
fncom-16-998096 September 1, 2022 Time: 15:7 # 1

TYPE Original Research
PUBLISHED 07 September 2022
DOI 10.3389/fncom.2022.998096

OPEN ACCESS

EDITED BY

Song Deng,
Nanjing University of Posts
and Telecommunications, China

REVIEWED BY

Huyong Yan,
Chongqing Technology and Business
University, China
Jia Chen,
Beihang University, China

*CORRESPONDENCE

Kun-hua Zhong
zhongkunhua@cigit.ac.cn

RECEIVED 19 July 2022
ACCEPTED 18 August 2022
PUBLISHED 07 September 2022

CITATION

Chen Y-w, Zhang J, Wang P, Hu Z-y
and Zhong K-h (2022)
Convolutional-de-convolutional
neural networks for recognition
of surgical workflow.
Front. Comput. Neurosci. 16:998096.
doi: 10.3389/fncom.2022.998096

COPYRIGHT

© 2022 Chen, Zhang, Wang, Hu and
Zhong. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original
author(s) and the copyright owner(s)
are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does
not comply with these terms.

Convolutional-de-convolutional
neural networks for recognition
of surgical workflow
Yu-wen Chen1, Ju Zhang1, Peng Wang2, Zheng-yu Hu1 and
Kun-hua Zhong1*
1Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
Chongqing, China, 2Southwest Hospital, Third Military Medical University, Chongqing, China

Computer-assisted surgery (CAS) has occupied an important position in

modern surgery, further stimulating the progress of methodology and

technology. In recent years, a large number of computer vision-based

methods have been widely used in surgical workflow recognition tasks. For

training the models, a lot of annotated data are necessary. However, the

annotation of surgical data requires expert knowledge and thus becomes

difficult and time-consuming. In this paper, we focus on the problem of

data deficiency and propose a knowledge transfer learning method based

on artificial neural network to compensate a small amount of labeled

training data. To solve this problem, we propose an unsupervised method

for pre-training a Convolutional-De-Convolutional (CDC) neural network for

sequencing surgical workflow frames, which performs neural convolution in

space (for semantic abstraction) and neural de-convolution in time (for frame

level resolution) simultaneously. Specifically, through neural convolution

transfer learning, we only fine-tuned the CDC neural network to classify the

surgical phase. We performed some experiments for validating the model, and

it showed that the proposed model can effectively extract the surgical feature

and determine the surgical phase. The accuracy (Acc), recall, precision (Pres)

of our model reached 91.4, 78.9, and 82.5%, respectively.

KEYWORDS

neural networks, convolutional-de-convolutional, transfer learning, surgical
workflow, deep learning

Introduction

Computer-assisted surgery (CAS) emerged in the twentieth century, which means
that computer technology is used to guide and assist surgeons. The application
(Garg et al., 2005) provides decision-making support and planning tools in the
preoperative. Intraoperative computer assistance includes robotic surgical system
(Dergachyova, 2018), image guidance and navigation (Peters, 2006), augmented reality
and visualization (Kersten-Oertel et al., 2013). Postoperative assistance provides tools to
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analyze executed procedures and results, as well as to improve
and optimize (Schumann et al., 2015). Despite all the advance
and valuable assistance, the seamless integration of computer-
aided equipment with operating room (OR) and surgical
procedures has not yet been achieved. Existing ORs contain
a set of unrelated independent systems and devices, most of
which appear in isolation, disabling proper communication
and interaction (Hübler et al., 2014). Current computer-aided
equipment facilitates a number of individual surgical tasks, but
their lack of synchronization with the surgical process hampers
the work and resource management of the surgical team. It
leads to higher stress levels (Agarwal et al., 2006), frequent
misunderstandings among surgical staffs, resulting in risks and
delays, as well as inefficient surgical groups that incur excessive
costs for hospitals (Macario, 2010).

Context-aware Computer-assisted surgery (CA-CAS) has
powerful artificial intelligence that understands or perceives
the needs of clinicians. It should always be aware of the
events that occur, the actions performed, and the current state
by tracking the surgical procedure and constantly observing
the surgical site. Examples of applications are: optimization
of the surgical procedure (Franke et al., 2013; Guédon
et al., 2016), prediction of the remaining time of surgery
(Bhatia et al., 2007), intraoperative assistance (Nessi et al.,
2015; Fard et al., 2016), automatic generation of surgical
reports (Agarwal et al., 2006). A large number of studies
have focused on IntelliSense intraoperative aids to reduce
the pressure on surgeons and facilitate the surgical process
(Meng et al., 2021; Liu et al., 2022). Automatic recognition of
surgical procedures is an important part of this. Recognizing
surgical procedures is a prerequisite for CAS applications.
The study on this subject began about 10 years ago. Despite
the great progress made, it remains a relatively new area
that inspires scientists and clinicians to inspire. Due to the
lack of automatic recognition, most applications use manual
label of surgical activities, which is a very tedious and time-
consuming process.

Today, artificial intelligence and deep learning technologies
have developed rapidly (Li et al., 2017; Liu et al., 2020; Zhong
et al., 2021; Fan et al., 2022) and have been successfully applied in
many different fields, including image labeling, natural language
modeling, text generation, image labeling, natural language
modeling, text generation, classification (Zheng et al., 2021),
medical care (Zhang et al., 2020, 2021), web service QoS
prediction (Wu et al., 2022), and risk assessment (Deng et al.,
2022). In most cases, their performance is superior to that
of traditional machine learning methods. Comprehensive and
accurate training data have been playing an important role in
machine learning. The quantity and quality of data have become
an important factor. The size of the massive data sets that
serve as a basis for the training of deep learning model, such
as the famous ImageNet (Deng et al., 2009), Microsoft COCO
(Deng et al., 2009), the recently released Google’s OpenImages

(Krasin et al., 2017; Kuznetsova et al., 2020), and YouTube-
8M (Abu-El-Haija et al., 2016; YouTube-8M Dataset, 2018),
is self-evident. They contain millions of samples representing
thousands of categories. Unfortunately, sometimes learning
tasks have to be carried out in an area of interest expressed by
a small group of data, such as the field of surgery. A variety
of constraints hinder proper data collection: Ethical approvals,
the consent of patients and medical personnel, the limited
number of cases, the installation of expensive data acquisition
equipment, and time-consuming manual annotations that
require medical experience. In these cases, the methods of
transfer learning may play a role. To a large extent, transfer
learning involves the use of methods from resources in other
areas of interest, where data may be distributed differently
and located in different feature spaces, thus improving the
learning of the target task. Depth models make it easy to transfer
knowledge of one network to another. Transfer learning is a
knowledge transfer technology that is currently widely used with
convolution neural networks (CNN) for tasks related to visual
content, which benefits from a large number of free datasets. It
is also widely used in speech and language processing (Huang
et al., 2013), document classification (Dai et al., 2007), sentiment
analysis (Glorot et al., 2011), and other sequence analysis tasks.

Therefore, in this paper, we proposed an unsupervised
method for training Convolutional-De-Convolutional
(CDC) networks to sort surgical workflow frames, which
are simultaneously rolled out in space (for semantic
abstraction) and temporal convolution (for frame-level
resolution). It has unique property in modeling the
spatio-temporal interactions between high-level semantics
in space and fine-grained action dynamics in time.
Specifically, the CDC has to extract features related to
understanding the surgical workflow. The knowledge learned
from the task is encoded into the weight matrix of the
internal parameters of the representation layer. Then the
Convolutional-De-Convolution network is fine-tuned to
classify the surgical phase.

The contributions of this paper are summarized as follows:

• We proposed a model that can solve the problem of
annotating data deficiency in medical field by using the
transfer learning method.
• We used a CDC network to recognize the surgical

workflow because of its property of spatio-temporal
interactions in training.
• We try to achieve intelligent detection of surgical video

phase at a low cost. Finally, based on M2CAI 2016
challenge dataset, we performed experiments for validating
the model. It shows a good performance compared
with other methods.

This paper is organized as follows: Section II presents related
work. We summarize methodology and the proposed models
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FIGURE 1

Architecture of the network. *The network is pre-trained and its parameters are fixed.

FIGURE 2

Our task for pretraining a CDC whether is the order of the given
L frames correct? (Answer: The Left is correct).

in section III. In section IV, we present the experiment and
result of our method. In section V, we discuss conclusions and
suggestions for future research.

Related work

The OR’s understanding of surgical activities is a new
field of research. Surgical workflow identification is closely

related to multi-target tracking. Wang et al. (2022) proposed
a General Recurrent Tracking Unit (RTU++), which can be
flexibly plugged into other trackers, to score track proposals by
capturing long-term information. And the experiments showed
the generalization ability of RTU++ trained by simulated
data in various scenarios. Under the specific limitations and
difficulties implied by the surgical environment, only a few
jobs deal directly with the application. Since the problem of
surgical process identification is a multidisciplinary problem, we
have decided to propose different related fields. Surgical phase
recognition is similar to time action recognition. We start with a
brief introduction to literatures on temporal action recognition.
Then, we will focus on the internal approval of the operation.

Temporal action recognition

Gaidon et al. (2011, 2013) introduced temporally action
recognition in untrimmed videos, focusing on limited actions
such as “drinking and smoking” (Calder and Siegel, 2009) and
“opening the door to sit down” (Laptev and Perez, 2007).
Later, researchers worked on building large datasets, including
complex action categories such as THUMOS (Mexaction2,
2013), as well as datasets focused on fine-grained actions
(Sigurdsson et al., 2016a,b) or high-level semantics activities
(Heilbron et al., 2015). Recently, deep learning methods have
shown better performance in localizing action instances. Franke
et al. (2013) presented a temporal action proposal system
based on Long-Short Term Memory (LSTM); Yeung et al.
(2018) provided the MultiTHUMOS dataset of each frame
multi-label annotations, and a LSTM network is defined to
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TABLE 1 List of phases in the dataset.

ID Phase

P0 Trocar placement

P1 Preparation

P2 Calot triangle dissection

P3 Clipping and cutting

P4 Gallbladder dissection

P5 Galbladder packaging

P6 Cleaning and coagulation

P7 Gallbladder retraction

model multiple input and output connections; Shou et al.
(2016) introduced a 3D CNN framework (S-CNN) based
on end-to-end segmentation, which is superior to other
RNN-based methods by capturing spatio-temporal information
simultaneously. However, S-CNN lacks the ability to accurately
predict time resolution and localize the exact time boundary
of an action instance. In Shou et al. (2017), they proposed
a CDC network for precise temporal action localization of
untrimmed video, which provides a new CDC filter that can
simultaneously perform spatial down-sampling (for spatio-
temporal semantic abstraction) and temporal up-sampling (for
precise time positioning). In this paper, we will use the CDC
network structure to recognize the surgical phase by transfer
learning. Details are described in the next section. Yang et al.
(2018) proposed a Frame Segmentation Network (FSN), which
placed a temporal CNN on top of the 2D spatial CNNs, and can
make dense predictions at frame-level for a video clip using both
spatial and temporal context information.

Surgical phase recognition

Mackenzie et al. (2001) were among the first to propose the
creation of a process model. In Mackenzie et al. (2001), it is
based on structured multi-level decomposition that describes
the surgical action performed during surgery. In the same year,
Jannin et al. (2001) also proposed a neural process model based
on Uniform Mark-up Language decomposition. Subsequently,
the concept of surgical workflow was introduced. Neumuth
et al. (2006) proposed the concept of the general methodology
described in the acquisition process from surgical intervention,
clinical and technical analysis, and automatic processing of
workflow schemes can drive a workflow management system as
the future of OR process control. Klank et al. (2008) used the
evolutionary reinforcement learning to classify the laparoscopic
cholecystectomy into 6 stages for the first time, with an Acc rate
of about 50%. Klank et al. (2008) presented a method that based
on Hidden Markov Model (HMM) and dynamic time warping
algorithm (DTW) to perform a dimensionality reduction on
image features by using additional information about tool usage

for recognition of surgical workflow of laparoscopic video, the
Acc of phase detection is 76.8%. Dergachyova et al. (2016)
proposed a machine learning method. Specifically, they firstly
described the input image by extracting the color, shape, and
texture features of the image, and then they used several
AdaBoost cascades for intermediate classification. Finally, a
definite phase label is given by using the hidden semi-Markov
Model. Based on visual features, the Acc of the model is
close to 68%, and the Acc of fusion surgical instruments is
close to 90%.The recent study in Dergachyova et al. (2016)
is a method based on deep learning. The time smoothing
convolution neural network and the classical HMM were
used for phase recognition. The proposed network challenge
is based on the residual network-200 pre-trained ImageNet,
where the last layer is replaced by a new fully connected
output layer, corresponding to 8 possible surgical phases. It
was then fine-tuned on the M2CAI dataset using online data
augmentation. The logarithmic probability output vector of
the network was processed by temporal smoothing, and then
passed to the HMM to correct possible classification errors
for previously recognized frames. Twinanda et al. (2016) also
proposed a method of deep learning based on pre-trained
AlexNet, called PhaseNet, and they replaced the output layer
and fine-tuned it using the M2CAI training dataset. At the
second last layer of the PhaseNet, one-vs.-all linear SVM is
obtained by using the image features extracted by CNN as input.
Based on the Support Vector Machine classifier, the hierarchical
HMM was introduced to reinforce the temporal constraint. The
method was still based on two large datasets of laparoscopic
cholecystectomy (Cholec 80 and EndoVis), which achieves
better performance. The average Acc of offline analysis was
highest, at 92.2% (Cholec80) and 86% (EndoVis), respectively.
Shi et al. (2021) proposed a label-efficient Surgical workflow
recognition method with a two-stage semi-supervised learning,
named as SurgSSL which progressively leverages the inherent
knowledge held in the unlabeled data to a larger extent. The
SurgSSL method surpasses the state-of-the-art semi-supervised
methods by a large margin.

Materials and methods

In this paper, we proposed a model for recognizing surgical
workflow, as shown in Figure 1. Specifically, the top is an
unsupervised time sorting task based on the CDC network, and
the bottom is based on the top of the transfer supervised surgical
phase classification task. The weights of the layers marked with
a star can be passed. The first row shows the shape of the output
data of each layer. First, the surgical video clip is fed into 3D
ConvNets, and the temporal length is reduced from L to L/8.
CDC6 has kernel size (4, 4, 4), Stride (2, 1, 1), padding (1, 0, 0), so
the height and width are reduced to 1, while the temporal length
increases from L/8 to L/4. CDC7 and CDC8 kernel size (4 1 1),
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FIGURE 3

Phase distribution (training data at 1 fps).

Step (2, 1, 1), padding (1, 0, 0), so CDC7 and CDC8 further
perform up-sampling in time by a factor of 2, so the temporal
length is back to L in the unsupervised temporal sorting task,
sigmoid layer is added on top of CDC8 to determine whether
is correct for the order of the given L frames. In the transfer
supervised classification task, a frame-wise softmax layer is
added on top of CDC8 to obtain confidence scores for every
frame. Each channel stands for one class, obtaining confidence
scores for every frame.

Unsupervised spatio-temporal context
learning

In this section, we describe how to train the CDC network
using unmarked video. We do this by addressing a task
that requires the CDC to sort L given frames in the correct
temporal order. For this, a large dataset from multiple surgical
intervention is used. We assume that solving such a task requires
CDC to learn to extract visual cues that describe the temporal
flow of the surgical workflow.

The CDC (Shou et al., 2017) network is based on 3D
convolution C3D network, which simultaneously carries out
spatial convolution (for semantic abstraction) and temporal
convolution (for frame-level resolution). It has a unique
property in the spatio-temporal interactions between joint
modeling and summarizing. The CDC network uses from
conv1a to conv5b as the first part of the C3D network. For
the remaining layers in the C3D, CDC keeps pool5 to perform
max pooling in height and width by a factor of 2 but keeps
the temporal length. The CDC sets the height and width of the
network input as 112× 112. Given an input video segment with
a temporal length L, the output data shape of the pool5 is (512,
L/8, 4, 4). To maintain the original temporal resolution (frame
level), the CDC makes up-sampling in time (back to L from

FIGURE 4

Sampling data at all phases and transitional moment.

FIGURE 5

Examples of negative and positive transitional delays and
transitional moment.

L/8) and down-sampling in space (from 4 × 4 to 1 × 1). More
information is described in Shou et al. (2017).

Our CDC training tasks are shown in Figure 2: Given the
same surgical video input for a video clip of temporal length
L, what is the most relative order of L frames? That is, is the
order of the given L frames correct? We uniformly sample L
random frames from the video of the surgical intervention at
the moment of transfer and enter them into our CDC. The
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TABLE 2 ATD, TRR metrics for phase recognition.

Methods ATD TRR

Ours [−15 s; 30 s] 6.0

Twinanda [−23 s; 54 s] 3.8

Dergachyova [−45 s; 70 s] 2.7

transfer moment is shown in Figure 1. The CDC must calculate
the relative order of L frames in the original video. That is,
determines whether the given L frame is in the correct order?
That is, in the last layer of the network, we have two categories
of L frames, the correct order is positive, otherwise it is negative.
We assume that solving this task requires the CDC to extract
visual cues related to the surgical process in order to understand
the temporal flow of surgical intervention. At the same time, the
learning of temporal information is carried out in this process.

The total loss is defined as:

L = −
∑

i labeli∗log
(
probi

)
+
(
1−probi

)
∗log

(
1−probi

)
(1)

where labeli is the ground truth for i-th segment, probi is
predictions for i-th segment.

When an unsupervised dataset is generated, data generation
is primarily performed randomly at the time of conversion.
Each phase is randomly sampled according to the ratio column,
and the main sampling point is the transfer point. The specific
sampling is related to the experimental dataset.

Knowledge transfer for recognition of
surgical phase

The phase sequence indicating a surgical process
encodes some form of abstract knowledge about a
given procedure. The knowledge can be extracted and
utilized to improve various operations on surgical process
data, including analysis, recognition and prediction.
It is particularly assumed that the knowledge gained
from one procedure can improve the prediction of the
surgical phase of another procedure. The knowledge
involved may include dependencies between phases in a
sequence, relationships between elements in an activity,
and connections between individual elements of different
activities. In view of the difficulty of formalizing the
concealment of knowledge, the CDC network can extract
features from time and space at the same time, so the
CDC network is chosen as a method to extract and
transfer knowledge.

Deep neural networks have an interesting property
that enables networks to store extracted information in a
distributed hierarchical manner. It means that the basic
information that is more common for many areas stored
separately from the features that describe the characteristics

of a particular domain. It also means that this information
can be shared with other learning goal (e.g., other training
task or area). In the deep model, the knowledge learned
from the data is encoded into the weight matrix of the
internal parameters of the representation layer. In order
to establish the value of internal parameters, the domain
containing a large number of training samples is first
trained. Then, depending on the quantity and quality of
data in the actual target domain, there are three transfer
options. First, if the new data is close enough to the data
used for training, and the task has not changed, we can
use the same training model directly for the new data.
The second option is to use the weights (in whole or in
part) of the training model as the initialization of the
new model. This applies where a reasonable amount of
new data is available for training use. The third option,
called fine-tuning, is typically used when the new domain
contains only a small number of examples. It includes
importing the trained weight matrix into the new model,
but “freezes” some layers that usually contain more basic
features during training. The weight setting of pre-training
on other data is usually more optimized than random
initialization. The network can benefit from what has
been learned, thus, we should focus its “attention” on the
specific characteristics of the new data. This section is
based on the CDC time sorting network for knowledge
transfer learning. Modify the final output layer of the CDC
network to be L and classify each surgical step. In the
transfer supervision classification task, the Softmax output
is the vector of the K-value. Note that for the i-th class:

pi
n [t] = eo(i)

n [t]∑k
j = 1 eo(i)

n [t]
(2)

The total loss L is defined as:

L = 1
N

N∑
n = 1

L∑
t = 1

(
−log

(
P(zn)

n [t]
))

(3)

Where zn is the ground truth class label for the n-th segment.

Experiment and result

Dataset and data sampling

The experiment in this paper is based on the
M2CAI16-workflow dataset, which is available from
http://camma.u-strasbg.fr/m2cai2016/. It contains videos
of 41 cholecystectomy processes from the University
Hospital of Strasbourg/IRCAD (Strasbourg, France)
and Klinikum Rechts der Isar Hospital (Munich,
Germany). The datasets are divided into two parts:
the training subset (containing 27 videos) and the
testing subset (14 videos). The videos are recorded
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TABLE 3 Time delay standard scores metrics for phase recognition.

Methods Scores d = 30 s d = 60 s

Acc Rec Pres Acc Rec Pres Acc Rec Pres

Ours 89.2 76.5 78.3 90.6 77.8 80.9 91.4 78.9 82.5

Twinanda 75.2 64.6 69.0 80.5 70.6 77.8 82.9 74.9 79.5

Dergachyova 68.6 60.9 64.1 72.1 65.3 66.2 76.6 71.4 78.1

Bold values indicate the optimal result in the algorithm comparison.

at 25 fps. All the frames are fully annotated with 8
defined phases: (1) trocarplacement, (2) preparation,
(3) calot triangle dissection, (4) clipping and cutting,
(5) gallbladder dissection, (6) galbladder packaging, (7)
cleaning and coagulation, and (8) gallbladder retraction.
The list of phases in the dataset is shown in Table 1.
The distribution of the phases in dataset is shown in
Figure 3.

In the case of a frame rate of 1, a total of 1.3 million
frames are available. Depending on the distribution of the
surgical phase, we randomly collected 250,000 surgical
video clips from different surgical phases, 500,000 surgical
video clips for the transition period, and 750,000 surgical
video clips for unsupervised temporal learning. The
sampling data for each stage and transition time is shown
in Figure 4.

Comparison algorithms

We compared our method with several state-of-the-
art method. Dergachyova et al. (2016) and Twinanda
et al. (2016) are two of the methods submitted to
the M2CAI 2016 challenge. CNN-biLSTM-CRF (Yu
et al., 2019) is a semi-supervised method with 12
labeled vides and 15 unlabeled videos. The cnn-
lstm-net and spatial-net are temporal and spatial
models depicted in Chen et al. (2018). In the CAE
method (Qi et al., 2020), a convolutional auto-encoder
network is trained first, and then surgical process
segmentation is performed.

Metrics and result

As described in other literatures (Chen et al., 2018;
Qi et al., 2020; Shi et al., 2021), the metrics includes
standard accuracy (Acc), recall rate (Rec), precision (Pres),
average conversion delay (ATD), and real transition ratio
(TRR). Some applications do not require a frame-by-phase
identification. They may tolerate a certain time delay, but
have no fundamental impact on the assistance provided.
We introduced the concept of a transition window that

TABLE 4 Comparison results with no time delay.

Methods Rec Pres

Dergachyova 60.9 64.1

Twinanda 64.6 69.0

CNN-biLSTM-CRF 69.9 74.5

Cnn-lstm-net 72.2 60.8

Spatial-net 72.9 73.4

CAE 68.3 72.7

Ours 76.5 78.3

Bold values indicate the optimal result in the algorithm comparison.

a time interval centered on a real transitional moment,
at both ends, authorizing an acceptable delay d. If the
time moment being checked is in the transition window
and occurs because of a delay, it is considered true.
In this experiment, we set up different delay time d
to calculate the Acc, Rec, and Pres of the model. We
called it a time delay standard score. ATD measures the
latency generated during all conversions of all available
interventions in order to make an average estimate of
the delay (see Figure 5). The negative and positive delays
are measured separately and used to define the range of
values for the average transition delay. A negative delay
indicates that the transition between phases is detected
in a delayed manner with regards to the ground truth.
Conversely, positive delay means that the system decides
to switch phases prematurely before the actual transition,
details in Dergachyova (2018). The TRR Metric calculates
the actual TRR detected between numbers. It is an indicator
of system stability and reflects the robustness of the system,
as systems with high TRR may have a lower tolerance for
intrinsic changes in input data. This ratio also provides a
simple and intuitive idea of how many incorrect transfer
moments are detected with the number and actual number of
transitional moments that they actually detect (see Equation 4).

TRR =
s
′

s
(4)

where the s is the real transfer moment, the s’ is transfer moment
detected by the model.
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Based on the data collected randomly, we first carry
out unsupervised temporal task learning, pre-training, and
then use the transfer learning method to carry out phase
supervision classification. The corresponding results are shown
in Tables 2, 3.

As can be seen from the results in Table 2, our
approach has the shortest transition delay [−15s; 30s].
As can be seen from the results in Table 3, the standard
Acc, Rec, and Pres of our model reach 89.2, 76.5, and
78.3%, respectively. Based on these results, this is why
our model improves Acc less than other usage time
delay standard scores. Our approach is more suitable
for applications that require rapid system response.
However, it makes too many incorrect conversions
between phases (6 times more than it should be). On the
other hand, the Dergachyova method provides greater
delays recognition, but less incorrect phase change
peaks (TRR = 2.7). Compared with our method, its
recognition is more consistent. The Twinanda method
also has a lower TRR. This shows that our model
is more suitable for online use, while the Twinanda
method and the Dergachyova method are suitable for
offline use. The results in Table 3 show how to use
the delay transition window to improve performance
scores. This helps to make a clearer estimate of how
close these methods are actually to clinical applications
in specific applications. From the above analysis, it is
also important that we do not use a single indicator to
distinguish and objectively compare these surgical phases
of the identification model. In Table 4, the experimental
results of Rec and Pres with no time delay are compared.
The results show that our method outperform the
comparison methods.

Conclusion

The automatic recognition of the current surgical
phase can provide the correct computer assistance at the
right time, which is the basis of realizing the context-
aware OR system. However, the lack of clinical data
in this area is a well-known problem. This creates
obstacles to the recognition and analysis of surgical
workflow tasks that require significant amounts of data.
In this paper, an unsupervised CDC network method
is proposed, which simultaneously carries out spatial
convolution (for semantic abstraction) and temporal
convolution (for visual resolution) of surgical workflow
frame sequences. Then through the transfer learning, the
CDC network is fine-tuned to classify the operative stage.
Based on M2CAI 2016 challenge dataset, experiments
and comparisons have been made, and good results have
been obtained. The transparency is a very important

attribute of the medical system. In this paper, we use
a deep learning method has been criticized for the
nature of its learning process that is poorly understood.
This can cause distrust among doctors. In the future
work, we want to visualize the learning processes of
deep networks in order to understand exactly what
they have learned.
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