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Introduction: Information transmission and representation in both natural and

artificial networks is dependent on connectivity between units. Biological neurons,

in addition, modulate synaptic dynamics and post-synaptic membrane properties,

but how these relate to information transmission in a population of neurons is still

poorly understood. A recent study investigated local learning rules and showed how

a spiking neural network can learn to represent continuous signals. Our study builds

on their model to explore how basic membrane properties and synaptic delays affect

information transfer.

Methods: The system consisted of three input and output units and a hidden

layer of 300 excitatory and 75 inhibitory leaky integrate-and-fire (LIF) or adaptive

integrate-and-fire (AdEx) units. After optimizing the connectivity to accurately

replicate the input patterns in the output units, we transformed the model to

more biologically accurate units and included synaptic delay and concurrent action

potential generation in distinct neurons. We examined three different parameter

regimes which comprised either identical physiological values for both excitatory

and inhibitory units (Comrade), more biologically accurate values (Bacon), or the

Comrade regime whose output units were optimized for low reconstruction error

(HiFi). We evaluated information transmission and classification accuracy of the

network with four distinct metrics: coherence, Granger causality, transfer entropy,

and reconstruction error.

Results: Biophysical parameters showed a major impact on information transfer

metrics. The classification was surprisingly robust, surviving very low firing and

information rates, whereas information transmission overall and particularly low

reconstruction error were more dependent on higher firing rates in LIF units. In

AdEx units, the firing rates were lower and less information was transferred, but

interestingly the highest information transmission rates were no longer overlapping

with the highest firing rates.

Discussion: Our findings can be reflected on the predictive coding theory

of the cerebral cortex and may suggest information transfer qualities as a

phenomenological quality of biological cells.
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1. Introduction

How sensory signals are processed by the cerebral cortex to
generate relevant behavior remains an open question. Hypothetical
mechanisms of these biological computations have been searched
for in multiple theoretical studies (Grossberg, 1980; Mumford, 1992;
Rao and Ballard, 1999; Baddeley, 2000; Barlow, 2001; Friston, 2010;
Panzeri et al., 2015). Recapitulating these theories, sensory systems
maximize discriminable states, or representations, given the available
resources. In other words, the system optimizes decoding by finding
causes, hypotheses, or predictions of the input. When a match
between input and an expectation is reached, the system builds a
resonant state and avoids surprises by minimizing free energy or,
alternatively, represents information with economy of space, weight,
and energy.

Although the nature of the code itself is unknown, biological
evidence shows learning is key to generating sensory representations
and complex behavior (Buonomano and Merzenich, 1998; Destexhe
and Marder, 2004; Pascual-Leone et al., 2005). Given the ability
of a neural system with a non-linear transfer function to compute
any function (Hornik et al., 1989), it has become possible to
teach a spiking network to follow and decode arbitrary noise
patterns (Brendel et al., 2020, referred as Brendel model below). The
significance of the Brendel model emerge from the computational
interpretation of membrane voltage as an error signal from predicted
input, thus directly linking the predictive coding model to biophysical
parameters (Denève et al., 2017).

We build on the Brendel model after the training was finished and
connections were fixed (Figure 1) and asked how basic membrane
characteristics and the synaptic delay change information transfer
and representation. Such a simple system provides an optimal
window to capture extra-synaptic effects on information flow because
it has minimal unintended non-linearities.

We used four distinct signal transmission metrics housing
mutually complementary features. Our first metric is coherence which
is widely used in the signal analysis as metric for linear relationship
between two analog signals (Gardner, 1992). It is typically applied
with spectral analysis, allowing natural division of signal transfer into
spectral components. Our second metric is Granger causality which,
as transfer entropy, has an information-theoretical interpretation
(Barnett et al., 2009; Bossomaier et al., 2016). Granger causality
assumes that cause precedes its effect and that the cause contains
information about the effect that is unique to the cause. While
Granger causality is the computationally heaviest of our metrics and
sometimes numerically unstable, it can in practice be applied to much
longer delays than the transfer entropy. Our third metric, transfer
entropy, is an information theoretical metric that measures the
directed exchange of information between two systems (Schreiber,
2000; Bossomaier et al., 2016). In contrast to mutual information,
which is widely used in neuroscience, transfer entropy has a direction,
and it can separate the exchange of information from the effects of
common history. It is strongly limited by large dimensionality and
thus in this study, we were limited to a single time point history for
input (optimally shifted in time) and output. Our fourth and final
metric, normalized reconstruction error, is based on Brendel model
error metric. It is a simple measure of similarity of the waveforms
between input and output and is very sensitive to temporal delays.

2. Model

2.1. Base model and training

Supplementary table describes our model according to Nordlie
et al. (2009). Our model (Figure 1A) followed the overall structure
of Brendel et al. (2020) model. It consisted of a network of
300 excitatory and 75 inhibitory leaky integrate-and-fire (LIF) or
adaptive exponential integrate-and-fire (AdEx) units which were fully
connected within and between groups. In contrast to Brendel model,
our three decoding units were LIF units for both the LIF and AdEx
simulations. We fed the network three temporally low-pass filtered
(Gaussian filter with standard deviation of 3 ms) white noise signals
with Gaussian distribution of amplitude values. The three input
signals were injected as currents to all the 300 excitatory units. The
three output units received their input from all the excitatory units.
The connection weights from input to excitatory and from excitatory
to output units had both positive and negative values, necessary to
capture both positive and negative deviations from the baseline. The
connections within and between the inhibitory and excitatory groups
were all positive.

Connection weights were learned using the Brendel model’s
simulation code that is written in Matlab R© and is publicly available
on Github1. As in the original code, we used time step 0.0001,
membrane time constant of 50 time points, integration constant
for feedforward input to excitatory population 300 time points,
integration constant from excitatory to inhibitory population 50 time
points, learning rate 0.00001 for learning the input to excitatory and
excitatory to inhibitory connections, learning rate of 0.0001 for EE,
II, and IE plasticity. The feedforward weights were generated from
random normal distribution and normalized to sum of one. The
initial connection weights within and between the excitatory (Exc)
and inhibitory (Inh) groups were: Exc => Exc zero, except autapses
−0.02; Exc => Inh every Inh neuron received connections from four
Exc neurons with weights 0.5, others zero; Inh => Inh zero, except
autapses −0.5; Inh => Exc every inhibitory unit connected to four
excitatory units with weights−0.15, others zero. The action potential
thresholds were set to half of the norm of the feedforward weights.

After learning, these weights were transferred into our more
physiological model. To achieve a dynamic system with synaptic
conductances at the nanosiemens scale, connection weights, except
connections from the excitatory to output group, were scaled with a
factor of 10−7.

The Brendel model calculated the decoding connections from the
excitatory group to the output group by a linear readout model:

x̂j (t) =
N∑

k = 1

Djkrk (t) (1)

where x̂j (t) is the estimated readout at output unit j at time t,
Djk is the decoding weight between the k-th excitatory unit and
the j-th output unit, and rk (t) is the filtered spike train on the
neuron receiving the signal. We copied these connections and scaled
them with 3 ∗ 10−8 to have the output reach maximum dynamic
membrane voltage range but with a very low number of spikes.
This membrane voltage constitutes our readout trace which was then
compared to input.

1 https://github.com/machenslab/spikes

Frontiers in Computational Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2023.1011814
https://github.com/machenslab/spikes
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1011814 January 21, 2023 Time: 6:34 # 3

Garnier Artiñano et al. 10.3389/fncom.2023.1011814

FIGURE 1

Model structure and performance at Comrade unit class after learning optimal connections with the Brendel model. (A) Model structure. Input consisted
of Gaussian noise which was injected as de- and hyperpolarizing currents to all excitatory units. The action potential output from the excitatory units to
the three output units contain both positive and negative weights. Other connections (EE, EI, II, IE) are either de- or hyperpolarizing, but not both.
Blue = excitatory units and pathways; red = inhibitory units and pathways; arrowhead = signals are both positive and negative; T line end: hyperpolarizing
connection; reverse arrowhead: depolarizing connection. (B) Sinusoidal input and corresponding output unit activity at Comrade class search start point
(Table 1). The output reaches action potential threshold at the peak. The first and last 200 ms of the 2-s simulation time are omitted to avoid edge
effects. (C) Three concurrent smoothed Gaussian noise stimuli at input units (gray) are clearly separable in the three output unit membrane voltages
(black). Most high-frequency deflections are lost, resulting in clearly separate but not very accurate replication of the input. (D) Spiking activity in the
excitatory and inhibitory units show modest firing rates for the three Gaussian noise stimuli. (E) f–I curve for Comrade units and representative excitatory
(blue) and inhibitory (red) neurones membrane potential dynamics.

2.2. Current model and parameter
exploration

Simulations were run in CxSystem2 (Andalibi et al., 2019) with a
LIF model:

dvm

dt
=
−gL (vm−EL) +geVunit −giVunit +Iext(t, i)

C
(2)

where C denotes the membrane capacitance, vm the membrane
voltage, EL is the leak equilibrium potential, gL is the leak
conductance, ge is the excitatory conductance, gi is the inhibitory
conductance, which is inverted by the – sign, and Iext (t,i) is the
input signal current injection (excitatory neurons only) and where
the t is time and i the unit. To avoid too large deviation from
the Brendel model, neither excitatory nor inhibitory synapses had
driving forces, instead, their conductances were converted to voltages
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by multiplication of connection weight with the unit of membrane
potential, volt. After a presynaptic action potential, the ge and gi
dynamics followed exponential function:

dg
dt
=
−g
τ

(3)

Where τ is the time constant of the decay. The AdEx units
followed model:

dvm

dt

=
− gL (vm − EL)+4TgLe

vm−VT
4T −w+geVunit −giVunit +Iext(t, i)

C
(4)

Where1T is the slope factor or sharpness of action potential non-
linearity and VT is the action potential threshold.

The adaptation current w has a dynamics:

dw
dt
=

a (vm − EL) −w
τw

(5)

Where τw is the time constant and a represents adaptation below
the spiking threshold. At each action potential, the w is increased by
b, which represents spike-triggered adaptation.

2.2.1. Comrade units
We had three physiological regimes which we call unit-classes,

denoting the initial sets of parameters in multidimensional space
(Supplementary table, Unit-Classes). We first created a unit-class
where both inhibitory and excitatory units had identical physiological
values to mimic the units found in the Brendel model. Since the
parameter values of both inhibitory and excitatory units were equal,
this unit-class was called the Comrade class.

2.2.2. Bacon units
We then constructed a second unit-class using physiological

values from the literature. Since the unit-class was made from
empirical experimental data this unit-class was called Bacon class,
named after Sir Francis Bacon, the father of empiricism. The
parameters were based on experimental data collected from the
macaque cortex (Povysheva et al., 2013; Luebke et al., 2015; Gilman
et al., 2017). The Bacon excitatory unit values for capacitance
and leak conductance were derived from membrane time constant
and membrane resistance. These, and action potential threshold,
were extracted as mean values between Gilman et al. (2017) and
Luebke et al. (2015) who studied area V1 pyramidal cells in
macaque monkeys. The corresponding inhibitory unit values were
the basket cell values from Povysheva et al. who studied macaque
prefrontal cortex. The equilibrium potential value was based on
Amatrudo et al. (2012) who fitted model parameters to structural
and electrophysiological macaque V1 neuron data. Some missing LIF
parameters followed earlier simulation studies (Diesmann et al., 1999;
Hokkanen et al., 2019).

2.2.3. HiFi units
HiFi and Comrade units were identical, excluding the output

units. The HiFi output units had a much shorter synaptic delay
(3 ms => 1 ms) and a higher leak conductance (4 nS => 40 nS) than
the Comrade or Bacon units. These physiological changes allowed for
a higher fidelity when reconstructing the input signal.

TABLE 1 Search ranges of the physiological parameters.

Parameter Inhibitory Excitatory

Capacitance (pF) 30—270 (10) 30—130 (10)

Leak conductance (nS) 1—28 (1) 0.5—15 (1)

Leak equilibrium potential (mV) −85—−35 (5) −85—−20 (5)

AP threshold (mV) −65—−15 (3) −67—−35 (3)

Synaptic delay (ms) 0.5—25 (0.25) 0.5—25 (0.25)

The values were selected to cover most of the dynamic regime. The values show range min–
range max (step size). All three unit-classes were searched with the same values. During search,
the same Synaptic delay value was applied to EE, EI, II, and IE connections, while the E to output
unit delay was fixed (3 ms for Comrade and Bacon, and 1 ms for the HiFi unit-class).

2.2.4. Parameter search
We first explored a wide range of physiological parameters

around each unit class to determine the dynamic regime of the system
(data not shown). Parameters were then explored in detail in this
narrowed dynamic range. Table 1 shows the search ranges and step
sizes of the physiological parameters. Note that the three unit-classes’
starting points were not in the middle of the search spaces. The
searches were two-dimensional for capacitance, leak conductance,
leak equilibrium potential, and action potential threshold; the first
dimension for the inhibitory, and the second for the excitatory units.
The synaptic delay within and between the inhibitory and excitatory
unit groups was searched in one dimension, i.e., all four (EE, EI, II,
IE) connection delays varied together.

2.2.5. Computational implementation
The duration of each simulation was 2 s, at 0.1 ms resolution.

The first and last 200 ms were omitted for response stability, resulting
in 16,000 samples for further analysis. Each main simulation round
comprised of 30,000 simulations (3 unit-classes × 5 parameters ×
about 200 parameter combinations× 10 iterations with independent
noise). Altogether, we ran about 400,000 simulations.

Simulations were computed on a workstation equipped with an
Intel Xeon Processor (E5 2640–2.6 GHz), 128 GB of DDR4 memory,
and one NVIDIA GK104GL (Quadro k4200) graphic card with 4GB
video memory. The workstation ran the Linux operating system on a
SATA III Solid State Drive.

We used the CxSystem2 cortical simulation framework (Andalibi
et al., 2019; Hokkanen et al., 2019) which has been written on top
of the Python-based Brian2 simulator (Goodman and Brette, 2009)
mainly with the purpose of flexible model construction at a higher
abstraction level and parallel parameter search.

The analyses, visualizations and automation for iterative
runs were performed using in-house developed SystemTools
software2. This software is publicly available and includes detailed
installation instructions and jupyter notebook files for this study.
The jupyter notebooks are available for Figures 1B–D, 2–
6A,D, 7A, 8. The heavier simulations (LIF, AdEx, controls with
randomized connectivity) were pre-calculated for the notebooks.
The code to recalculating these are included into the SystemTools
software, and authors are happy to provide further assistance for
interested readers.

2 https://github.com/VisualNeuroscience-UH/SystemTools

Frontiers in Computational Neuroscience 04 frontiersin.org

https://doi.org/10.3389/fncom.2023.1011814
https://github.com/VisualNeuroscience-UH/SystemTools
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-17-1011814 January 21, 2023 Time: 6:34 # 5

Garnier Artiñano et al. 10.3389/fncom.2023.1011814

3. Evaluation of information transfer

3.1. Signal transfer metrics

The results show the mean of the matching input-output pairs
(mean of #0 input to #0 output, #1 to #1, and #2 to #2) for all
the four metrics.

3.1.1. Coherence
For time-series analysis, coherence is used to describe a linear

association strength between two data sets whose dependency can be
shifted in time. We calculated coherence values between all input and
output pairs as:

Cxy =
|Pxy|

2

PxxPyy
(6)

where Pxx and Pyy are power spectral density estimates for X and
Y (the input and output, respectively) and Pxy is the cross-spectral
density estimate of X and Y.

Best latency was the argmax of crosscorrelation between
input and output. This was limited on positive latencies, i.e.,
input preceding output. Both coherence and crosscorrelation were
calculated with SciPy signal package (Virtanen et al., 2020). We report
the mean of coherence values from 0 to 100 Hz, sampled at 3-Hz
intervals.

3.1.2. Granger causality
Granger causality can be used to test if the values in time series X

forecast the values of time series Y–that is to say if X Granger-causes
Y (Granger, 1969; Geweke, 1982; Barnett et al., 2009). Specifically, we
test if adding optimally selected and weighed values from input signal
X improves our prediction of output signal Y compared to a model in
which we only use past values of Y. We pick optimal linear coefficients
αi for eachYt−1,Yt−2, ...,Yt−n1 and similarly, we select optimal
linear coefficients βi for eachXt−p,Xt−(p+1),Xt−(p+ 2), ...,Xt−n2 .
The null hypothesis states that adding X to our model does not
improve our prediction:

H0:β1 = 0,β2 = 0,...,βn = 0

To calculate Granger causality, our data was first downsampled by
a factor of 40. Such downsampling brings successive samples closer
to significant information transmission latencies, necessary for a
successful evaluation of Granger causality (Lionel Barnett, personal
communication). Next, each value was subtracted from its previous
value to make the time series stationary. The lag order was picked
by Akaike information criterion (McQuarrie and Tsai, 1998). Max lag
was restricted to 100 ms for the main experiment, and the majority of
realized lags were between 20 and 90 ms.

We then fit the data with a vector autoregressive model. We
compared a univariate model:

Yt =

n1∑
i = 1

αiYt−i+vt (7)

to a bivariate model:

Yt =

n1∑
i = 1

αiYt−i+

n2∑
i = p

βiXt−i+ut (8)

by calculating the variances of the residual terms v and u and
plugging them into the F-statistic:

F = log
{

var (v)
var (u)

}
(9)

and then calculating the p-value. We further interpreted the
vector autoregressive model as information in bits by taking the base
2 logarithm of the F value.

Granger causality is directly affected by the variance of
the residual terms, whereas information-theoretic measures only
consider the probability of such deviations. This means that Granger
causality is more sensitive and better suited to situations where
considering the absolute values of data is important. However, if
the variables are produced in a non-linear process, relying on linear
Granger causality might not be justified.

While in principle Granger causality does not measure
information but the difference in strength of prediction between two
models, it does have an information-theoretic interpretation if the
residuals are normally distributed: in that case the F-statistic is equal
to continuous transfer entropy up to a factor of two (Barnett et al.,
2009).

3.1.3. Transfer entropy
Transfer entropy is designed to measure the directed, asymmetric

information flow from one time-dependent variable to another. It can
be understood as the conditional mutual information between past
values of time series X and the predicted value Yt+1 in time series Y,
when we already know the past values of Y. Formally, it is defined as
follows (Bossomaier et al., 2016):

TX−→Y = MI
(

Yt+1;X
(k)
t

∣∣∣ Y(l)t

)

=

∑
yt+1, y(k)t , x(l)t

p(yt+1, y(k)t , x(l)t ) log
p
(

yt+1

∣∣∣ y(k)t , x(l)t

)
p
(

yt+1

∣∣∣ y(k)t

) (10)

To calculate an estimate for transfer entropy, the input signal was
first shifted in time to the point where optimal cross-correlation
was found between the input and the output. After the time shift
xp corresponds to yt . As with Granger causality, data was then
downsampled by the factor of 40, leaving us with 400 observations
in both the input and output signals. Each value was subtracted from
its previous value to make the time series stationary. Embedding
dimensions k and l were set to k = 1 and l = 1 to limit the number of
possible combinations in the data. The continuous amplitude values
were quantized into four fixed-length bins and each signal value
was rounded to the nearest discrete value. Choice of bin number n
follows the formula n = k+l+1√N/5 = 3√400/5 ≈ 4, where N is
the sample size.

We formed a three-dimensional 4× 4× 4 matrix where each cell
corresponded to a discrete three-dimensional vector (Yt+1, Yt , Xp).
We iterated through the time series and increased the observation
counter by one in the cell that corresponded to the observed
vector of each step.

Next, we estimated two conditional probabilities from this
matrix:

P
(
Yt+1 = yt+1

∣∣Yt = yt
)

and (11)

P
(
Yt+1 = yt+1

∣∣Yt = yt ∩ Xp = xp
)
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where yt+1ytxp ∈ {1, 2, 3, 4}. Estimates for entropies H(Yt+1|Yt)

and H(Yt+1|Yt,Xp) are calculated based on the estimated
probabilities. Ultimately, we get:

TE = H (Yt+1 | Yt)−H
(
Yt+1

∣∣ Yt,Xp
)

(12)

With four value bins, the theoretical maximum for transfer
entropy is 2 bits.

The result given by this method can be interpreted as follows: a
receiver observes the state of output signal Y at time point t and now
has a general probability distribution for the state of Y at time point
t + 1 and its entropy H (Y). If the receiver now observes the state of
signal X at an optimal time point p, how many bits of entropy are
reduced from Yt+1?

Unlike Granger causality, transfer entropy is not influenced
by the absolute values of residual terms. It simply measures the
probabilities of different observations occurring based on what
we already know about previous input and output values, and
the information contained in these observations based on their
probabilities. Another advantage of transfer entropy is that it does
not require linearity or any other assumptions about the process in
which the signals were produced apart from stationarity.

However, transfer entropy requires multiple instances from each
of the nl

∗ nk
∗ n possible value combinations to provide accurate

results. In practice, this forces us to use short embedding vectors.
Using longer embedding vectors would give us better results, as the
state of our signal is generally determined by more than one previous
lagged value.

3.1.4. Normalized reconstruction error
We used a similar implementation to Brendel model, who first

computed target output by leaky integration of the input; tau of the
leak corresponded to the output neuron group tau, 31.25 ms for the
Comrade and Bacon units and 3.125 ms for the HiFi whose output
group leaked ten times more than the other classes. In contrast to
Brendel model, our output has a unit (mV). To get both signals
to the same space, we normalized both the target output and the
simulated output to a standard scale (−1 1). Finally, the scaled target
output x(t), was compared to the scaled simulated output, x̂(t).

RE =
∑

Var
(
x(t)−x̂(t)

)∑
Var (x(t))

(13)

where RE is the reconstruction error, normalized with target output
variance. This gives special meaning to error value = 1; this is achieved
if there are no spikes in the excitatory group, and the membrane
potentials of the output group’s units stay at the resting level. Values
above one may result from time shift or other inaccuracies in the
system and indicate very poor replication of the input.

3.2. Classification performance

3.2.1. From information metric to accuracy score
The original Brendel model learned to replicate the three

input signals at the corresponding three output units. In the
present study, we added the transformation of the model to
biophysical values, the LIF model at the output units, parallel action
potential generation, and synaptic delays, all without retraining,
all transformations degrading the performance of the system from
the optimal replication. Our information transmission metrics

provide parametric values allowing the selection of the best output
unit for each input. This selection results in a 3-by-3 confusion
matrix. The confusion matrix allows us to use information transfer
metrics to measure how accurate the network can classify each
input to their corresponding output. The maximum value was
used for coherence, Granger causality and transfer entropy. The
minimum value was used for the reconstruction error. A separate
simulation experiment used six inputs and outputs, resulting in
a 6-by-6 matrix, to control for the ceiling effect in classification.
In all other regards, this experiment was identical to the 3-by-
3 experiment.

3.2.2. Statistical testing of the accuracy
We are testing the accuracy of a classifier that tries to match

input signals with the correct output signal using different criteria:
coherence, Granger causality, transfer entropy, and reconstruction
error. We generate random input signals x1, x2, x3, . . . xi, inject them
into the neural simulation network and then read the outcoming
signals, y1, y2, y3, ... yj. The process is repeated m times, resulting
in m∗i trials, denoted by n. The synaptic connectivity in the
simulation network has been converged to optimal values during
training so that the normalized mean variance of the reconstruction
error (RE) would ideally be minimized between certain input
and output pairs, such that for any specific xq we would get
min{ y ∈ y1,y2, yj}RE(xq,y) = yl, yl being the “ideal pair” for that
input. In this case, we have three random input signals and three
output signals each round and the process is repeated ten times with
different inputs, giving us i = 3, j = 3, m = 10, and n = 30.

We create a matrix A with i = 3 rows representing inputs and j = 3
columns representing outputs. The neural system places the n = 30
observations into the matrix where the row q for each input xq is
determined by q ∈ {1, 2, 3} and column o by f

(
xq, y

)
= yo, where

f (xq,y) seeks for the value among y ∈ {y1,y2, y3} that minimizes or
maximizes our criterion. The correct pair would be yo = yl and
the correct cell A

(
q, o

)
= A

(
q, l

)
. How the observations end up

being distributed in the matrix depends on the ability of the system to
separate the signals as well as the inputs that we generated for testing.

The accuracy score is calculated from this matrix as the ratio
between the number of correctly classified signals k and all signals
n. Because the data consists of repeated Bernoulli trials, all being
modeled as having the same probability of successful classification p,
the observed accuracy score follows a binomial distribution B (n, p).

We hypothesize that the classifier does not work and that in each
trial every input has an equal probability of being matched with any
of the outputs. Therefore:

H0 : p =
1
j

and H1 : p >
1
j

(14)

Under the null hypothesis, instances where the classifier’s
accuracy score is higher than the expected E(k/n) = p = 1/j are
assumed to be generated by a lucky choice of test data. In this case
KB (30, 1/3) and we would expect to see 10 signals out of 30 being
sorted correctly.

We want to know the probability of observing an accuracy score
of at least k/n by chance alone. This probability can be directly
calculated from the sum of the binomial distribution’s right tail:

P
(
K ≥ k

)
=

n∑
i = k

(n
i

)
pipn−i (15)
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using, of course, p = 1/j. We choose a significance level of∝ and
reject the null hypothesis if P

(
K ≥ k

)
<∝. We chose the ∝ = 0.05,

Bonferroni corrected for the N trials in each parameter search.

4. Results

4.1. Comrade and Bacon unit classes are
sensitive to membrane parameters

We studied the signal transmission properties of a trained neural
network (Figure 1A) and how these properties are affected by the
biophysical parameters of the network. We proceed stepwise from
the Brendel et al. system, which becomes the Comrade unit class.
Then we step toward biological realism with Bacon class and toward
better reconstruction with HiFi class. Finally, we test the Comrade
and Bacon unit classes with AdEx units.

After learning, the connections were first scaled to the
nanosiemens scale to allow for adequate firing, exemplified by the
network output being able to follow the sine function and only
fire at the peaks (Figure 1B). Figure 1C shows the three input
signals, together with the corresponding output membrane voltage.
The output signals (purple) showed a poor reconstruction of the
input signals (dark), with most of the high frequencies being lost,
although the output signal was able to follow the overall silhouette
of the input signal. The average firing frequency was within the
physiological range (Sclar et al., 1990; Bakken et al., 2021) with
inhibitory units firing at a slightly higher frequency than excitatory
units (Figure 1D). Figure 1E shows the firing frequency of the model
unit to increasing step current injections (input-frequency, or f-I
curve) and representative excitatory and inhibitory unit membrane
voltage traces. These results show the model, although presenting
a poor reconstruction, behaves in a plausibly physiological manner.
To understand the general pass-band characteristics of the network,
we tested each unit class with 1–99 Hz sinusoidal inputs (data
not shown). Above 30-Hz, the signal started to fail, and at 40-Hz
spiking stopped for all unit classes, showing an inability to pass high-
frequency regular oscillations and suggesting poor transmission of
high frequencies overall.

Before examining the information transfer characteristics of our
network, we sought to establish the dynamic range of the different
parameters in which the network was functional (data not shown).
Next, we did a parameter search (Table 1) for capacitance (C),
leak conductance (gL), voltage threshold (VT) of action potential
generation, leak equilibrium potential (EL), and synaptic delay (EE,
EI, II, IE connections, EI below). We then observed how different
information transfer metrics [coherence (Coh), Granger causality
(GC), transfer entropy (TE), reconstruction error (RE)] between the
input and output units, as well as the firing rate (FR) of excitatory
units, behave as a function of the parameters. The inhibitory unit
FR followed closely the excitatory units and thus the data was
omitted below. We noted that the parameter values that maximize
information transfer for each metric were somewhat different.

Figure 2 shows the 2-dimensional (inhibitory, excitatory) search
results on gL values across the dynamic ranges and compares the
information transmission metrics to FR on the right. We can see
that the gL values that maximize Coh and GC were somewhat
different from those of TE, which in turn were different from those
that minimized RE. Overall the highest information transmission

appeared at high firing rates, dipping close to saturation for all
metrics, but most clearly for TE and RE. These data show that a
varying leak conductance within the dynamic range of the system has
a strong effect (factor of∼5) on information transfer.

To test the relative value of connectivity versus the changes in
gL, we randomly permuted the four sets of EI connections. The
permutation was done within each set by randomly shuffling the
post-synaptic target index, thus preserving the connection strengths
in the system. The permutation only had a subtle effect on the 2D
topology, improving slightly the sensitivity to gL at inhibitory units.
We then permuted all connections, including EI shuffling above,
but also the input to excitatory and excitatory to output units. This
change led to Coh and GC metrics to collapse, significantly reducing
the amount of information transfer. Figure 2B shows the boxplots
summarizing the information transmission magnitudes across the 2D
search. The medians were similar for the Bacon data regardless of
learning, whereas the Comrade start point showed always the highest
information transmission and the highest firing rate (Friedman test
p< 0.001, N = 405).

These results show that randomizing local connectivity (EI) had a
surprisingly subtle effect on the overall metrics, while randomizing all
connections trivially collapsed the Coh and GC metrics and increased
RE (random input to output relation). The paradoxical increase of
TE for randomizing all connections suggests limited value of the
metrics, perhaps related to non-zero spiking at high excitatory gL,
the single sampling point in time or non-optimal temporal shift of
the point. The varying leak conductance caused a major variation in
information transfer, surpassing the variation caused by permuting
the EI connectivity.

4.2. HiFi output units are necessary for
good reconstruction

Although previous data illustrated well the important role
gL values have in determining information transfer, the output
signal still shows a poor reconstruction. To try to improve signal
reconstruction, we optimized output units by increasing their gL
from 4 to 40 nS and lowering the delay between the excitatory and
output units from 3 to 1 ms without altering the middle layer. This
was done to shorten the memory trace of earlier events and thus
allow for fast replication of information available in the middle layer.
Figure 3A shows that enabling fast response in output units results
in drastically different parameter topology for TE and RE (Figure 3A,
red arrows at TE maximum and RE minimum for HiFi) as well as
reduction of RE values, while the parameter topology and range for
GC and Coh are preserved. Excitatory group FR are identical because
there is no change in the excitatory (E) group between Comrade
and HiFi. This result shows that the different metrics have clearly
individual characteristics with Coh and GC being most consistent.

At the minimal error for HiFi units (CI = 200 pF, CE = 100 pF),
the Comrade unit fails to replicate the high frequencies (Figure 3B).
This is clearly visible in the power spectral density, where low
frequencies dominate for the Comrade output units, whereas the HiFi
units follow the input at higher frequencies. There is only a minor
extra lag in cross correlation peak between the input and output
for Comrade, and the coherence between input and output is worse
for low frequencies, compared to HiFi. These results suggest that
for accurate replication of fast components in sensory data, readout
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FIGURE 2

Information transfer between input and output for a range of leak conductance (gL) values in both inhibitory and excitatory units. (A) The first row shows
coherence, Granger causality, transfer entropy and reconstruction error values as a function of varying gL at the Comrade units. Overall, information
transfer is better at higher firing rates (rightmost column), although both transfer entropy and reconstruction error show a performance dip at the
highest rates. The second row shows corresponding data for the Bacon units. Performance is similar to Comrade units. The third row shows data for
Bacon units, when E-E, E-I, I-I, and I-E connections are randomly permuted, essentially losing the learned optimization but preserving the overall
connection strength. Firing rate dependence of information transfer is preserved, but the overall level of information transfer is reduced. The fourth row
shows data for Bacon units when all EI connections, current injection from input to E units as well as output from E units to output units are randomly
permuted. Some information is still transferred, but the overall level is further reduced. (B) A boxplot across the data in panel (A). The insert applies to all
boxplots in this study: medians (black lines), 25 and 75% quartiles (gray rectangles) and full range (whiskers) of the data.

neurons play a key role in the accurate reconstruction of the signal.
Moreover, information transfer topology is more similar between the
four metrics in HiFi than in the Comrade units, suggesting similar
dependence on capacitance with faster and short-memory readout.

Figure 3C shows the magnitudes of readout metrics across the
three unit-classes. The change from Comrade to HiFi improves
especially TE and RE, in line with their sensitivity to fast transients;
TE includes only one optimally shifted time point as input and output
history and RE is very sensitive to delay (Supplementary Figure 1).
For all metrics, the group comparisons were significant (Friedman
test, p< 0.001).

Mathematically, the capacitance (Figure 3) and leak conductance
(Figure 2) are not independent parameters, because they are linked
by membrane time constant. They, however, provide different views
to approximate membrane surface area and ionic conductances,
respectively.

In a network with fixed synaptic delays between excitatory and
inhibitory units, Rullán Buxó and Pillow (2020) described a back-
and-forth synchronous signal propagation. Our network operates
in asynchronous state (Figure 3B). This is likely influenced by the
white noise input to excitatory units. However, we can not exclude
temporally or spatially limited synchrony phenomena.
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FIGURE 3

HiFi units can reconstruct the input accurately. (A) Information transfer as a function of varying capacitance (C) at Comrade and HiFi units. The red
arrows show the maximum TE and minimum RE for HiFi units, and the corresponding positions for the Comrade. (B) Comrade (red) and HiFi (blue)
simulation output at the capacitance values which minimize the reconstruction error for HiFi (CI = 200 pF, CE = 100 pF). (C) Each boxplot contains 240
datapoints (2D search displayed in panel A), and each datapoint is the average of 10 iterations with distinct input noise pattern.

4.3. Physiological parameters cause
extensive variation in information transfer

To better quantify the range of information transfer due to
changes in physiological parameters, we compared the 2-dimensional
parameter search results to information transfer at the optimal and
least fit possible numerical transfer rates. The optimal condition
comprised a copy of the input signal at the output at different
delays, and the most unfit condition comprised one of the two
other inputs as the output (Supplementary Figure 1). The optimal
Coh and GC values were dependent on delay. GC was also
sensitive to a maximum allowed delay in the VAR model (100 ms
in this study). RE, again, was very sensitive to delay, reaching
random levels shortly after 10 ms shift. TE was not sensitive to
delay, because we look only at time history = 1, with optimal
time shift.

Figure 4 shows the range of the information transfer in
simulations against the optimal and unfit values (highest and lowest
mean values in Supplementary Figure 1, upper and lower dashed
lines, respectively, in Figure 4), for all five parameter searches.
Varying C, gL, EL, and VT had drastic effects on Coh, ranging almost
the full range of values. For GC, the current system fails to reach
the optimal values, covering systematically less than 1/6 of the range.
Changing the max allowed lag to 200 ms increased optimal values
for GC, especially at longer latencies (Supplementary Figure 1, gray
curve), but the GC values for simulated data were almost unchanged
(For C, Supplementary Figure 2). TE reached from minimum values
to half the maximum values. RE was poor for most Comrade and
Bacon simulations (values above one), whereas HiFi reached value
0.32, indicating they were best able to accurately follow the input
signal. In contrast to the other metrics, changing the synaptic delay
in the EI connections from 0.5 to 25 ms had only a minimal effect on
the information transfer.
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FIGURE 4

Dynamic range of information transfer attainable with physiological parameter variation. The dashed lines depict the best information transfer rates
(referred as optimal in the text; input compared to itself as output at varying delays) or the worst rates (unfit; input compared to other inputs as outputs).

4.4. Action potential frequency drives
information transfer

We observed that for LIF units, higher frequencies were
associated with better scores in every information transfer
metric in all three unit-classes (Figure 5). The association was
non-linear with a saturation point around 300 Hz where the
information transmission started failing. Upon closer examination
we realized this saturation occurs due to the immediate activation
of neurons after their refractory period was over (data not
shown), resulting in loss of entropy. This failure appeared

first in Coh and GC, whereas the TE and RE turned from
best to failure only at somewhat higher frequencies (shaded in
Figure 5).

4.5. Robust classification in the dynamic
regime

We compared the membrane potential of each output unit to the
each of the input signals. From this 3-by-3 comparison, the winner
was the best information transfer value. After running this analysis
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FIGURE 5

Information transfer as a function of firing rate for the 2D search on capacitance. Each dot is the average of 10 simulations with distinct inputs. The dots
depict distinct combinations of inhibitory and excitatory unit capacitance. The gray shadings indicate the firing rate ranges where TE and RE reach their
best values, separately for each unit-class.

on 10 simulation rounds with different input signals, the analysis
resulted in a confusion matrix where, ideally, each input unit would
be correctly paired to its output unit 10 times.

To give an example of classification, Figure 6A shows the 2D
search data on the action potential threshold (VT) for the Comrade
unit class. The highest Coh and GC values are in the high firing rate
(>100 Hz) regime but drop for the highest rates, as with search on C
(Figure 5 top). The TE and RE have a different topology, with the best
values at higher frequencies (Figure 3A). For the selected VT values
(inhibitory unit −44 mV, excitatory unit −46 mV, Figure 6B), Coh
and GC have great classification performances, with these two metrics
being able to correctly pair every input to their output (Figure 6C)
despite low mean firing rates (inhibitory unit 0.04 Hz, excitatory unit
0.93 Hz). TE also offers a relatively good classification performance,
correctly classifying most of the simulations (accuracy score 0.8,
p < 0.001, Bonferroni corrected for the N 2D search items, 95% ci
0.58–0.90). RE shows a poor classification performance being unable
to accurately classify most input-output pairs (accuracy score 0.37,
p > 0.05, 95% ci 0.20–0.56). From these data we can observe that
classification is a robust measure for information transfer and it
enables direct comparison of the different metrics.

Looking at the accuracy scores through the AP threshold values
we were able to see that even in conditions of low information
transfer, the network was able to generate significant accuracy
scores (compare Figures 6A–D, where red dots indicate statistically
significant accuracy). This robust effect could be seen in all unit-
classes and membrane parameters (Figure 7). Figure 7A shows the
classification accuracy score for the main experiment as a function
of firing rate, with all physiological parameter searches averaged
together. For Coh and GC, classification accuracy scores remain at
one, excluding the first and last aggregate FR bins, which include very
low and high FRs. For Bacon and Comrade units, the TE and RE
values dip, in addition, at the middle FR ranges. To exclude that the
excellent accuracy scores result from a ceiling effect, Figure 7B shows
the same 2D search with 10 iterations as in the main experiment, but
for six inputs and six outputs (chance rate 1/6). The results are similar
to the main experiment: only the first and last FR bin showed a drop
for the Coh and GC, while the Comrade and Bacon units replicate
the mid-frequency dip for the TE and RE. Finally, Figure 7C shows
the data for an extensive 1D search across the parameter variations,
with the aim of better covering the zero and fully saturated FRs. As
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FIGURE 6

Classification across the 2D search on VT. (A) Information metrics. (B) Classification between inputs and outputs from the information metric. Example
selection of ap threshold values (inhibitory unit –44 mV, excitatory unit –46 mV) lead to moderate mean firing rates (inhibitory unit 0.15 Hz, excitatory
unit 0.93 Hz). On the left. The learned connectivity should match the three input patterns to corresponding output unit membrane potential patterns. For
each input (row) the highest coherence value (white rectangle) indeed matches the correct input to correct output. On the right. Ten iterations of
simulated data for different noise patterns provide 30 choices for each information metric (max for coherence, Granger causality and transfer entropy,
min for reconstruction error). (C) Confusion matrix for calculating accuracy score. Coherence and Granger causality maxima land always at the
matching input-output pairs, while transfer entropy have some failures. Reconstruction errors have more failures than hits. (D) Accuracy score for each
information metric and each ap threshold value pair. The red asterisks depict p < 0.05, Bonferroni corrected for the N parameter combinations in the
current search (N inhibitory ap threshold values × N excitatory ap threshold values).

expected, all four metrics drop closer to random accuracy scores (1/3)
at the first and last FR bins.

4.6. Adaptation leads to low-frequency
code

In biological neurons, intracellular current injection to soma
together with measurement of the membrane voltage have been used
to characterize the response properties of a neuron. LIF model has
a limited ability to replicate such membrane voltage traces, whereas

relatively simple adaptive models fit considerably better (Rauch et al.,
2003; Jolivet et al., 2004; Brette and Gerstner, 2005; Gerstner and
Naud, 2009). Thus we next did the Comrade and Bacon simulations
with AdEx units which extends the LIF model by one dynamic
adaptation variable w, and three additional model parameters, a, b,
and tauw. These model parameters were selected in such a way that
the unit adaptation timing qualitatively mimicked the adaptation
current of a fast spiking type II inhibitory unit and an excitatory unit
(Mensi et al., 2012).

Adaptation and exponential action potential generation
mechanism in Comrade units (at start point, Figure 8A) led to lower
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FIGURE 7

Classification accuracy as a function of firing rate. Results from all five parameter searches are averaged. (A) The main experiment with three inputs and
three outputs, mean of 10 iterations (thick line) and the 95% confidence interval by bootstrapping (shading). Data is binned to 10 distinct firing rates. (B) A
control experiment with six inputs and outputs, 10 iterations as in the main experiment. (C) A control experiment with one-dimensional searches across
C, gL, EL and VT, (gL and EL augmented by two values of capacitance) in such a way that each search reaches zero and fully saturated firing rates.

FR (1–3 vs. 8–9 Hz, Figure 1D), a low-fidelity representation of
the input, and to a clearly less steep f-I curve than with LIF units
(Figure 1E). Bacon unit firing (Figure 8B) were even more sparse.
Nevertheless, the output looks like an abstraction of the input signal,
albeit delayed. The f-I curves are more steep for inhibitory than
excitatory units, in line with experimental data (Mensi et al., 2012).

A clear difference between AdEx and LIF units emerge for the
information transfer for varying leak conductance (Figure 8C). For
Comrade AdEx units, both Coh and GC show their highest values
with small leak in both inhibitory and excitatory population (the
left upper corner of the plot). However, the highest firing rates
are at high leak in inhibitory and low leak in excitatory units (left
lower corner). For LIF units the two topologies overlap, and the
information transmission follows the firing rate (max at left lower
corner, Figure 2A). The TE for AdEx is more in line with the LIF
results, with best values with the highest FR. The RE is more difficult
to interpret and the error values are consistently very high (>1). For
Bacon AdEx units the system cease firing altogether with high leak
in excitatory population, but otherwise there is a similar trend; the
highest Coh and GC values are off the highest FR (Figure 8D).

Figure 8E shows that the LIF model results in systematically
higher information transmission and firing rates [Wilcoxon signed
rank test p < 0.001 between LIF and AdEx models, tested separately
(N = 10) for each metrics plus the FR and Comrade and Bacon units].

Figure 8F shows that classification accuracy for Coh and GC
drops only at the lowest FR bin, as with LIF units (Figure 7). The
firing rates never exceed 150 Hz and thus there is no high-frequency
saturation with accuracy drop, as with the LIF units. The TE and
RE show somewhat more modest accuracies, but well above the 1/3
chance level.

5. Discussion

5.1. Accurate reconstruction is costly,
classification is cheap

In the present study, we used a simple spiking network which
had learned to replicate the inputs at the membrane voltage of the
corresponding output units (Brendel et al., 2020). After learning,
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we implemented delay, parallel firing and varied the biophysical
parameters of the system. We were interested in exploring how
cell physiology could affect information transfer and experimenting
with some key information transfer metrics. Our results show
that accurately reconstructing an input signal is a difficult task
for a neuronal system; only a few parameter combinations in
HiFi class reached low RE values. This narrow parameter range
combined with the expensive nature of high-frequency firing makes
signal reconstruction an inefficient way to represent information.
Compared to LIF, the AdEx model reduced firing rates and
information transmission and disconnected the highest information
transmission from the highest firing rates of the system. These
differences may emerge from adaptation or from the exponential
action potential mechanisms. AdEx model did not, however, improve
replication of the input signal in the output units. Despite the poor
reconstruction, Coh and GC indicated some degree of information
transfer throughout most of the dynamic range. Consequently,
even very modest firing rates showed significant classification,
suggesting that classification is a more achievable task for biological
systems. These results have interesting theoretical implications for
biological systems as they place classification as a possible model for
representation.

5.2. Measuring information transfer in
neural systems

We selected RE as one of our performance metrics because it was
used in the reference work (Brendel et al., 2020). It is closely related
to root-mean square (RMS) metric, common in machine learning
applications. The RMS metric, as well as other time-series forecasting
metrics, include timepoint-by-timepoint subtraction of the data
from the prediction (Caruana and Niculescu-Mizil, 2004; Cerqueira
et al., 2017; Makridakis et al., 2018; Lara-Benitez et al., 2021), but
in addition, the RMS metric is considered to be a good general-
purpose metric also for binary classification problems (Caruana
and Niculescu-Mizil, 2004). We show that RE is very sensitive to
delays, reaching random performance in 10 ms with our input signal.
However, in both macaques and humans, visual processing take place
in longer timescales (Salmelin et al., 1994; Bullier, 2001) making RE
a less than an ideal tool to study signal transfer in biological models.
The need to compare computational models and experimental data
makes finding and using alternative methods to analyze information
transfer important.

Since the development of information theory (Shannon, 1948),
various methods have been developed to quantify information
content and information transfer (Amblard and Michel, 2012). The
purpose of using transfer entropy as a measure for information
transfer in our work is to obtain an information-theory-based
measure that reflects the reduction of uncertainty in the output signal
based on observations from the input. Transfer entropy has two
major advantages. Firstly, the result it yields is easily interpretable
and can be compared against clearly defined lower and upper bounds.
Secondly, it is model-independent and does not require assumptions
about the nature of interactions between the input and the output.
As such it can be applied to a simulated neural system that does
not transfer signals in a mathematically prespecified way. On the
downside it does not describe or predict these interactions any further
by suggesting a model–it simply tells if one variable can reduce

entropy from the other. Transfer entropy can be understood as the
decrease in the number of binary questions that one needs to ask
to deduce the state of an output value after observing a single input
value. In this study, transfer entropy shows how much the input can
reduce the uncertainty of the resulting output. Our results show that
transfer entropy is not only highly sensitive to changes in biophysical
parameters, but also tenuous as an information transfer metric if, as
in this work, data is limited to one time point with a time shift.

Granger causality is another widely used method for determining
a predictive relationship between two signals. It measures the
difference in explained variation between two linear time series
models: one that only uses past values of the output itself as a
predictor of its future and one that adds an input signal as a second
predictor. The result it gives is a statistical test on whether this
observed difference is purely random. Granger causality is in a sense
more specific than transfer entropy: it assumes linearity, fits a model,
and estimates how this model is affected by the input data values, not
just their estimated statistical frequencies.

The idea behind Granger causality is nonetheless similar to the
idea behind transfer entropy: it estimates the increase in what we
know about the output based on observations about the input.
Granger causality and transfer entropy are proven to be equivalent
for Gaussian variables, but the equivalence does not show up in
our results. This difference has probably two different origins.
First, Granger causality only corresponds to continuous transfer
entropy, which takes into account the reduction of entropy in the
intermediate steps, whereas transfer entropy needs to be discretized
(Schreiber, 2000). Second, we utilized a high lag for Granger causality;
after lag order selection it captured up to 90 ms of temporal
information. In contrast, the high dimensionality limited transfer
entropy to a single time point. Given the more consistent results
for GC than TE across the unit classes, our results show that GC
captures the signal transmission by a neural system better than
TE, perhaps due to the dominance of low frequencies in such
transmission.

Coherence and Granger causality showed similar topology across
the parameter search landscapes, and both were robust to the change
in output units from Comrade to HiFi class. However, our model
captures most of the available dynamic range of Coh, whereas
only some 10–20% of GC information passes our model. Given
that Coh measures synchronized oscillations, i.e., oscillations with
a constant phase difference across time, our model may not pass
unsynchronized oscillations, and consequently, most of the white
noise input variance could be lost in our simple system. Naturally,
the inability to follow sinusoidal input beyond 30-Hz at the unit-
class starting points limits information from high frequencies and
perhaps affects more GC than Coh. Further study should extend this
finding to understand how much of the dynamic range difference
between GC and Coh emerge from the inability to pass incoherent
signals, does the low-pass envelope follow firing frequency, and
can the incoherent or higher frequency signals perhaps pass a
more natural system with variable unit properties and complex
structural connectivity.

5.3. Implications for biological systems

5.3.1. Energy efficiency
Energy efficiency is an ever-present evolutionary pressure in

all organisms. Firing action potentials is an energy-demanding
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FIGURE 8

Results for AdEx model units. (A) The adaptation in Comrade units lead to low FR (see Figure 1D), a low-fidelity representation of the input (3rd column)
and to a shallow f_I slope. (B) As panel (A) but for Bacon units. (C) 2-dimensional parameter search for gL and resulting coherence, Granger causality,
transfer entropy and reconstruction error values for the Comrade units. (D) Same as panel (C), but for Bacon units. The system cease firing when
excitatory unit gL reach 10.5 nS. (E) A box-plot comparing information transfer quantities and firing rates for LIF and AdEx models for Comrade and
Bacon units. (F) Classification accuracy as a function of firing rate for Comrade (blue) and Bacon (orange) units.

process, as it requires active ion transport to maintain a particular
membrane potential; together with a rather small basal metabolic
rate, action potentials and resulting release and recycling constitute
a hefty energetic cost to gray matter (Attwell and Laughlin, 2001).
At the same time, reliable and accurate signaling is important
for information transfer, creating a need for the brain to encode
information efficiently. Our results with an artificial neural network
show that a temporally sparse code can transmit a gist of the

input signal efficiently and it could also be a mechanism used by
biological neuronal networks. This goes in line with sparse coding
in the visual cortex (Tovee et al., 1993; Vinje and Gallant, 2000).
Our results show that such a sparse code was not enough for the
accurate reconstruction of the input but was highly successful at
selecting a category from a fixed set, i.e., classification. This suggests
that a biological neural network could prefer selection between
categories, rather than accurate reconstruction of sensory inputs.
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FIGURE 9

Illustration of classification with predictive coding theory. (A) Current
model is based on replicating input by a neural network. When output
is similar to incoming signals, the system represents the input and
input can be attenuated. (B) In our refined model, the system first
learns a factorial representation of incoming data, for example, in
distinct neural clusters. Thereafter, classifying the input to correct
neural clusters by a sparse code provides an economical way to
trigger the necessary model factors. Summation over the active neural
population provides the internal representation.

This selection could manifest biologically as neuronal representations
being conveyed as neuronal chains, describing how a series of
signals would travel through the network. Instead of decoding the
spiking response into membrane potential of the output units, as in
our artificial model, decoding would manifest as neuronal chains,
evolving in time.

5.3.2. Information transfer profiles as a
characteristic of neurons

Our results showed that information transfer metrics were
strongly dependent on membrane parameter values. This insight
combined with the fact that in both humans and mice different
neuronal types have different morphological, transcriptomic, and
electrophysiological properties (Hodge et al., 2019), implies that
different cell types may have different information transfer profiles
which depend on instant membrane parameters. Such information
transfer characteristics could be viewed as a phenomenological
characteristic of the cell. Consequently, different characteristics of
information may be better transmitted by different neuronal types.
Fast spiking neurons may have higher fidelity and be better at
accurate representation, while slower spiking neurons may have
a sparser code, and be more efficient at encoding information at
distinct classes. Experimental evidence in favor of such distinction
is sparse, however. Input layers to macaque monkey V1 show

higher firing rates than output layers (Snodderly and Gur, 1995).
Interestingly, these input layers showed less orientation selectivity
than the output layers, which can be interpreted as input signals
being dense representation of orientation whereas the output signals
being able to provide a sparse representation. For inhibitory neuron
types, the PV neurons help synchronize lower frequency oscillations
than SST neurons (Jang et al., 2020), but these finding were linked
primarily to the feedforward (PV) vs. feedback (SST) synchrony
rather than to the fidelity of representation.

Another avenue for generating predictions would be to look at
the types of information processed by different brain subsystems.
Based on our results, one might expect neurons from regions
that need accurate representations, such as the cerebellum, to
have parameter values that favor accuracy and thus present
higher frequencies. At the same time, regions that need more
sparse information, such as the cortex, would present lower
frequencies. These rough predictions match the observations
of Purkinje cells in the cerebellum whose mean tonic firing
rate is 23 Hz, (Fortier et al., 1993), associated with accurate
timing of motor response, compared with pyramidal cells in the
motor cortex (13 Hz), associated more with the initiation of
behavior.

Accurately modeling these combinations of neuronal types is key
for generating predictions that would further validate or disprove our
hypothesis on viewing information transfer as a phenomenological
characteristic of neurons. Thus, further work needs to be done in
looking at how different architectures and combinations of unit
classes impact information transfer.

5.4. Implications for models of neural
systems

Our work extends the findings of Brendel et al. (2020) by showing
that signal transmission is heavily influenced by the biophysical
properties of model units. In biological neurons, membrane
conductance is under complex regulation, and we show that such
regulation affects not only the firing rate but also information
transmission. In our arbitrary system, accurate reconstruction occurs
best under higher firing frequencies. We consider it unlikely that
more complex biological model unit or network could avoid loss of
information with loss of firing rate. Given the critical importance of
energy efficiency in biological brain, a coding scheme surviving also
low firing frequencies could have provided ecological advantage.

Predictive coding theory states that input is reconstructed by a
neural system. The output is then fed back and subtracted from the
input (Rao and Ballard, 1999; Friston, 2010; Clark, 2013). Figure 9A
shows the basic idea of predictive coding: a layer of neurons learns
to replicate the input by iteratively subtracting the network output
from the input, until there is no coding error (we omit the hierarchical
aspect for simplicity).

We suggest a new theoretical model where classification is used as
an efficient way of encoding information (Figure 9B). First, learning
factorizes input patterns to a set of internal models. Thereafter, an
input gets classified into one of a finite number of factors. The
resulting factorial output signal is then fed back to the input layer in a
similar way to the classical model. Our model would complement the
existing models by suggesting an efficient way of decoding a sparse
code. In summary, we suggest an ecologically valid computational
implementation of the currently prevailing predictive coding theory.
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5.5. Future directions

The parameter values studied here are not directly applicable
to biological systems given the artificial network structure and
simple unit model.

In future work, it will be useful to study information transmission
and representation with Hodgkin-Huxley model units and active
conductances in their dendritic compartments. The Hodgkin-
Huxley model would provide significantly better reconstruction
of biological neural membrane, and the active dendrites are
known to be central for integrating synaptic inputs and synaptic
plasticity. Moreover, our network structure is far off from biological
networks and, for example, feedforward inhibition is likely necessary
for fast information transmission. Such work would provide an
approximation of actual biological parameters, necessary for efficient
information processing.

In the current work, learning was executed with the original
model (Brendel et al., 2020) in Matlab whereas the simulations were
implemented in the python-based CxSystem2/Brian2 framework.
Future work needs to examine together the original learning model
and other contemporary plasticity models (such as Clopath et al.,
2010). Such reconciliation would promote teaching biologically
realistic models with arbitrary data and the study of computationally
functioning brain models.
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