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The purpose of this study is to analyze the contribution of the interactions

between electrodes, measured either as correlation or as Jaccard distance,

to the classification of two actions in a motor imagery paradigm, namely,

left-hand movement and right-hand movement. The analysis is performed

in two classifier models, namely, a static (linear discriminant analysis, LDA)

model and a dynamic (hidden conditional random field, HCRF) model. The

impact of using the sliding window technique (SWT) in the static and dynamic

models is also analyzed. The study proved that their combinationwith temporal

features provides significant information to improve the classification in a

two-class motor imagery task for LDA (average accuracy: 0.7192 no additional

features, 0.7617 by adding correlation, 0.7606 by adding Jaccard distance;

p < 0.001) and HCRF (average accuracy: 0.7370 no additional features, 0.7764

by adding correlation, 0.7793 by adding Jaccard distance; p < 0.001). Also, we

showed that adding interactions between electrodes improves significantly the

performance of each classifier, regarding the nature of the interactionmeasure

or the classifier itself.

KEYWORDS

brain interactions, correlation, Jaccard distance, classifier, static model, dynamic

model, sliding window

Introduction

A brain-computer interface (BCI) is a communication and control scheme that sends

messages and commands to the external world by interpreting brain waveforms (Wolpaw

et al., 2002; Abiri et al., 2019). A regular BCI system has a brain monitoring system,

a signal preprocessing stage, a stage for extracting features of the preprocessed signal,

and a classification stage where features are decoded into commands or messages. Some

manners of BCI activation are evoked potentials, brain rhythms, and motor imagery,

among others (Scherer et al., 2007; Yao et al., 2022).
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Different studies have suggested that combining

frequency-temporal features with blinding source separation

techniques improves the performance of classifiers in motor

imagery paradigms significantly. One of the most outstanding

techniques is the common spatial patterns (CSPs) that

extract mutual features from a mixture of two populations

by maximizing the different proportions of the variances

in each population (Koles et al., 1990; Wang et al., 2021).

In this way, a linear transformation (spatial filtering) is

performed, preserving the number of sources but missing any

interactions between electrodes. To compensate for the lack of

information, a series of improvements have been introduced

to CSPs, such as the filter bank CSP (FBCSP). In this study,

the collected brain signal is processed by a set of different

frequency band filters, and each filtered signal is processed by

a CSP (Ang et al., 2008, 2012; Ferrero et al., 2021). Therefore,

the contribution of a series of frequency bands is preserved

while CSP extracts mutual features by the band. CSP and

FBCSP can be applied over raw or preprocessed data, such

as filtered data extracted from wavelet packet decomposition

(Luo et al., 2019, 2020; Voinas et al., 2022), recombined data

from CSP (Jalilpour Monesi and Hajipour Sardouie, 2019),

or frequency data extracted from CSP (Oikonomou et al.,

2020).

However, since CSP and FBCSP come from a linear

transformation, the resultant operation only shows the

projection of each electrode to the new space, such as its

contribution to the total variance of the chosen population

concerning the joint population (Bezdek and Pal, 1995;

Wang et al., 2021). Furthermore, some recent studies

have proposed to add interactions between electrodes—as

correlation—to improve the CSP projection rather than being

an input feature to a classifier by themselves (Zhang et al.,

2013; Gubert et al., 2020; Ghanbar et al., 2021). Hence, the

statistical contribution of these interactions is implicit as a

CSP improvement and not as a feature. Other features, such

as power bands, wavelet coefficients, and auto-regressive

models, do not ever use any interactions between electrodes

or brain zones (Aggarwal and Chugh, 2019; Mohdiwale et al.,

2021).

The purpose of this study is to analyze statistically the

contribution of the interactions between electrodes, measured

here as correlation or Jaccard distance, as an additional

input feature to the classification of two actions in a motor

imagery paradigm, namely, right-hand movement or left-hand

movement. The analysis uses two classifier models, namely, a

static model and a dynamic model. The static model consists

of a linear discriminant analysis classifier (LDA). The dynamic

model consists of a linear conditional random fields (CRF)

model, where features only interact with hidden variables rather

than interacting with labels, named hidden CRF (HCRF). Also,

the impact of using the sliding window technique (SWT) in the

static and dynamic models is analyzed in this study.

Methods

Experiment and dataset description

The used dataset comes from the BCI Competition IV,

dataset 2b (Leeb et al., 2007; Tangermann et al., 2012). Nine

naïve volunteer subjects participated in the experiment. Each

one was right-handed and had normal or corrected-to-normal

vision. Each subject sat in an armchair and watched a flat screen

placed 1m away at eye level. Five sessions were performed for

each subject: the first two without feedback and the last three

with feedback. Each session consists of several runs preceded by

5min of electrooculography (EOG) estimation at the beginning

of each session.

The first two sessions used the following paradigm: a cue-

based screening paradigm consisting of two classes, namely,

left-hand movement and right-hand movement. Each session

consisted of six runs, and each run had ten randomized trials by

class, summarizing 120 repetitions per session. Each trial started

with a fixation cross and a warning tone by 1 s approximately,

followed by an arrow indicating either the left side or the right

side for 1.25 s. Subsequently, the subject imagined the hand

movement for 4 s. Next, there was a randomized pause for about

1.5 s to avoid adaptation.

The later three sessions made use of a smiley face for

feedback, with four runs and 20 randomized trials by class and

run, for a total of 160 repetitions per session. Each trial started

with a gray smiley and a warning tone for∼1 s, followed by a cue

period of 3 s, where the smiley displaced to the left or right. In

this time interval, depending on the hand movement, the smiley

became red when the subject was wrong and green when the

moved hand was correct. Moreover, the mouth of the smiley

also changed to sad (corners of the mouth downward) or happy

(corners of the mouth upward), with wrong or right movement,

respectively. Next, there was a randomized pause between 1 and

2 s. We employed data only from feedback sessions.

Waveforms were recorded from three EEG bipolar

electrodes, namely, C3, Cz, and C4, with a frequency sample

of 250Hz. Fz channel was used as EEG ground. Later, data

were bandpass filtered between 0.5 and 100Hz, followed by a

50Hz notch filter. In addition, the EOG is available from three

monopolar electrodes and a similar amplification configuration.

Additional details of the experiment are available in Leeb et al.

(2007).

Software implemented

Once the dataset was acquired, preprocessing, feature

extraction, and classification stages were programmed in

MATLAB
R©
2021. HCRF was implemented by the Hidden-state

Conditional Random Field Library version 2.0b (HCRF Library,

2011).

Frontiers inComputationalNeuroscience 02 frontiersin.org

https://doi.org/10.3389/fncom.2022.990892
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Cristancho Cuervo et al. 10.3389/fncom.2022.990892

Data preprocessing

During the imagery task, relevant information was collected

between 3 and 6 s after the beginning of a trial. Then, the

waveform was sub-segmented by sliding windows, varying the

window size and the slide size along the experiments.

A single sub-segment can provide up to three types of

features, namely, alpha/mu (8–12Hz) and beta (15–25Hz)

power bands (Singh et al., 2011a,b, 2013; Pfurtscheller and

McFarland, 2012) by each electrode, and a similarity (or

distance) measure between a pair of electrode signals (C3–Cz,

C4–Cz, or C3–C4). Then, power band data got scaled to an

order of magnitude 10. Experiments used alpha and beta power

bands as main features and similarity (or distance) measures as

additional features. All features were obtained by using the SWT.

Sliding window technique

The sliding window technique is a set of instructions

executed over a subset of k consecutive values of X,

being X = {x1, x2, . . . , xN−1, xN }, a discrete time series

arrangement for N equally spaced time samples whose initial

point is xi: Xi,k = {xi, xi+1, . . . , xi+k−1, xi+k}. Once

the set of instructions was performed, the position of the

initial point displaces by a distance 1i and the algorithm

takes another k points to set the new subset Xi+ 1i,k

= {xi+1i, xi+1i+1, . . . , xi+1i+k−1, xi+1i+k}. The instructions

process the new subset. The routine continues until the value

of X corresponding to the final point xN is reached. The size of

the subset k and the displacement of initial point 1i could be

predetermined (Bandettini et al., 1993) or dynamically adaptive

(BenYahmed et al., 2015).

The sliding window technique is convenient for data to get

simple representations (BenYahmed et al., 2015; Hota et al.,

2017) or find dynamic patterns (Mokhtari et al., 2019; Vergara

et al., 2019) in a time series set. In this way, we propose to

apply the SWT to increase the number of features obtained

by trial: alpha and beta power values and the similarity (or

distance) measures.

Linear discriminant analysis

A discriminant classifier is a function that allocates an input

vector x to one of K classes Ck (Bishop, 2013). If we assume

that fk(x) is a multivariate Gaussian with a vector of mean µk

and a covariance matrix 6k, we get the following discriminant

function δk (x) (Hastie et al., 2009):

δk (x) = −
1

2
log

∣

∣6k

∣

∣ −
1

2

(

x− µk

)T
6
−1
k

(

x− µk

)

+ logπk

If each class has its covariance matrix 6k, the discriminant

function is quadratic by making the decision boundary between

a pair of classes k and l as δk (x) = δl (x). However, if

we suppose a shared covariance matrix 6 for all classes, the

discriminant δk (x) becomes linear (Hastie et al., 2009; Bishop,

2013). Notice that LDA-based classifiers are generative since they

mostly assume Gaussian distributions in the data (Martens et al.,

2011) and that LDA is a static model since time is not a relevant

parameter for the classifier.

Hidden conditional random fields

The conditional random field (CRF) classifier is a member

of the probabilistic graphical models (PGMs) family. CRF

represents complex distributions through products of local

factors on small subsets of variables (Sutton and McCallum,

2011). Unlike other PGM models, CRF does not take the

dependencies among entries but models directly the conditional

distribution between input vectors x and output labels y as

p
(

y|x
)

.

To expand the CRF models, we could add a set of hidden

variables h =
{

h1, h2, . . . , hm
}

not observed during the training

stage, associated with a singular output label y (Quattoni et al.,

2007). Restricting the model to have disjoint sets of hidden states

related to a certain value y of output label hj ∈ Hy, a hidden

conditional random field (HCRF) takes the following form:

p
(

y|x
)

=
1

Z

∑

hj,hj′∈Hy

T
∏

t=1

exp







K
∑

k=1

θkfk

(

hj,t , hj′,t−1, xt

)







The partition function is a normalization function along all

possible values of hidden variables along y. As CRF, a hidden

variable hj,t depends only on its predecessor hj′,t−1 and the

corresponding input variables.

Pearson correlation

Pearson correlation, defined for two zero-mean and real-

valued random variables x, y, is the coefficient between the

cross-correlation of the random variables E
[

xy
]

and the product

of the square root of their variances σxσy (Benesty et al., 2008,

2009):

ρ
(

x, y
)

=
E

[

xy
]

σxσy

We remark that the purpose of the study is to analyze

statistically the contribution of the interactions between

electrodes. In this study, we use correlation values to quantify

the interaction between electrodes as a similarity measure.
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Jaccard distance

On the contrary, the Jaccard distance comes from its

counterpart, the Jaccard Index J. The latter is a similarity

measure for two sets A,B, defined as the coefficient between the

size of the intersection |A ∩ B| and the size of its union |A ∪ B|

(Fletcher and Isla, 2018). It can extend as the ratio between the

measure of the intersection µ (A ∩ B) and its union µ (A ∪ B),

with an arbitrary measure µ. If we define µ as the dot product

between two multivariate variables A,B: µ (A ∩ B) = A • B, and

µ (A) = ‖A‖2, being ‖A‖ the Euclidean norm of A, and using

the relationship between the intersection and the union of two

sets, the Jaccard Index J becomes:

J (A,B) =
A • B

‖A‖2 + ‖B‖2 − A • B
=

A • B

‖A− B‖2 + A • B

With this definition, Jaccard Index takes values between

−1/3 (when B = –A) and 1 (for B = A). However, for obtaining

a non-negative metric, the Jaccard distance JD = 1 – J is defined

as follows (Cha, 2007):

JD (A,B) =
‖A− B‖2

‖A‖2 + ‖B‖2 − A • B
=

‖A− B‖2

‖A− B‖2 + A • B

With this definition, Jaccard distance takes values between

0 and 4/3, becoming a non-negative measure. In this study, we

use Jaccard distance values to quantify the interaction between

electrodes as a distance measure.

Performance metrics

A recurrent measure of performance for classification is

accuracy. It estimates the closeness between measured or

predicted values and their actual values (Clifford, 1985). For

multiple classes, it is defined as the rate between the trace of a

confusion matrixH and the total number of samplesNs (Schlögl

et al., 2005):

p0 =
trace (H)

Ns

where trace (H) is the number of samples correctly classified.

The accuracy varies from 0 to 1, where 1 denotes a perfect

classification. The study used five rounds of 3-fold cross-

validation, where training data tune LDA and HCRF model

parameters by an intern 4-fold cross-validation.

Statistical analysis

A one-way randomized blocks ANOVA tested the statistical

significance of differences between data with and without

additional features. If the ANOVA test rejects the null hypothesis

TABLE 1 Results of accuracy in the LDA model, with the presence or

absence of interactions between electrodes.

Subject Type of interaction between electrodes

Correlation

added

Jaccard distance

added

Yes No Yes No

1 0.757 0.714 0.743 0.704

2 0.569 0.527 0.565 0.526

3 0.623 0.580 0.604 0.565

4 0.975 0.933 0.976 0.937

5 0.798 0.756 0.821 0.782

6 0.758 0.715 0.764 0.725

7 0.712 0.669 0.707 0.668

8 0.902 0.859 0.898 0.859

9 0.762 0.720 0.767 0.728

Average 0.762 0.719 0.761 0.722

Standard deviation 0.125 0.125 0.130 0.130

P-value <0.001 1 <0.001 1

Overall performance 0.74 0.741

of statistical equality of averages, a Tukey-Kramer test performs

a post-hoc comparison. The average value of each classifier and

type of data is compared against the overall average accuracy,

rejecting the null hypothesis if the average by class is greater than

the overall average.

Also, a linear multiple-way randomized blocks ANOVA

tested the statistical significance of differences in the data. The

window size and the slide size were the tested parameters, and

subjects were taken as randomized blocks in the model. If the

ANOVA test rejects the null hypothesis of statistical equality of

averages, a Tukey-Kramer test performs a post-hoc comparison.

Results

The results of this study refer to the average performance

obtained by each classifier, measured with the accuracy metric.

All measures were obtained from the testing dataset of

each subject.

Results with the LDA model

Table 1 shows the accuracies obtained by comparing data

with and without correlation features with the LDA classifier

model. The 3-s trial was used without modifying other

parameters. According to the ANOVA test [F: 34.922; degree

of freedom (d.f.): 1; p < 0.001], the null hypothesis of average

equality must get rejected, so we performed the post-hoc test.

Their p-values are illustrated in Table 1 showing that only data
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TABLE 2 Results of accuracy in the HCRF model, with the presence or

absence of interactions between electrodes.

Subject Type of interaction between electrodes

Correlation

added

Jaccard distance

added

Yes No Yes No

1 0.752 0.712 0.753 0.711

2 0.596 0.557 0.600 0.558

3 0.568 0.529 0.571 0.529

4 0.991 0.951 0.992 0.950

5 0.790 0.751 0.809 0.767

6 0.778 0.738 0.788 0.747

7 0.763 0.724 0.750 0.708

8 0.919 0.880 0.919 0.878

9 0.831 0.792 0.832 0.790

Average 0.776 0.737 0.779 0.738

Standard deviation 0.135 0.135 0.135 0.135

P-value <0.001 1 <0.001 1

Overall performance 0.757 0.758

with additional features are statistically significant regarding the

average accuracy.

Table 1 also shows the accuracies obtained by comparing

data with and without Jaccard distance features with the LDA

classifier model. As before, a one-way randomized blocks

ANOVA tested the statistical significance of differences between

data with and without additional features. According to the

ANOVA test (F: 26.613; d.f.: 1; p < 0.001), the null hypothesis of

average equality must get rejected, so we performed the post-hoc

test. This indicates again that only data with additional features

are statistically significant regarding the average accuracy.

The following step is to implement the sliding window

algorithm in the data with power alpha and beta bands and

additional features to obtain features dynamically. Hence, we

used three sliding window sizes (0.5, 1, and 2 s) against the

whole 3-s window and three slide sizes (0.125, 0.25, and 0.5 s)

to compare the performance of the LDA classifier.

Table 2 shows the performance of the LDA model by

window size and slide size by implementing the sliding window

algorithm with correlation or Jaccard distance as additional

features. According to the ANOVA test (Fwindow_size: 46.61;

d.f.: 3; pwindow_size < 0.001; Fslide_size: 144.60; d.f.: 2; pslide_size
< 0.001), the null hypothesis of average equality must get

rejected, so we performed the post-hoc test. Results of Table 2

show that window sizes 2 and 3 s have the most outstanding

performances. Meanwhile, slides 0.25 and 0.5 have the most

statistically relevant values.

Considering the JaccardDistance as an additional parameter,

a similar procedure to correlation values was performed.

According to the ANOVA test (Fwindow_size: 30.28; 3 d. f.;

pwindow_size < 0.001; Fslide_size: 137.73; 2 d. f.; pslide_size
< 0.001), the null hypothesis of average equality must get

rejected, so we implemented the post-hoc test. Results of Table 2

show that window sizes 2 and 3 s have the most significant

performance. Meanwhile, slides 0.25 and 0.5 have the most

statistically significant values. Meanwhile, although the classifier

performance is the highest when the slide size is 0.125 s, the

average result is slightly better than the average performance

with whole data, as illustrated in Table 2.

Results with the HCRF model

Since HCRF is a dynamic model regarding the LDA model,

implementation of the sliding window algorithm is necessary to

establish the corresponding timestamps of HCRF. To compare

data with and without additional correlation features, we tested

the model with two window sizes (0.5 and 2 s) and two slide

sizes (0.125 and 0.5 s). Figure 1 shows the accuracies obtained

by comparing data with and without correlation features

implemented in the HCRF classifier. According to the ANOVA

test (F: 117.232; d.f.: 1; p < 0.001), the null hypothesis of average

equality must get rejected, so we performed the post-hoc test.

Their p-values are illustrated in Figure 1, showing that only data

with additional features are statistically significant regarding the

average accuracy.

Figure 1 also shows the accuracies obtained by comparing

data with and without Jaccard distance features with the HCRF

classifier. As before, a one-way randomized blocks ANOVA

tested the statistical significance of differences between data with

and without additional features. According to the ANOVA test

(F: 148.475; d.f.: 1; p < 0.001), the null hypothesis of average

equality must get rejected, so we performed the post-hoc test.

It indicates again that only data with additional features are

statistically significant regarding the average accuracy.

The following step is to implement the sliding window

algorithm in the data with power alpha and beta bands and

additional features to get features dynamically. Hence, we used

three sliding window sizes (0.5, 1, and 2 s) and three slide

sizes (0.125, 0.25, and 0.5 s) to compare the performance of the

HCRF classifier.

Figure 2 shows the performance of the HCRF model by

window size and slide size by implementing the sliding window

algorithm with correlation as additional features. According to

the ANOVA test (Fwindow_size: 4.20; d.f.: 2; pwindow_size = 0.016;

Fslide_size: 1.95; d.f.: 2; pslide_size = 0.143), the null hypothesis of

average equality must get rejected only for the window size, so

we performed the post-hoc test. Results of Figure 2 show that a

window size of 1 s has the most significant performance.

Considering the Jaccard distance as an additional parameter,

a similar procedure to correlation values was performed.

According to the ANOVA test (Fwindow_size: 12.35; d.f.: 3;
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FIGURE 1

Results of accuracy in the LDA model with interactions between electrodes as an additional feature, by varying the window size or slide size in

the sliding window algorithm. (A) Varying the window size. (B) Varying the size of the slide.

pwindow_size < 0.001; Fslide_size: 0.15; d.f.: 2; pslide_size = 0.86),

the null hypothesis of average equality must get rejected only

for window size, so we implemented the corresponding post-hoc

test. Results of Figure 2 show that the window sizes of 0.5 s have

the most significant performance. Meanwhile, slides of 0.125 s

have the most statistically significant performance, although it is

not significant compared with the other slide sizes, as illustrated

in Figure 2.
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FIGURE 2

Results of accuracy in the HCRF model with interactions between electrodes as an additional feature, by varying the window size or slide size in

the sliding window algorithm. (A) Varying the window size. (B) Varying the size of the slide.

Discussion

Results from Table 1 and Figure 1 suggest that adding

correlation or Jaccard distance to the existing features improves

significantly the performance of LDA and HCRF classifiers.

It indicates that having available information on similarity or

distance relations between channels gives additional knowledge

about the classes that carry to a more accurate classification.

However, it is the only behavior that themodels have in common

when electrode interactions get added to the features. Also, it

is crucial to remark although correlation and Jaccard distance

are quantifications of interactions with distinct attributes, we get
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a performance improvement for both measures. It means that

adding interactions between electrodes significantly improves

the performance of given classifiers, independent of the nature

of the interaction measure.

In the LDA model, results from Table 2 show that only a

few additional pieces of information provided by the SWT are

enough to improve the classification. It is performed by adding

brain interactions from 2 s sliding windows and displacements

of 0.5 s, or even with the whole trial with no shifts. It is

due to the nature of the LDA model, where a dimensionality

reduction of data to 1 dimension is necessary to perform

the discrimination analysis (Bishop, 2006). With more features

added, the complexity of data gets enhanced because of their

dimensionality. Since dimensionality reduction always implies

loss and distortion of information, preserving most of them in

a tractable processing core is mandatory (Gracia et al., 2014;

Zenil et al., 2016). One mode is handling data with reduced

dimensions before the dimensionality reduction step, which

preserves information with less distortion and loss. It happens

by using brain interactions from 2 s or higher sized windows and

displacements of 0.5 s.

On the contrary, the HCRF model has different behavior.

Results from Figure 2 show that the window size is the most

relevant parameter to implement the SWT. Simultaneously, the

change in the slide size had no or less effect on the classifying

performance. It indicates that information from window size

smaller than or equal to 1/3 trial size is more relevant than the

one coming from longer windows. It also leads to the longest

available window displacement usage without losing relevant

information, reducing the dimensionality and, hence, the input

size of the features to the model.

In summary, although electrode interactions do not

contribute significantly to classification in a multiclass task

by themselves (Miller et al., 2014), this study proved that

their combination with temporal features provides significant

information to improve the classification in a two-class task,

such as motor imagery. Also, we showed that performance

improvement is independent of the nature of the interaction

measure. The future direction of the study point is to use the

electrode interactions as additional features in motor imagery

tasks with more than two classes, more than three electrodes,

and dividing the frequency power bands into smaller sizes.
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