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This study describes the construction of a new algorithm where image

processing along with the two-step quasi-Newton methods is used in

biomedical image analysis. It is a well-known fact that medical informatics is

an essential component in the perspective of health care. Image processing

and imaging technology are the recent advances in medical informatics,

which include image content representation, image interpretation, and image

acquisition, and focus on image information in the medical field. For this

purpose, an algorithm was developed based on the image processing method

that uses principle component analysis to find the image value of a particular

test function and then direct the function toward its best method for

evaluation. To validate the proposed algorithm, two functions, namely, the

modified trigonometric and rosenbrock functions, are tested on variable space.

KEYWORDS

quasi-Newtonmethod,multi-step quasi-Newtonmethod,medical informatics, image

processing, covariance matrix, eigenvalues

1. Introduction

Imaging informatics plays a significant role in medical and engineering fields. In

the diagnostic application software, during the segmentation procedure, different tools

are used to interact with a visualized image and a graphical user interface (GUI) is

used to parameterize the algorithms and for the visualization of multi-modal images

and segmentation results in 2D and 3D. Hence, different toolkits, such as Medical

Interaction Toolkit (Wolf et al., 2005) or the MevisLab (Ritter et al., 2011), are used to

build appropriate GUIs, yielding an interface to integrate new algorithms from science

to application. To produce better results, we used different sensors to generate a perfect

image for denoising the tasks, thus focusing on massive denoising, as sometimes it
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is difficult for humans and computers to recognize the image.

Furthermore, different filters (Wang, 2018) are used to get

better denoising. The commonly used mathematical method

for this purpose is the quasi-Newton method, which is

preferred due to its better performance than other classical

methods. Schröter and Sauer (2010) investigated quasi-Newton

algorithms for medical image registration. Mannel and Rund

(2021) implemented a hybrid semi-smooth quasi-Newton

method for the non-smooth optimal control problems and

proved its efficiency. Recently, Moghrabi et al. (2022) derived

self-scaled quasi-Newton methods and proved their efficiency

over the non-scaled version. Among the quasi-Newtonmethods,

Broyden-Fletcher-Goldfarb-Shanno (BFGS) is a widely used

method due to its better performance. Hence, this motivated the

researchers to further develop these methods, one such method

is the two-step quasi-Newton method.

The two-step quasi-Newton methods are considered to

minimize unconstrained optimization problems.

minimizef (x), where f :Rn → R. (1)

The multi-step quasi-Newton methods, which were introduced

by Ford and Moghrabi (1994, 1993), obtained the best results

over the single-step quasi-Newton method. In the single-step

quasi-Newton method, updation of Hessian approximation

(Bi+1) is required to satisfy the secant equation

Bi+1si = yi, (2)

where si is the step size in the variable space xi

si = xi+1 − xi, (3)

and yi is the step size in gradient space g(xi), such as

yi = g(xi+1) − g(xi). (4)

The quasi-Newton equation must satisfy the true HessianMi+1

of Newton equation which is defined as follows:

M(xi+1)
dx(τ∗)

dτ
=

dg(x(τ∗))

dτ
(5)

In the case of the two-step quasi-Newton methods, the secant

equation (2) is replaced by

Bi+1(si − αisi−1) = yi − αiyi−1, (6)

or

Bi+1ri = wi, (7)

which is derived by interpolating the quadratic curve x(τ ) in

variable space and g(τ ) in gradient space

x(τk) = xi−m+k+1, for k = 0, 1, 2. (8)

g(x(τk)) = g(xi−m+k+1), for k = 0, 1, 2. (9)

for the purpose of interpolating the Lagrange polynomial that is

found suitable in Jaffar and Aamir (2020). Therefore,

x(τ ) =

2
∑

k=0

Lk(τ )xi+k−1, (10)

g(x(τ )) ≈

2
∑

k=0

Lk(τ )g(xi+k−1), (11)

the derivatives of Equations (10) and (11) are defined as

dx(τ2)

dτ
≡ ri (12)

dgx(τ2)

dτ
≡ wi, and (13)

the above relations obtained are substituted in Equation (14),

which is a two-step form of Equation (5)

M(xi+1)
dx(τ2)

dτ
=

dg(x(τ2))

dτ
(14)

The new secant condition for the two-step quasi-Newton

method is obtained in the form of Equation (6/7), which should

be satisfied by the updated Hessian approximation Bi+1. The

value of αi in Equation (6) is given by

αi =
δ2

(2δ + 1)
, (15)

where

δ =
(τ2 − τ1)

(τ1 − τ0)
. (16)

Hence, the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula

for the two-step method is defined as

Bi+1 = Bi +
Birir

T
i Bi

rTi Biri
+

wiw
T
i

rTi wi

(17)

The standard Lagrange polynomial Lk depends on the values of

{τk}
m
k=0

and is defined as

Lk(τ ) ≡

m
∏

j=0,j 6=k

τ − τj

τk − τj
. (18)

The parametric values τk, for k= 0, 1, 2....,m, used in the

computation of vectors, ri and wi, are found by the metric of

the form

φN (z1, z2) = ((z1 − z2)
TN(z1 − z2))

1
2 . (19)
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The matrix N is a positive definite matrix, and three choices are

given for N as I, Bi, and Bi+1 on variable space and z1, z2 ǫ

Rn.

This metric between different iterates in the current

interpolation is measured by fixed-point and accumulative

approaches (Ford and Moghrabi, 1994). In this study, an

accumulative approach is used for finding the parametric values.

• Accumulative Methods

These methods accumulate the distance between the

consecutive iterates in their natural sequence. The latest iterate

xi+1, corresponding to the value τm of τ , is considered as the

origin or base point, and the other values of τ are calculated

by accumulating the distance between the consecutive pairs.

Therefore, we have

τm = 0, (20)

τk = τk+1−φN (xi−m+k+2, xi−m+k+1), for k = 0, 1, ....m−1.

(21)

In the two-step method, the accumulative type is determined as

A1, A2, and A3, and the parametric values are found with the

help of Equation (21) for k=0,1, where the base point will be

τ2 = 0 for m=2 from Equation (20).

• Algorithm A1

The identity matrix I is taken as matrix N in this algorithm.

τ1 = τ2 − φI(xi−2+1+2, xi−2+1+1),

= −φI(xi+1, xi) = −‖si‖2, (22)

τ0 = τ1 − φI(xi, xi−1),

= −‖si‖2 − ‖si−1‖2. (23)

• Algorithm A2

In this algorithm, matrix N is taken as the current Hessian

approximation Bi.

τ1 = τ2 − φBi (xi+1, xi),

⇒ τ1 =

√

sTi Bisi, (24)

The above equation involves a matrix vector product which is

computationally expensive. For instance, with the help of search

direction, we can easily compute the parameters of the same

situation as

pi = −B−1
i g(xi), (25)

since

xi+1 = xi + tipi

= xi − tiB
−1
i g(xi) for ti > 0,

xi+1 − xi = −tiB
−1
i g(xi),

si = −tiB
−1
i g(xi),

⇒ Bisi = −tig(xi), (26)

By substituting Equation (26) in Equation (24), we get

τ1 = −

√

tis
T
i g(xi), (27)

The above expression is easy to calculate but the expression

sTi−1Bisi−1 in τ0 is very difficult to compute in every iteration.

Therefore, to lessen the computational cost, Ford and Moghrabi

(1994) claimed that, in multi-step methods, when the quasi-

Newton equation in Equation (2) is not satisfied, then we can

consider that it satisfies approximately by replacing i+1 with

i in Equation (2), where Bi is an approximation of matrix N.

Therefore, we obtain

Bisi−1 ≈ yi−1 (28)

τ0 = τ1 − φBi (xi, xi−1), and

using Equation (28), we have

τ0 =

√

−tis
T
i g(xi)−

√

sTi−1yi−1.

• Algorithm A3

In this algorithm, the choice of matrix N is Bi+1, which is the

Hessian approximation at xi+1.

τ1 = τ2 − φBi+1 (xi+1, xi),

τ1 = −

√

sTi yi, (29)

τ0 = τ1 − φBi+1 (xi, xi−1),

τ0 ≈ −

√

sTi yi −

√

sTi yi−1, (30)

Since τ1 and τ0 are expensive to compute, Equation (2) is

used.

Aamir and Ford (2021) investigated the multi-step skipping

technique in which one-step and two-step skipping strategies

were experimented and produced better results than those

without skipping strategy. The authors also modified the search

direction, which was implemented with/without the skipping

technique to achieve good performance in minimum time

duration. We experimented two test functions of different

dimensions by the two-step quasi-Newton methods with

different techniques, i.e., one-step skipping with no modified

search direction and one-step skipping with modified search

direction on variable space with a high rate of computational
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TABLE 1 Notation of methods with di�erent techniques.

Notation Discription

[1]
[0]A

(2)
n Accumulative two-step method with one update skipped

and no modified search direction

[1]
[1]A

(2)
n Accumulative two-step method with one update skipped

and modified search direction

where n=1,2,3 corresponds to matrices I,Bi,Bi+1

respectively on variable space

effort. Therefore, to lessen the computational burden and

increase efficiency, an algorithm was developed to execute a

particular function by using the best method only. Section

2 discusses the two-step quasi-Newton method with different

techniques in detail. Section 3 proposes a self-decisive algorithm

which is developed based on image processing method to find

the image values of different test functions. Section 4 discusses

the experimental setup of the proposed strategy. Section 5

analyzes the numerical results of one function, which can help

the algorithm to execute a particular function by the best method

only. In the last section, the conclusion is drawn based on

different numerical simulations.

2. Two-step quasi-Newton methods
with di�erent techniques

Different techniques in two-step methods, such as the one-

step skipping technique with no modified search direction and

the one-step skipping technique with modified search direction,

are implemented on the selected test functions for the purpose

of minimization. These functions are examined by function

evaluation, the number of iterations, and time in seconds. The

notation of different methods on different techniques is given in

Table 1.

2.1. Skipping technique

In quasi-Newton methods, updation of Inverse Hessian

approximation Hi to Hi+1 is a very expensive procedure under

certain circumstances. Tamara et al. (1998) introduced the idea

of skipping updates for certain steps to lessen the burden of

computational cost. They investigated the question of “how

much and which information can be dropped in BFGS and

other quasi-Newtonmethods without destroying the property of

quadratic termination” and called this procedure “backing up.”

They used this idea in the algorithm if the step length is 1.0 or

the current iteration is odd.

Aamir and Ford (2021) investigated the skipping technique

in single step and multi-step methods. The experimental results

of comparison between the skipping and non-skipping methods

revealed that skipping algorithms outperformed non-skipping

algorithms.

• Algorithm of the Multi-step Skipping Method

The general algorithm of the skipping technique is as

follows:

1. Select an initial approximation x0 andH0 and set i=1

2. For j=1: m (where m is the number of steps to be skipped)

• Calculate a search direction pi+j−2 = −Hi−1gi+j−2.

• Find t by giving ti+j−2 for executing line search xi+j−2 +

tpi+j−2.

• Calculate new approximation xj = xj + tjpj.

End for

3. By the use of different methods, update Hi+j−2 to give

Hi+m−1.

4. If ‖gi‖ ≤ ǫ, then stop, else i:=i+m and go to step 2. End if.

• Application of the skipping technique on the two-step

method

Now that we are at xi+1, the matrix is updated by

Bi−1, si, si−1, yi, and yi−1, using the following steps:

1. Using the above terms, compute τk and then find δ.

2. By the use of all the above values, through which we find ri

and wi, we have

ri = si −
δ2

(2δ + 1)
si−1, (31)

wi = yi −
δ2

(2δ + 1)
yi−1, (32)

3. The Hessian approximation is updated by using all the above

values.

Bi+1 = BFGS(Bi−1, ri,wi). (33)

Now we compute τk and/or δ under different methods.

2.2. The two-step method with skipping
and modified search directions

Here, we explained the derivation of the modified

search direction. The following notations are used

during the derivation of modified search direction in the

skipping technique.

Ĥi represents that the matrix is never computed.

p̃i represents modified search direction.

Now, let us consider that the single-step BFGS updated the

matrixHi−1. The search direction pi−1 is defined as

pi−1 = −Hi−1gi−1. (34)
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By using the skipping technique, the next search direction is

pi = −Hi−1gi. (35)

With the help of Ĥi, we can find the modified search direction

p̃i. We define

Ĥi = BFGS(Hi−1, si−1, yi−1)

= Hi−1+λi−1si−1s
T
i−1−αi−1(Hi−1yi−1s

T
i−1+si−1y

T
i−1Hi−1),

(36)

where

λi−1 = (1 +
yTi−1Hi−1yi−1

sTi−1yi−1

)
1

sTi−1yi−1

αi−1 =
1

sTi−1yi−1

Now, the modified search direction is

p̃i = −Ĥigi

= Hi−1gi + λi−1si−1[s
T
i−1gi]

+αi−1(Hi−1yi−1[s
T
i−1gi] + si−1[y

T
i−1Hi−1gi]),

and by Equation (35), we get

= pi + λi−1[s
T
i−1gi]si−1 + αi−1([s

T
i−1gi]Hi−1yi−1

+[yTi−1pi]si−1), (37)

From the above equation, it can be observed that Hi−1yi−1

and λi−1 cannot be easily computable due to the matrix vector

product than other terms. However, with the help of Equation

(34) and Equation (35), the expressionHi−1yi−1 can be defined

as

Hi−1yi−1 = Hi−1(gi − gi−1)

= −pi + pi−1 (38)

Therefore, using the above equation in Equation (37),

modified search direction can be calculated efficiently without

explicitly computing Ĥi.

• Algorithm of the Multi-step Skipping Quasi-Newton

method with Modified Search Direction

The general algorithm is given as follows:

1. Select x0 andH0 as an initial approximation; set i=1

2. For j=1:m, where m is the number of steps,

3. Calculate pi+k−2 = −Hi−1gi+k−2.

4. Calculate modified search direction

p̃i+k−2 = −Ĥi+j−2gi+k−2.

5. Do the line search along xi+j−2+ tpi+j−2 and also providing

a value of ti+j−2 for t.

6. Calculate new approximation xj = xj + tjp̃i.

End

7. UpdateHi−1 to produceHi+m−1 by using different methods

discussed in previous sections.

8. Check for convergence, if it is not converged, then i=i+1 and

go to step no: 2.

3. Image processing

In the viewpoint of image processing “an image is an array

or matrix of numeric values called pixels (Picture Element)

arranged in columns and rows”. In mathematics an image is

defined as “a graph of a spatial function” or “it is a two-

dimensional function f(x,y), where x and y are the spatial (plane)

coordinates, and the amplitude at any pair of coordinates (x,y)

is called the intensity of the image at that level.” If x,y and

the amplitude values of f are finite and discrete quantities, we

call the image a digital image. A digital image is composed

of a finite number of pixels, each of which has a particular

location and value. Image processing is a process in which

different mathematical operations are performed subject to

application on the image to get improved or to extract significant

information from the image for subsequent processing. When

this process is applied to digital images is called digital image

processing.

Digital image processing has a wide scope for researchers

to work on various areas of science (such as, a agriculture,

biomedical, and engineering). Previous studies showed that

researchers applied and investigated different techniques

of image processing for analysis and problem solving,

such as detection and measurement of paddy leaf disease

symptoms using image processing (Narmadha and Arulvadivu,

2017), breast cancer detection using image processing

techniques (Christian et al., 2000), a novel outlier detection

method for monitoring data in dam engineering (Shao

et al., 2022), and counterfeit electronics detection using

image processing and machine learning (Navid et al.,

2017).

3.1. Proposed strategy

In the proposed strategy, the algorithm is developed by

which the image values of different images I(x, y) of test

functions are obtained by statistical technique, and the desired

objective is achieved. In the first step, the images of different test

functions are obtained with a resolution of 600 × 600 pixels. In

the second step, the window of a sizeW×W is generated around

each pixel of the image I(x, y), where the suggested size of the

generated window is 3 × 3 and this window is treated as matrix
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S. The rows of the matrix S are considered as observations,

and columns are considered as variables. Figure 1 shows the

schematic diagram of the matrix S generation.

In the third step, covariance matrix C(x,y) of matrix S is

computed with the help of the following equation:

C(x,y) =
1

W − 1
[StS] (39)

In the fourth step, eigenvalues of the covariance matrix are

calculated. The sum of the eigenvalues is directly proportional

to edge strength, which is calculated as follows:

EdgeStrength =

W
∑

k=1

eigenkofC
(x,y)
h

(40)

The third and fourth steps are done twice, the first time for the

horizontal edge strength and the second time for the vertical

edge strength calculation. Therefore, Equations (39) and (40)

are used for calculating horizontal and vertical edge strength

generation as follows:

C
(x,y)
h

=
1

W − 1
[StS] (41)

C
(x,y)
v =

1

W − 1
[StS] (42)

EdgeStrengthh =

W
∑

k=1

eigenkofC
(x,y)
h

(43)

EdgeStrengthv =

W
∑

k=1

eigenkofC
(x,y)
v (44)

The sum of horizontal and vertical edge strength gives the value

of a pixel of I(x, y). Hence, the value of each pixel of an image is

calculated as

V(x, y) = (EdgeStrengthh)+ (EdgeStrengthv), and (45)

the sum of all pixel values gives the value of an image I(x, y)

defined as

V(I) =

n
∑

i=1

V(x, y) (46)

4. Experimental setup and results

Two test functions were selected from literature and were

executed by using different techniques of the two-step quasi-

Newton methods on variable space. The execution of test

functions by every technique was computationally expensive.

Therefore, an algorithm is required to enable the researchers to

execute a particular function by the best method only to reduce

computational cost.

Hence, our objective is to develop such an algorithm

that can compute the image value of every input image of

the test function and forward each function to the method

by which it outperformed. The algorithm works in the

following steps:

1. Obtain the images of each test function.

2. Compute the image value of each image.

3. Classify test functions by their image values.

4. Forward the particular function toward the best method.

4.1. Test functions

To check the performance of different techniques used in

two-step methods, we considered two test functions of different

dimensions with four different starting points and epsilon value

from the literature (Hillstrom et al., 1981), which are reported

in Tables 2, 3. These test functions are categorized into three

classes, namely soft, medium, and hard.

1. Soft: (2 ≤ n ≤ 20);

2. Medium: (20 ≤ n ≤ 60);

3. Hard: (61 ≤ n ≤ 150);

4. Combined: (2 ≤ n ≤ 150).

The equations of both test functions are mentioned below

by which 600 × 600 resolution images (displayed in Figure 2)

are generated to calculate the image value of each function (as

reported in Table 4) and which are programmed successfully in

the self-decisive algorithm.

1. Extended Rosenbrock function:

f (x) =

n/2
∑

i=1

[

100(x2i − x22i−1)
2 + (1− x2i−1)

2]

2. Modified Trigonometric function:

f (x) = n2 −

n
∑

i=1

[

cos(xi)+ i(1− cosxi)− sin(xi)+ exi − 1]2
]

4.2. Self decisive algorithm

An outline of the self decisive algorithm can be defined as

follows:

Step 0: Obtain image I(x, y) to generate window/matrix S.

Step 1: Compute covariance matrix C(x,y) = 1
W−1 [S

tS].

Step 2: Find eigenvalues of C(x,y).

Step 3: Calculate the value of each pixel V(x, y)= (strength h)+

(strength v).

Step 4: Compute the value of each image V(I) =
∑n

i=1 V(x, y).
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FIGURE 1

Generated window denoted as matrix S.

TABLE 2 Test problem and dimensions in di�erent test sets.

Starting points

Function Name and dimension [a] [b] [c] [d]

Rosenbrock Soft

(2) e = 10−7 (-1.2, 1.0) (-120, 100) (20, -20) (6.39, -0.221)

(20) e = 10−7 ([-1.2, 1.0]) (1, 2,....,20) ([6.39, -0.221]) (-1, -1, -1, -1, -1, 1,....1)

Medium

(26) e = 10−7 ([-1.2, 1.0]) ([F]) ([20]) ([6.39, -0.221])

(40) e = 10−7 ([-1.2, 1]) ([-120, 100]) ([1, -2, 3, -4,...., -10]) ([20])

(60) e = 10−7 ([-1.2, 1]) ([F]) ([F]) ([6.39, -0.221])

Hard

(80) e= 10−7 ([-1.2, -1.0]) ([F]) ([F]) ([F])

(100) e=10−7 ([-1.2, -1]) ([F]) ([F])*([F])

(120) e=10−7 ([-1.2, -1]) ([20]) [F] ([6.39, -0.221])
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TABLE 3 Test problem and dimensions in di�erent test sets.

Starting points

Function name and dimension [a] [b] [c] [d]

Modified Trigonometric Soft

(16) e = 10−7 ([–2, –1, 1, 2]) ([–2, 1.5,.., –1.5, 2]) ([0.1, 1, –0.1, –1]) ([2.5, 2, 1.5, 1, 0.5], 2.5)

Medium

(32) e = 10−7 ([–2, –1, 1, 2] ([–2, 1.5,.., –1.5, 2 ] ([0.1, 1, –0.1, 1] ([2.5, 2,..,0.5], 2.5, 2)

(64) e = 10−6 ([–2, –1, 1, 2]) ([–2, 1.5,..., –1.5, 2]) ([0.1, 1, –0.1, 1]) ([2.5, 2,.. 0.5], 2.5,.., 1)

Hard

(95) e= 10−5 ([–2, –1, 1, 2],–2, –1, 1) ([–2, 1.5,.., 2]) ([0.1, 1.0, –0.1, 1.0]) ([2.5, 2.0, 1.5, 1.0, 0.5])

(128) e= 10−6 ([–2, –1, 1, 2], –2, –1, 1) ([–2, 1.5,.., –1.5, 2]) ([0.1, 1, –0.1, 1]) ([2.5, 2, 1.5, 1, 0.5], 2.5, 2, 1.5)

(150) e= 10−5 ([–2, –1, 1, 2], –2, –1) ([–2, 1.5, ..., 2], –2,..., –0.5, 1) ([0.1, 1, –0.1, 1], 0.1, 1) ([2.5, 2.0, 1.5, 1.0, 0.5])

FIGURE 2

Images of test functions. (A) I1; (B) I2.

TABLE 4 Image values of test functions.

Image Test functions Value

I1 Extended rosenbrock 0.1009

I2 Modified trigonometric 0.1004

TABLE 5 Results of rosenbrock function of all dimension problems in

a two-step method of the first technique.

Method Function

Eval

Iteration Time in sec Failure Dimension

[1]
[0]A

(2)
1 60 43 0.0243 0

[1]
[0]A

(2)
2 62 45 0.0309 0 Soft

[1]
[0]A

(2)
3 62 45 0.0205 0

[1]
[0]A

(2)
1 65 46 0.0180 0

[1]
[0]A

(2)
2 44 46 0.0256 0 Medium

[1]
[0]A

(2)
3 65 44 0.0453 0

[1]
[0]A

(2)
1 65 46 0.0307 0

[1]
[0]A

(2)
2 65 44 0.0449 0 Hard

[1]
[0]A

(2)
3 65 44 0.0629 0

The bold values indicate the good experimental results provided by the proposedmethods

in terms of function evaluation, number of iterations and time elapsed in seconds, which

is one of our objectives in the study of this paper.

Step 5: Set threshold on V(I).

Step 6: Function execution by indicated/best method type.

TABLE 6 Results of rosenbrock function of all dimension problems in

the two-step method of the second technique.

Method Function

Eval

Iteration Time in sec Failure Dimension

[1]
[1]A

(2)
1 62 30 0.0283 0

[1]
[1]A

(2)
2 62 34 0.0330 0 Soft

[1]
[1]A

(2)
3 62 31 0.0423 0

[1]
[1]A

(2)
1 51 44 0.0230 0

[1]
[1]A

(2)
2 49 39 0.0158 0 Medium

[1]
[1]A

(2)
3 49 39 0.0193 0

[1]
[1]A

(2)
1 51 44 0.0298 0

[1]
[1]A

(2)
2 49 39 0.0309 0 Hard

[1]
[1]A

(2)
3 49 39 0.0405 0

The bold values indicate the good experimental results provided by the proposedmethods

in terms of function evaluation, number of iterations and time elapsed in seconds, which

is one of our objectives in the study of this paper.

5. Numerical analysis of test
functions

Two test functions, namely, Rosenbrock and modified

trigonometric functions, are selected from the literature

(Hillstrom et al., 1981) to evaluate their performance by using

two different two-step techniques, i.e., one-step skipping with no

modified search direction and one-step skipping with modified
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TABLE 7 Results of modified trigonometric function of all dimension

problems in the two-step method of the first technique.

Method Function

Eval

Iteration Time in sec Failure Dimension

[1]
[0]A

(2)
1 104 75 0.0312 0

[1]
[0]A

(2)
2 144 95 0.0415 0 Soft

[1]
[0]A

(2)
3 144 95 0.0590 0

[1]
[0]A

(2)
1 170 111 0.0500 0

[1]
[0]A

(2)
2 168 111 0.0521 0 Medium

[1]
[0]A

(2)
3 168 112 0.0705 0

[1]
[0]A

(2)
1 199 127 0.1747 0

[1]
[0]A

(2)
2 193 125 0.2117 0 Hard

[1]
[0]A

(2)
3 175 128 0.2160 0

The bold values indicate the good experimental results provided by the proposedmethods

in terms of function evaluation, number of iterations and time elapsed in seconds, which

is one of our objectives in the study of this paper.

TABLE 8 Results of modified trigonometric function of all dimension

problems in the two-step method of the second technique.

Method Function

Eval

Iteration Time in sec Failure Dimension

[1]
[1]A

(2)
1 110 109 0.0400 0

[1]
[1]A

(2)
2 108 103 0.0544 0 Soft

[1]
[1]A

(2)
3 109 104 0.0408 0

[1]
[1]A

(2)
1 137 132 0.0544 0

[1]
[1]A

(2)
2 136 132 0.0516 0 Medium

[1]
[1]A

(2)
3 136 132 0.0568 0

[1]
[1]A

(2)
1 147 146 0.1808 0

[1]
[1]A

(2)
2 147 145 0.1895 0 Hard

[1]
[1]A

(2)
3 147 145 0.1869 0

The bold values indicate the good experimental results provided by the proposedmethods

in terms of function evaluation, number of iterations and time elapsed in seconds, which

is one of our objectives in the study of this paper.

search direction. These functions are of different dimensions

ranging from 2 to 150.

5.1. Discussion on rosenbrock function

• It is evident from Table 5 that the function outperformed

by the method (
[1]
[0]A

(2)
1 ) during function evaluation and

number of iterations, and time reduction is noted by

(
[1]
[0]A

(2)
1 ) in soft dimension. In medium dimension, the

(
[1]
[0]A

(2)
2 ) and (

[1]
[0]A

(3)
2 ) methods outperformed in function

evaluation, the number of iterations, respectively, while

the (
[1]
[0]A

(2)
1 ) method exhibited reduction in time. In

hard dimension, the (
[1]
[0]A

(2)
2 ) method showed better

results to minimize the function evaluation and the

number of iterations and the (
[1]
[0]A

(2)
1 ) method reduced the

computational effort.

• The results of Table 6 show that the (
[1]
[1]A

(2)
1 ) method

outperformed in terms of function evaluation, the number

of iterations, and computational time in soft dimension

problems. In medium dimension, the (
[1]
[1]A

(2)
2 ) method

exhibited best results in function evaluation, the number of

iterations, and computational time. The (
[1]
[1]A

(2)
2 ) method

showed a reduction in function evaluation and the number

of iterations, and the (
[1]
[1]A

(2)
1 ) method is executed in

less time.

• Comparative analysis of both techniques

• The behavior of both techniques was compared, and our

analysis concluded that one-step skipping with nomodified

search direction outperformed in function evaluation

and computational time, while the second technique,

i.e., one-step skipping with modified search direction,

showed a reduction in the number of iterations in all

dimension problems.

5.2. Discussion on modified
trigonometric function

• Table 7 shows the function outperformed by the (
[1]
[0]A

(2)
1 )

method in function evaluation, the number of iterations,

and in computational time in soft dimension. In medium

dimension, the (
[1]
[0]A

(2)
2 ) method outperformed in function

evaluation and the number of iteration while less

computational time is noted by the (
[1]
[0]A

(2)
1 ) method.

The (
[1]
[0]A

(2)
3 ) method showed better results in function

evaluation, while the (
[1]
[0]A

(2)
2 ) and (

[1]
[0]A

(2)
1 ) methods

outperformed in the number of iterations and time,

respectively, in hard dimension.

• In Table 8, the (
[1]
[1]A

(2)
2 ) method showed the best results

in function evaluation and the number of iterations in

soft and medium dimensions, and the time reduction

is observed by the (
[1]
[1]A

(2)
1 ) method in soft dimension

and by the (
[1]
[1]A

(2)
2 ) method in medium dimension. In

hard dimension, the (
[1]
[1]A

(2)
1 ) method exhibited minimum

results in function evaluation and computational time, and

the (
[1]
[1]A

(2)
3 ) method showed a reduction in the number

of iterations.

• Comparative analysis of both techniques

• Both techniques were compared and analyzed based on

experimental results. From the analysis, it can be concluded

that one-step skipping with no modified search direction

outperformed in function evaluation, the number of

iterations, and computational time, except the one case of
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medium dimension, in which the second technique, i.e.,

one-step skipping with modified search direction, showed

a reduction in function evaluation.

6. Conclusion

An algorithm was developed to compute the image value

of a particular test function and direct it to its best method

for execution. The two-step quasi-Newton methods with two

techniques (one-step skipping with nomodified search direction

and one-step skipping with modified search direction) were

chosen and experimented on two test functions, namely,

Rosenbrock and modified trigonometric function. The best

method was determined using the experimental results obtained

in terms of function evaluation, the number of iterations, and

computational time. This study concluded that the one-step

skipping without modification in search direction technique

showed superiority over the one-step skipping with modified

search direction technique under both test functions. Hence, this

algorithm directed all the functions having the same image value

as Rosenbrock and modified trigonometric functions to the

one-step skipping technique with no modified search direction.

7. Future work

To further strengthen the algorithm reported in this

study, we propose to investigate the image recognition in

terms of picture or graph instead of image value and then

direct the reported function (or medical image) to the best

method available for the obtaining solution. Based on the

literary research, in the future, we are planning to collaborate

with some biomedical labs to validate the practicality of the

proposed algorithm.
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