a laptop with AMD
Ryzen 9 5900HX at 3.30 GHz with 8 cores hyperthreaded, 32 GB
of RAM at 3,200 MHz, 2 TB SSD.

3.4. Analysis of proposed metric

A clear example of the punishment of overclustering by the
performance metrics can be viewed in Table 5 and by comparing
visually the results of Figure 3. In Figure 3A, the ground truth of
the dataset is presented, while in Figure 3B ISBM has a PN of 10
and in Figure 3C, a value of 25. Most metrics will give a better
result for PN = 10, even though the results of PN = 25 are more
desirable within the context of spike sorting. This effect can be
viewed through the performance evaluations presented in Table 5.
The second reason for deeming classic performance metrics as unfit
is that they also penalise algorithms that produce noise points such
as DBSCAN or SBM, while noise points may also be acceptable for
certain problems. Consequently, we have chosen to develop our
own metric for the evaluation of the accuracy of results, termed
as SCS. Nonetheless, we have not disregarded the performance
estimation of the previously mentioned metrics and all the results
can be found in section “3.5. Analysis of clustering metrics.” Due
to the fact that the chosen metrics are bounded between [−1, 1]
or [0, 1] range we have chosen to multiply them by 100 for easier
visualisation of the performance.

3.5. Analysis of clustering metrics

The evaluation of the performance of the algorithms with
regard to the number of dimensions for the ARI, AMI, Purity,
FMI, and VM metrics can be found in Table 6, the results on each
dimension is separated by colour. The dataset has been reduced to
the chosen dimensionality through PCA. The number of clusters of
K-Means, Agglomerative Clustering, and FCM remains unchanged
whilst varying the number of dimensions. The parametrisation of
each clustering algorithm for every number of dimensions is shown
in Supplementary Table 2.

The performance evaluation of the clustering algorithms given
by all metrics for each dataset is shown in Table 7, each distinct
dataset is given a different colour in the table for ease of
visualisation. The evaluation was done on all labels, including the
prediction of the clustering methods, even of those points labelled
as noise that will reduce the performance estimation. The Sim type
datasets have been reduced to two dimensions using PCA (Mishra
et al., 2017). It can be observed from these tables that the overall best
performance, considering all metrics, for all datasets is obtained
through ISBM with the exception of the Sim4 dataset on which
ISO-SPLIT performs the best with ISBM as a close second. It is
important to note that among the synthetic datasets used, Sim4 is
the simplest, as it contains the lowest number of clusters and the
lowest amount of overlap. For Sim1, K-Means has a better score on
Purity than ISBM.

The scores of the algorithms for the SCS metric are also shown
in Table 7 for all the points of the dataset. For the UO dataset the
scores of K-Means and DBSCAN are lower due to the overlap and
the different densities of the clusters. It is also noticeable that the
clusterings of K-Means and DBSCAN are incorrect (Figures 2B,
C). For the other datasets, due to the overlapping of the clusters,
DBSCAN is severely punished for underclustering.

An observation from Table 7 for SCS is that in some cases, the
original version of SBM has a higher score than the improvement.
This is true with regard to this metric, but as previously mentioned,
SCS will not punish overclustering. For the “Sim” type datasets, the
original version of SBM has a tendency to overcluster and therefore
will receive a higher score. For these datasets, we have used PCA
as the feature extraction method to reduce the dimensionality and
it results in a high amount of overlap. By overclustering, there
is a smaller chance to wrongly attribute spikes from multiple
neurons to one cluster, but there is more work in the post-
processing. In Figure 4, the results of the original version and
the improvements of SBM are shown in relation to the ground
truth. The overclustering of the original version of SBM can be
clearly seen in Figures 4B, K and the fact that the improved SBM
reproduces the ground truth labels more faithfully in Figures 4C,
L.

The Sim1 dataset containing 17 clusters is the most complex
of the chosen synthetic datasets. In Supplementary Figure A5,
we show 3 of the clusters by their waveform in order to visualise
the results of clustering methods. In Supplementary Figure A5a
shows the ground truth and the correct separation of clusters and
their relative waveforms. Supplementary FigureA5b the clustering
of K-Means, Supplementary Figure A5c that of ISO-SPLIT, and
Supplementary Figure A5d of ISBM.

3.6. Evaluation of performance on real
data

The result of the improved SBM on 4 channels of a real dataset
recorded using a 32 channels probe is shown in Figure 5. The
four channels were chosen such that they have varying numbers
of clusters and different distributions of clusters. In this figure, four
plots are presented and each contains the samples registered by one
electrode labelled by the algorithm. Because the data was recorded
extracellularly, it contains no ground truth.
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Channel 6 of this real dataset has the most complex distribution
of clusters, in Supplementary Figure A6 we present the waveforms
extracted by ISBM in comparison to those extracted by K-Means.
The number of clusters of K-Means was chosen as 5 through the
elbow method through the application of K-Means with various
number of clusters.

Next, in order to gather sufficient information for establishing a
“ground truth,” we have used a tetrode, whereby four electrodes are
used to simultaneously record from a small region of extracellular
space (Gray et al., 1995). After detecting each spike on the four
electrodes, the amplitudes of the spike on the four channels were
used to obtain a “ground truth.” The latter was obtained by using
K-Means on the four-dimensional amplitude vectors. The resulting
labels were taken as the “ground truth.” Subsequently, we tested
the clustering algorithms by considering data from only one of
the four electrodes. First, the dimensionality of the individual,
single-electrode spikes was reduced to 3 by using PCA. Then,
the clustering algorithms were applied, and results are shown in
Figure 6. In Table 8, the results of the algorithms are evaluated
through the use of performance metrics. As expected, K-Means
has the best results as it was used to simulate the ground truth,
with ISBM as a close second. We considered that the performance
analysis with a generated ground truth is relevant to assess the
correctness of the methods as it shows that the methods find similar
clusters and are consistent. In a recent paper (Veerabhadrappa
et al., 2020), the authors have evaluated the performance of 25
algorithms and K-Means placed third. Therefore, using K-Means
as a next-to-best “ground truth” has justification.

Tetrodes are able to capture spikes from different perspectives.
Figure 7A shows a tetrode recording of the mouse visual cortex
during a visual task. It is possible to use each channel separately, as
shown in Figure 7B, where for each electrode we applied PCA to
reduce the dimensionality to 2 and the colours represent a “ground
truth” created through the use of K-Means on the four-dimensional
space created by the aggregation of the amplitudes of spikes on
each electrode. Figure 7B highlights the fact that even though the
four tetrodes capture similar data, not every electrode is necessarily
informative. In Figure 7C, we show the result of PCA on the data
provided by the whole tetrode and the ground truth. It is worth
noting that PCA applied electrode 1 shown in Figure 7B actually
has more separation than the application of PCA on the tetrode.
This happens due to the fact that the other electrodes are not as
informative as electrode 1 and by combining their information, we
actually lose separability. Nevertheless, we have applied ISBM on
the space obtained by applying PCA on the whole tetrode domain.
After reducing the dimensionality to 8, the performance evaluation
is shown in the last column of Table 8 and in Figure 7D, where the
labelling of ISBM is projected on the same space as Figure 7C.

4. Discussion and conclusion

Here, we introduced an improved version of the SBM clustering
algorithm and investigated its performance by comparing it to the
original version and other algorithms. Our focus was on neural
data, which raises one of the most difficult problems, i.e., spike-
sorting (Vinh et al., 2009). The algorithm was evaluated on both
synthetic and real datasets. The synthetic datasets provide a ground

truth that can be used to assess the performance of clustering
algorithms. In this work (Pedreira et al., 2012), the creators of the
dataset have also evaluated several clustering algorithms on the
created datasets, showing that the best clustering algorithms were
only able to identify from 8 to 10 clusters out of a maximum of
20 even though, from the perspective of spike sorting, the datasets
are simple. Each dataset contains only one multi-unit cluster, and
no overlapping waveforms transpire, whereas multi-unit clusters
and overlapping waveforms can be a common occurrence in real
data.

In this work, we have used PCA to extract the most important
features and to reduce the dimensionality of the data. PCA is
a well-established algorithm used as a reference for many spike
sorting pipelines and is still commonly used inside and outside of
spike sorting. This choice offers comparability with other methods
present in the literature. Nevertheless, other feature extraction
methods can be applied with any of the clustering algorithms and
can be evaluated using various metrics, this falls outside of the aim
of this analysis.

The well-known K-Means algorithm (MacQueen, 1967) is
able to identify separated clusters with a high accuracy but it
has difficulties with overlapping clusters. K-Means also requires
the number of clusters as a parameter, which is difficult to
provide for unlabelled data. DBSCAN (Ester et al., 1996), another
widely employed density-based clustering technique, is able to
identify separated clusters as well, provided that they have similar
densities, but it tends to identify overlapping clusters as a single
cluster, which is unacceptable in the context of spike sorting.
MeanShift is able to model complex cluster with non-convex
shapes without needing the number of clusters as an input,
making it a highly viable candidate. However, MeanShift tends to
be unable to differentiate between meaningful and meaningless
modes and is unable to identify highly overlapping clusters.
Agglomerative has a high complexity with regard to the number
of samples making it hard to use in datasets of long recordings,
also groups with close pairs, as is the case in overlapping clusters,
may merge sooner than optimal resulting in the phenomenon
of underclustering. FCM requires previous knowledge of the
number of clusters as K-Means does which is a disadvantage
within the scope of spike sorting, also similarly to K-Means it
is unable to correctly separate clusters when overlapping clusters
are present. By contrast, SBM (Ardelean et al., 2019) is able to
identify overlapping clusters, provided that they exhibit a Gaussian
distribution. This renders is particularly useful for the problem
of spike sorting. SBM, like K-Means, scales linearly with the
number of samples, but it has an exponential increase with regard
to the number of dimensions. This renders SBM suboptimal for
high-dimensional datasets due to memory and processing time
concerns.

Through the improvements presented here, the space
complexity of SBM has been significantly improved. Moreover, the
processing time has been further reduced for high-dimensional
data, allowing the algorithm to be used on high-dimensional
datasets. With the addition of these improvements, the linear
scalability of SBM with regard to the number of samples has
not been changed and its performance on neural data has been
increased, being able to outperform K-Means and DBSCAN on
multiple datasets on almost all the metrics we have used.
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The first improvement presented here tackles the space and
time complexity regarding the number of dimensions, but without
affecting the linear time complexity regarding the number of
samples. The space complexity of SBM has been reduced from
O(PNN ) to only O(n), where PN is the partitioning number, N
is the number of dimensions, and n is the number of samples.
Furthermore, the overall time complexity of the algorithm has
been reduced to O[n + (V + E)], where n is the number of
samples, V is the number of nodes, and E is the number of edges
between the nodes of the graph. This complexity is still exponential
because, as the number of dimensions increases, the number of
edges increases exponentially. However, this second improvement
has achieved the goal of increasing the accuracy of the algorithm
for neural data. Thus, we have improved the complexities of the
algorithm while also increasing its accuracy on overlapping and
imbalanced clusters.

With new developments of very high-density recording
hardware, e.g., Neuropixels probes (Jun et al., 2017), the amount
of neural data to be analysed may increase a 1000-fold. In
addition, chronic, home-cage electrophysiological recordings,
which typically track neural activity for days, are also generating
increasingly larger datasets (Dhawale et al., 2017). Algorithms like
DBSCAN will have reduced usability for such data, with a time
complexity of O(n2) such that the processing of huge datasets will
be much slower in comparison to algorithms with complexity O(n),
like K-Means and SBM. Furthermore, DBSCAN uses a distance
matrix of size n2 and such that for large datasets it will require a
huge amount of memory. By contrast, due to the linear scalability
with regard to the number of samples and due to its reduced
space complexity of O(n), the improved version of SBM presented
here may become a feasible choice for the spike-sorting of very
large datasets by employing similar strategies to those of recently
developed spike sorting pipelines, such as the subsampling of spikes
and the clustering this subset in order to obtain a collection of
templates based on the cluster centres. Furthermore, because of
the shortcomings of K-Means in tackling overlapping clusters,
we feel that ISBM may be used complementarily with K-Means
if not even substitute it. From a theoretical perspective, ISBM
may be able to substitute K-Means in newly developed spike
sorters, such as KiloSort, since one issue that remains with such
approaches is that overlaps can appear from the initial detection,
and it requires an additional step of post-processing for removal
(Pachitariu et al., 2016). We believe that ISBM can provide more
performant clustering due to its ability to separate overlapping
clusters based on unimodality.

To conclude, the changes made to the algorithm have improved
its performance on all evaluated criteria, making it able to
outperform other clustering techniques when applied to spike
sorting. Moreover, they allow SBM to be used within the context
of future updates to hardware and experimental designs, which
will generate a significant increase in the amount of neural
data to be analysed.
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