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Active inference is a leading theory in neuroscience that provides a simple

and neuro-biologically plausible account of how action and perception are

coupled in producing (Bayes) optimal behavior; and has been recently used to

explain a variety of psychopathological conditions. In parallel, morphogenesis

has been described as the behavior of a (non-neural) cellular collective

intelligence solving problems in anatomical morphospace. In this article, we

establish a link between the domains of cell biology and neuroscience, by

analyzing disorders of morphogenesis as disorders of (active) inference. The

aim of this article is three-fold. We want to: (i) reveal a connection between

disorders of morphogenesis and disorders of active inference as apparent

in psychopathological conditions; (ii) show how disorders of morphogenesis

can be simulated using active inference; (iii) suggest that active inference can

shed light on developmental defects or aberrant morphogenetic processes,

seen as disorders of information processing, and perhaps suggesting novel

intervention and repair strategies. We present four simulations illustrating

application of these ideas to cellular behavior during morphogenesis. Three

of the simulations show that the same forms of aberrant active inference

(e.g., deficits of sensory attenuation and low sensory precision) that have been

used to explain psychopathological conditions (e.g., schizophrenia and autism)

also produce familiar disorders of development and morphogenesis when

implemented at the level of the collective behavior of a group of cells. The

fourth simulation involves two cells with too high precision, in which we show

that the reduction of concentration signaling and sensitivity to the signals

of other cells treats the development defect. Finally, we present the results

of an experimental test of one of the model’s predictions in early Xenopus

laevis embryos: thioridazine (a dopamine antagonist that may reduce sensory

precision in biological systems) induced developmental (anatomical) defects

as predicted. The use of conceptual and empirical tools from neuroscience

to understand the morphogenetic behavior of pre-neural agents o�ers the

possibility of new approaches in regenerative medicine and evolutionary

developmental biology.
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1. Introduction

Embryonic self-assembly requires large numbers of cells to

cooperate and compete toward specific morphologies (Pezzulo

and Levin, 2016). Moreover, the repair and remodeling of

complex anatomical structures under novel circumstances

(injury, changes in cell size or number, etc.) illustrates that

this process is not hardwired. Numerous examples, such

as tadpoles with scrambled craniofacial organs that move

in un-natural paths to nevertheless construct normal frog

faces (Vandenberg et al., 2012), and similar data even in

early chordates (Voskoboynik et al., 2007), reveal control of

growth and form to exhibit the ability to solve problems in

morphospace—dealing with novel circumstances to arrive at the

correct target morphology despite unexpected perturbations. It

has been argued (Levin, 2019, 2022b) that morphogenesis is

an example of a kind of basal intelligence, meeting William

James’ definition of “same ends through differentmeans” (James,

1890), due to its ability to restore amputated structures (and

then stop), produce the same size body using very large, or

very few cells, or remodel after organs are placed in incorrect

configurations (reviewed in Pezzulo and Levin, 2016; Levin,

2022a). Specifically, it has been proposed that the sorts of

problem-solving capacities observed when nervous systems

navigate the 3D world via behavior evolved by speed-optimizing

much more ancient versions of the same system in pre-neural

cells (Buznikov and Shmukler, 1981; Fields et al., 2020).

In an important sense, morphogenetic tissues and brains

both represent a kind of collective intelligence, emergent

from groups of cells (Fields et al., 2020; Fields and Levin,

2022). Much as neural cells connect in networks to process

information and control muscles, collections of cells navigate

anatomical morphospace by processing information toward the

control of non-excitable cell types (resulting in cell migration,

differentiation, etc.). Morphogenesis can thus be seen as the

behavior of a collective in morphospace. Indeed, all of the

machinery used in the central nervous system (CNS) to

support adaptive functions (ion channels, electrical synapses,

neurotransmitter signaling, etc.) is ancient, and is implicated

in the control of growth and form (Levin and Martyniuk,

2018). Consistent with this are the many examples over the

last decade of tools from neuroscience being used to probe

and control animal shape in vivo: tools like optogenetics, ion

channel pharmacology, etc. cannot distinguish neural from

non-neural applications and work well in both arenas (Bates,

2015; Harris, 2021; Levin, 2021a). Given the high conservation

between mechanisms regulating canonical behavior and those

regulating morphogenesis (Pezzulo and Levin, 2015), it becomes

interesting to ask: which conceptual models from neuroscience

shed light on the collective dynamics of morphogenesis? This

is especially important, both for regenerative medicine and

for fundamental evolutionary developmental biology: progress

on molecular genetics mechanisms must now be augmented

by a better understanding of the algorithms and organ-level

decision-making, to develop prediction and control strategies

for large-scale structure and function. Here, we focus on one

specific set of ideas from neuroscience—the active inference

framework—Parr et al. (2022) exploring interesting parallels that

allow it to generate insights for open problems in the science of

dynamic morphogenesis.

What paradigm can be used to understand the dynamic

information processing that underlies both, adaptive behavior

and morphogenesis? Active inference is a general framework

in theoretical neuroscience that proposes a unified account of

perception, learning, and action (Friston et al., 2006; Friston,

2010). The framework is built around the idea that biological

agents must maintain homeostasis and have to reach a limited

range of states defined by their phenotype and avoid “surprising”

states (Friston et al., 2010). However, as the states of the

environment and the internal states of the organism itself

are hidden (i.e., not directly observable), a biological agent

must infer them from incoming sensory information. The

framework claims that an agent is a probabilistic machine that

embodies an internal generative model of its environment and

continuously tries tominimize the surprise of its own sensations.

In other words, an agent minimizes the difference between

its expectations of the world (that can be priors on its own

sensorium for perception, or goals for actions) and its sensory

evidence. In turn, this requires that organisms continuously try

to predict the internal (proprioceptive or interoceptive) and

external (exteroceptive) consequences of their behavior and

others—hence the idea of the brain as a “prediction machine.”

More formally, in active inference, action, perception, and

learning occur through a process of variational free energy

minimization (where variational free energy is an upper

bound on surprise) (Friston K. et al., 2017). In this context,

perception resolves exteroceptive prediction errors by selecting

the predictions that best explain the current sensations; action

serves to change the world in such a way that it generates the

agent’s preferred sensations (as encoded in its priors, or prior

preferences); and learning is the update of the generative model.

The framework of active inference has been initially

developed in computational neuroscience (Friston K. J. et al.,

2017; Walsh et al., 2020) but was recently extended beyond

it, to address problems of morphogenesis and developmental

biology (Friston et al., 2015; Kuchling et al., 2020). In this

perspective, cells are minimal active inference agents that

minimize their surprise (or free-energy) in order to reach

(collectively) a target morphology and maintain anatomical

homeostasis (see Figure 1). This novel perspective on the

coordination of migration and differentiation of cells suggests

an interpretation of cellular behavior as being driven by an error

minimization mechanism akin to usual conceptualizations of

goal-directed organismal behaviors in neuroscience, cybernetics,

and philosophy (Millikan, 1987; Friston et al., 2015; Fields

and Levin, 2019; Kuchling et al., 2020). This top-down
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FIGURE 1

Representation of active inference. (A) Standard (non-pathological) behavior. We have one target morphology. During morphogenesis, cells

start undi�erentiated and at the same locations (middle-left panel). Given their generative model they believe they have to reach a specific

planar target morphology (upper panel). They will receive di�erent kind of sensory information during morphogenesis (bioelectrical pattern,

biochemical and mechanical signals, see lower panel). This gathers sensory evidence that allows the cells to update their internal model of their

target identity. Ultimately, they develop the appropriate target morphology (see middle-right panel) by action (migration, di�erentiation, release

of signals, see second lower panel). (B) Dysfunctional behavior. In this case, the prior on the target morphology is much higher for one specific

type of cells (intestinal in the example, see upper-left panel). The cells have a strong (rigid) belief that they have to be this type of cell and

therefore won’t take into account contrary sensory evidence (lower panel) and the prediction errors; in turn, this will lead to a dysfunctional

update of the model and an inappropriate development (see middle panels).
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approach to developmental biology may complement bottom-

up strategies that currently focus on molecular pathways and

could help understand regeneration, morphogenesis, and their

associated disorders.

In which sense can this framework help understand

disorders of morphogenesis? Within the active inference

framework, psychopathological conditions such as

schizophrenia, hallucinations, and depression can be understood

as disorders of inference (Montague et al., 2012; Friston et al.,

2014). Along similar lines, active inference can help formalize

developmental defects or aberrant morphogenetic processes

as disorders of inference—when the inference is about (for

example) a target morphology, as in Friston et al. (2015).

Similarly, in developmental biology, focus is beginning to

shift toward an understanding of measurement, memory, and

prediction in cells and tissues (Barkai and Shilo, 2009; Abouchar

et al., 2014; Cervera et al., 2019; Levin, 2021a).

The aim of this article is three-fold. Our first aim is

to establish a formal link between disorders of inference

apparent in psychopathological conditions and disorders

of morphogenesis/development, via active inference. We

exemplify our ideas by focusing mainly on schizophrenia and

autism, because these conditions have been studied deeply

under active inference and they depend on a key mechanism

(aberrant precision control) that we believe could help explain

developmental disorders, too (see below). However, we will

not attempt to establish exact, one-to-one correspondences

between these two (or other) psychopathological conditions

and developmental disorders. Rather, our goals are to

establish more general formal correspondences between

psychopathological and morphogenetic/developmental

problems—for example, using the concept of precision control

that might be heuristic in both fields—and simultaneously to

offer some specific examples, which could guide more specific

future investigations. Our second aim is to show how disorders

of morphogenesis can be simulated using active inference.

Our third aim is to discuss how the formalization offered here

could help design novel intervention strategies for repairing

developmental defects or aberrant morphogenetic processes

seen as disorders of information processing. We recognize

that psychopathological conditions are very complex and

multifarious (e.g., fundamentally shaped and constrained by

complex cultural and sociological factors). The examples we

are offering in this paper do not imply a reductionist view of

these phenomena but are limited to modeling some specific

computational aspects of them. Indeed, in this aspect our

approach to cognition parallels the arguments made in our

prior work about morphogenesis, where we suggest that a

more effective understanding of collective cell behavior in

embryogenesis and regeneration requires not only reductive

molecular biology-based mechanistic information, but also

a consideration of information processing and goal-directed

action (Pezzulo and Levin, 2015; Levin, 2022a,c).

We present four simulations of disorders of morphogenesis

as disorders of active inference. These simulations use active

inference to model the behavior of groups of cells and show

that endowing the cells with aberrant values of a key parameter

(precision) leads to developmental defects in much the same

way that manipulating the precision of more sophisticated

active inference models could reproduce some aspects of

psychopathological conditions, such as the positive symptoms of

schizophrenia (Brown et al., 2013) or aberrant statistical learning

in autism (Arthur et al., 2021). We also present a simulated

biomedical intervention of the reduction of concentration

signaling and sensitivity to the other cells signals of two

cells having a too high precision. Finally, we present the

experimental result of the test of one of the predictions of our

model: thioridazine (a dopamine antagonist that may reduce

sensory precision in biological systems) is shown to induced

developmental (anatomical) defects in Xenopus laevis tadpoles,

illustrating the ability of these conceptual models to drive novel

empirical results in developmental biology.

2. Computational psychiatry,
aberrant precision, and sensory
attenuation

Active inference is a computational framework for action

and perception and has been linked to various psychiatric

disorders (Montague et al., 2012). From this point of view,

psychopathological conditions can be understood as disorders of

(active) inference. False inference could explain symptoms, like

hallucinations or delusions in schizophrenia (Fletcher and Frith,

2009), to the loss of coherence in autism (Pellicano and Burr,

2012).

While there have been several alternative proposals about

what exactly causes psychopathological conditions (Friston

et al., 2014; Paulus et al., 2019; Van den Bergh et al., 2021),

many focus on deficits of a specific parameter of the (active)

inference: the precision parameter that weights prior beliefs and

sensory evidence (and hence prediction errors, which measure

the discrepancy between predicted and sensed observations).

The precision parameter encodes the expected uncertainty or in

other words the degree of confidence of an agent in the sensory

information it is receiving in any given context (Angela and

Dayan, 2005; Brown et al., 2013; Iglesias et al., 2013). A correct

regulation of the precision parameter is key for the success

of hierarchical (active) inference, because the balance between

prior beliefs and sensory evidence during the process of evidence

accumulation is determined by the precision of prediction

errors at each level of the hierarchy. If the precision is set

incorrectly (e.g., if an unreliable source of evidence is assigned

excessively high precision, or a reliable source of evidence is

assigned excessively low precision), the resulting inference can

be misleading.
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More formally, precision is defined in active inference as

the inverse of the variance of a given variable; and it can be

interpreted as a measure of signal-to-noise, or the confidence

associated to an incoming information stream. For the brain, it

can be represented by the modulation of the gain or excitability

of neurons that compute prediction errors (Clark, 2013; Moran

et al., 2013). This is particularly important, because many

psychological disorders implicate modulatory neurotransmitter

systems and a putative failure of post-synaptic gain control

(Feldman and Friston, 2010).

One of the reasons why the precision parameter is so

important in explaining psychopathological conditions is that

it mediates the so-called sensory attenuation that necessarily

accompanies action. In active inference, actions are realized by

descending proprioceptive predictions, which in turn engage

motor reflexes that enact the intended or predicted movement

(Adams et al., 2013). In other words, in order to realize an

action, an active inference agent has to imagine the action

outcome and then enact a movement that fulfills the prevision.

In parallel, it has to attenuate the sensory precision—in order to

disregard the evidence that one is not moving. The attenuation

of sensory precision is necessary for action, because otherwise,

ascending (proprioceptive) prediction errors would lead to the

revision of predictions about actions (i.e., correctly infer that

one is not moving) instead of realizing the intended actions.

Phenomenologically, the attenuation of sensory precision

produces sensory attenuation—or the transient suspension of

attention to the sensory consequences of an action—that is

commonly observed during movement (Brown et al., 2013).

Sensory attenuation is an important theme in many

psychiatric disorders, too. It has been proposed that prior

expectations on sensory precision are compromised in

schizophrenic patients—and hence the patients are unable

to attenuate sensory precision. More specifically, the sensory

precision of schizophrenic patients might be too high in

relation to the precision of their (prior) beliefs about the

causes of sensations. Therefore, schizophrenic patients cannot

ignore sensory evidence. Deficits of sensory attenuation

in schizophrenic patients may also produce disorders of

movement, given that movement itself depends on correct

precision control (see Brown et al., 2013 for a detailed

discussion). The failure in sensory attenuation might explain

two types of false inference in schizophrenia: false positives and

false negatives (Limongi et al., 2018). Positive symptoms, like

hallucinations or delusions (Powers et al., 2017), correspond

to prior beliefs that are accorded too much precision. Negative

symptoms, like the resistance to illusions and the failure of slow

pursuit movements, correspond to a compromised capacity to

elicit predictions informed by prior beliefs.

One symptom that shows this deficit is slow pursuit eye

movements. Patients with schizophrenia present a disorder in

the anticipation of movement. This failure can be measured

experimentally using a mask during the motion of an object,

with the subject having to anticipate the re-appearance of the

object behind the mask. A computational model of this process

that used active inference and manipulated precision could

account for several features of smooth pursuit in schizophrenia:

a reduction in anticipatory eye movements during visual

occlusion, a paradoxical improvement in tracking unpredicted

deviations from target trajectories, and a failure to recognize

and exploit regularities in the periodic motion of visual

targets (Adams et al., 2012).

Disorders of beliefs about agency are also common in

schizophrenia (in the sense of agency as the property of feeling

that one is the agent in control of one’s actions). One example

is the resistance of patients with schizophrenia to the force-

matching illusion (Shergill et al., 2005, 2014). During this task,

a patient’s hand is touched by a device and therefore the patient

can sense an external force. Patients have to press directly on

themselves, or use a robot to reproduce the magnitude of the

perceived pressure of the external force. The force-matching

illusion consists in the fact that healthy people underestimate the

magnitude of the force that they apply (i.e., self-pushing power),

which results in pushing the device with a larger force than the

external pressure. Patients with schizophrenia, instead, present

a better accuracy on this task, which suggests that they might

not attenuate their sensations. This result has been modeled

using active inference and corresponds to an attenuation of

the sensory precision that would create this illusion (Brown

et al., 2013). Similarly, depersonalization disorder has been

linked to a deficit of somatosensory attenuation and precision-

weighting (Ciaunica et al., 2022).

Autism has also been linked to an aberrant account of

precision (Lawson et al., 2014). Autism is a neurodevelopmental

disorder of variable severity that is characterized by difficulties

in social interaction and communication and by restricted or

repetitive patterns of thought and behavior. Aberrant precision

may explain different features of autistic perception, action, and

social behavior. One hypothesis is that autism is characterized

by excessively high sensory precision (compared to the

precision of priors) leading to the difficulty in contextualizing

sensory information (Frith and Frith, 1999; Baron-Cohen,

2000). Furthermore, in autism, the failure to attenuate sensory

precision has been interpreted in a developmental context—

and particularly in the context of the acquisition of generative

models that distinguish between self and other. It is proposed

that an infant with autism may have difficulties distinguishing

between autonomic responses elicited by the mother and those

caused by its own interoceptive predictions. This could also

explain autonomic over-responsiveness to interoceptive cues or

interoceptive hypersensitivity and a deficit in engaging with

social (exteroceptive) cues (Paton et al., 2012).

In sum, here we have highlighted that psychopathological

conditions, such as schizophrenia and autism, can be described

in terms of aberrant values of key parameters of active inference,

and most notably the precision parameter that weights sensory
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evidence and prior information [see also chapter 9 of Parr

et al. (2022) for the discussion of other psychopathological

conditions in terms of maladaptive active inference]. Below we

highlight that these information- and system-level disorders

have parallels outside of CNS-mediated behavior—in the

domain of morphogenesis.

3. Disorders of morphogenesis as
disorders of inference

A key fact of development and regeneration is that

individual cells must cooperate in networks to achieve specific

outcomes in morphospace, to very tight tolerances, despite

noise, environmental influences, and imperfections in the

components themselves. Doing this in real-time, to achieve

the correct target morphology via novel paths, requires

collective decision-making and active measurements of current

shapes as well as the ability to recognize errors (perhaps

through a memory of correct states). Morphogenesis has

been simulated in the active inference framework (Friston

et al., 2015; Kuchling et al., 2020). From this perspective,

cells are information processing agents, where the driving

force behind morphogenesis is the minimization of a cell’s

variational free energy. Each cell is equipped with a generative

model that encodes its beliefs about what are the chemotactic

signals it should receive or express, relative to its location

in the target morphology. Cells reach their morphogenetic

goal by performing actions (expression of receptors and other

biochemical signals) according to their internal (i.e., generative)

model of what type of receptors and other signals they

should express.

Within this framework, Friston et al. simulated

morphogenesis and dysmorphogenesis (e.g., induced birth

defects) by manipulating the influence of extracellular signals,

without changing the generative model (genetic and epigenetic

processes) (Friston et al., 2015).

Using a similar strategy, Kuchling et al. simulated alterations

of anterior–posterior axial polarity (i.e., the induction of two

heads or two tails) as in planarian regeneration (Kuchling

et al., 2020). Furthermore, they simulated the first steps of

carcinogenesis by imposing false inference of a single cell on

what it should sense and how it should act within the cellular

ensemble. They also showed that mis-patterning of development

and regeneration can be caused (or can be rescued) by simple

modifications of the inference process without changing the

implicit generative model of a cell as determined (for example)

by its DNA.

However, the previous work on this topic did not investigate

the impact of precision and sensory attenuation. In other words,

the generative model had remained untouched in these prior

simulations. Kuchling et al. manipulated external parameters

to show disorders of morphogenesis (Kuchling et al., 2020),

and Friston et al. (2015) manipulated the extracellular signals,

both without changing the generative model or the precision of

its parameters.

Here, we show that disorders of inference resulting from

precision changes can produce disorders of morphogenesis in

cell-like agents, analogous to the way aberrant precision control

might produce psychopathological conditions in sophisticated

(human-like) agents.

4. Active inference and free-energy
minimization

4.1. Active inference formalism

In this section, we summarize the mathematical foundation

that underlies the Bayesian interpretation of non-equilibrium

steady-state dynamics [based on Kuchling et al. (2020)] and

introduce the formulations necessary to set up and discuss our

morphogenetic inference model based on the minimization of

variational free energy.

To that end, we begin by stating the dynamics of our system

in generalized coordinates ofmotion, denoted with a tilde, where

x̃ is defined as:

x̃ = (x, ẋ, ẍ, ...). (1)

This expression defines a state not just through its

position, but also with its velocity, acceleration, etc. Generalized

coordinates of motion allow the inclusion of temporal

correlations in random fluctuations, assuming a sufficiently

smooth dynamical system, through the Langevin equation:

˙̃x = f (x̃)+ ω̃, (2)

where f (x̃) is the generalized flow (or time evolution) of states

under forces acting on the states and random fluctuations ω̃

that are confined by the typical Wiener assumptions; in other

words, the flow of states is made up of a process of independent,

Gaussian increments that follow a continuous path.

In statistical physics, the ensuing dynamics are readily

described in terms of density or ensemble dynamics, i.e., the

evolution of the probability density p(x̃), through the Fokker-

Planck equation. We obtain the Fokker Planck equation from

any Langevin equation using the conservation of probability

mass:

ṗ(x̃) = ∇ · [ ˙̃xp(x̃)] = 0 , (3)

where ˙̃xp(x̃) describes the probability current. This turns the

Fokker-Planck equation into a continuity equation, which reads:

ṗ(x̃) = ∇ · Ŵ∇p−∇ · (f (x)p) . (4)
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This is a partial differential equation that describes the

time evolution of the probability density p(x̃) under dissipative

(first term) and conservative (second term) forces. At non-

equilibrium steady-state, the density dynamics is just the

solution to the Fokker Planck equation:

L(x̃) = −ln p(x̃). (5)

In other words, we can express a physical potential or a

Lyapunov function L(x̃) simply as the negative log probability

of finding the system in any (generalized) state L(x̃) = −ln p(x̃).

This is also known in information theory as the self-information

of a state (also known as surprisal, or more simply surprise). In

Bayesian statistics it is known as the negative log evidence.

This function can be bounded from above by the variational

free energy function that is the foundation of the free energy

principle underlying Bayesian inference.

Variational free energy is a function of internal states that

allows one to associate the Lyapunov function with Bayesian

model evidence and therefore characterize the system dynamics

in terms of Bayesian inference and the implicit generative

models. The key statistical mechanics tool employed to do this

is to unpack the non-equilibrium steady-state flow of external,

internal, and blanket states, called a Markov blanket partition.

A Markov partition, deriving from conditional

independencies in Markov processes, which are implicit in

the system’s equations of motion or dynamics, separates all

states x ∈ X into external e ∈ E, sensory s ∈ S, active a ∈ A, and

internal states i ∈ I (with their generalized versions x̃, ẽ, s̃, ã, and

ĩ, respectively), so that

x̃ ∈ X = E× S× A× I . (6)

The Markov blanket states separating external and internal

states consist of S × A. Importantly, external and internal states

depend only on the blanket states, with the further constraint

that sensory states are not influenced by internal states and active

states are not influenced by external states.

We note that the definition of a Markov blanket in

a biological context is fairly intuitive, as robust literature

demonstrates the ability of cells and many other aneural systems

to measure aspects of their environment via specific sensors

(Baluška and Levin, 2016). In fact, all biological systems can

be analyzed in terms of sensory and internal states and the

relationships between them (Rosen, 2012).

Following this Markov partition of states (and associated

influences), we can decompose the flow f (x̃) into fe(ẽ, s̃, ã),

fs(ẽ, s̃, ã), fa(s̃, ã, ĩ), and fi(s̃, ã, ĩ).

We can derive a gradient descent for theMarkov states using

Equation (5) and its standard form expression for a flow f (x)

subject to conservative and dissipative forces at non-equilibrium

steady-state following (Yuan et al., 2014):

f (x) = v = (Q− Ŵ)∇L(x̃) , (7)

where Ŵ is the diffusion tensor defined as half the covariance of

the dissipative random fluctuations, and a tensor Q describing

friction satisfying ∇ · Q∇L(x̃) = 0. The responses of active

and internal states, to sensory stimuli under Markov partition

m, therefore, become

(a) fa(s̃, ã, ĩ) = (Qa − Ŵa)∇ãL(s̃, ã, ĩ)

(b) fi(s̃, ã, ĩ) = (Qi − Ŵi)∇ĩL(s̃, ã, ĩ)

(c) L(s̃, ã, ĩ) = − ln p(s̃, ã, ĩ|m) .

(8)

Inserting the Lyapunov function from (c) into (a) and (b),

gives us the resulting flow of active and sensory states as gradient

descents on a log probability density:

(a′) fa(s̃, ã, ĩ) = (Ŵa − Qa)∇ã ln p(s̃, ã, ĩ|m)

(b′) fi(s̃, ã, ĩ) = (Ŵi − Qi)∇ĩ ln p(s̃, ã, ĩ|m).
(9)

Crucially, the autonomous states (i.e., states that do not

depend upon external states: active and internal) of an agent

depend upon the same quantity, which we have reduced to

the log probability of finding the agent in a particular state;

where the agent’s states consist of the internal states and their

Markov blanket.

Solving Equation (9) for the time evolution or flow f of

active and internal states thus is equivalent to evaluating the

gradients of the log probabilities above, corresponding to the

Lagrangian of an open system. By minimizing the internal and

active states of the partition instead of minimizing the Lyapunov

or Lagrangian function (such as for a thermodynamic potential)

as would be done in a classical physics approach, we can now

replace the Lagrangian with a variational free energy functional

of a probabilistic model of how a system thinks it should behave,

as follows.

Using the above Markov blanket partition, we can now

interpret internal states as parameterizing some arbitrary

probability density q(ẽ) over external states. This allows us to

express the Lagrangian or Lyapunov function as a free energy

functional of beliefs, and implicitly a function of the internal

states. We can express this variational free energy through the

introduction of the Kullback-Leibler Divergence:

DKL(p‖q) =

∫ ∞

−∞
p(x) ln

p(x)

q(x)
dx, (10)

which is the expectation of the logarithmic difference between

the probabilities p and q, where the expectation is taken using

the probabilities p.

Thus, instead of taking the log density ln p(s̃, ã, ĩ|m) above,

we can now express a variational free energy F that corresponds
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to the logarithmic difference between the (variational) density or

Bayesian beliefs about external states q(ẽ) and actual probability

densities p(ẽ, s̃, ã, ĩ|m) of all states under the Markov blanketm:

F(s̃, ã, ĩ) =

∫

ẽ
q(ẽ) ln

q(ẽ)

p(ẽ, s̃, ã, ĩ|m)
dẽ

= − ln p(s̃, ã, ĩ|m)+ DKL(q(ẽ)‖p(ẽ|s̃, ã, ĩ)) .

(11)

The first term is referred to as (Bayesian negative log) model

evidence, or marginal likelihood, which denotes the likelihood

that the sensory inputs were generated by a generative model

implicit in the Markov blanket m. The second term is called

relative entropy and works as to minimize the divergence

between the variational and posterior density q(ẽ) and p(ẽ|s̃, ã, ĩ),

respectively. As a result, maximizing model evidence results

in minimizing the free energy of the system, and because the

divergence of the second term can never be less than zero, free

energy is an upper bound on the negative log evidence. Using

this expression, the flow of autonomous (i.e., active and internal)

states becomes

(a′′) fa(s̃, ã, ĩ) = (Qa − Ŵa)∇ãF(s̃, ã, ĩ)

= (Ŵa − Qa)∇ã ln p(s̃, ã, ĩ|m)− (Ŵa − Qa)∇ãDKL

(b′′) fi(s̃, ã, ĩ) = (Qi − Ŵi)∇ĩF(s̃, ã, ĩ)

= (Ŵi − Qi)∇ĩ ln p(s̃, ã, ĩ|m)− (Ŵi − Qi)∇ĩDKL .

(12)

Crucially, the gradient descent on variational free energy

reduces the divergence in Equation (10) to its lower bound of

zero (because the divergence cannot be less than zero). At that

point, the gradients of the divergence in Equation (12) disappear

and the dynamics reduce to the self-organization in Equation

(9), which is what we aim to solve.

Now we can evaluate the variational free energy bound

in Equation (11) in a straightforward way given a generative

model; i.e., the joint probability over (generalized) external,

internal, and blanket states. We can therefore associate the

joint probability in Equation (11) with a likelihood; that is, the

probability of a cell’s states, given external states and a prior,

in our case the prior probability of a cell’s states (i.e., internal

states and their Markov blanket). This means that q(ẽ) plays

the role of a posterior density over hidden or external states

under a particular Markov blanket or model (m). Importantly,

this variational posterior is parameterized by internal states and

we can talk about the internal states encoding beliefs about

external states.

We now turn to the construction of this generative

model, where we employ variational filtering as the method of

quantification and minimization of a variational free energy,

which places an upper bound on the dispersion of a particle’s

internal states and their Markov blanket (Friston, 2010; Buckley

et al., 2017). This allows us to convert any process of

self-organization into a gradient descent on a free energy

landscape, where basins (minima) correspond to attractor

states, or goal states—akin to the target morphology—as

described next.

4.2. Active inference as a computational
framework for morphogenesis

In this section, we introduce self organization to non-

equilibrium steady-state under the lens of morphogenesis, using

the variational principles described above. To that end, we

simulated morphogenesis by specifying a generative model—

and an implicit variational free energy function—and simulated

self-organization by solving the equations of motion in Equation

(12), as in Friston et al. (2015) and Kuchling et al. (2020).

Given a target morphology specified in terms of the location

and differentiation of eight (undifferentiated) cells, we define

a body morphology that the cells (collectively) have to reach,

composed of a head, a body, and a tail (a single primary axis

of positional identity, as exists for example in many metazoa).

Migration and differentiation of each cell are key components

of reaching a specific target morphology. In the active inference

framework, it means that undifferentiated cells migrate and

differentiate by minimizing free-energy. The dynamics of

morphogenesis are mediated by chemotactic, biophysical, and

electrochemical signals. Cell division is not taken into account in

our model for the sake of simplicity. All cells are identical at the

beginning of the simulation and they don’t have any information

on what kind of cell they are or where they are. Although they all

have the same model, they are pluripotent and can differentiate

into any kind of cell at the end.

In this multi-agent system, the active states of one cell

(e.g., its secreted signaling molecules) are the external states

to other cells (whose diffused concentrations it measures

through it sensory states). Indeed, each cell has internal

states and sensory states (of the Markov blanket) that

correspond either to chemoreceptors of either extracellular and

intracellular concentrations, while cell migration or the release

of chemotactic signals are caused by the active states.

In terms of active inference, each cell is equipped with a

generative model that encodes the beliefs it has about what

chemotactic signals it should receive or express relative to its

location in the target morphology.

We need to specify the generative model given by the

probability density p(s̃, ã, ĩ|m) of sensory states s, active states a,

and internal states i, as well as the dynamics of the environment,

determined through the flow fẽ and fs̃ of external states e

and sensory states s, respectively. This allows us to specify the

requisite equations of motion for the system and its external

states. Here, we will adopt a probabilistic nonlinear mapping
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with additive noise:

s = g(1)(e(1))+ ω(1)

e(1) = g(2)(e(2))+ ω(2) ,
(13)

where the superscripts denote the first and second levels of our

hierarchical model g. Gaussian assumptions about the random

fluctuations or noise ω mean that we can write the requisite

likelihood and priors as:

p(s̃, ã, ĩ|ẽ1) = N(g(1)(e(1)),5(1))

p(ẽ1|ẽ2) = N(g(2)(e(2)),5(2)).
(14)

where N is the normal distribution, and 5(t) denotes the

precision (or inverse variance) of the random fluctuations.

We then construct the approximate posterior density q(ẽ)

introduced in Equation (10) using the associated Lagrangian or

Lyapunov function

L(x̃) =− ln p(s̃, ã, ĩ, ẽ|m)

=− ln p(s̃, ã, ĩ|ẽ1)− ln p(ẽ1|ẽ2).
(15)

Under a Laplace assumption, the variational density

becomes a normal distribution:

q(ẽ) = N(ĩ,−∇ĩĩL(s̃, ã, ĩ, ĩ)) , (16)

where ∇ĩĩL(s̃, ã, ĩ, ĩ)) denotes the curvature of the Lagrangian

with respect to internal states. With this generative model and

assumed form for the variational density, we can now evaluate

the variational free energy for any given sensory state and

perform a gradient descent according to Equation (12).

An agent minimizing variational free energy is essentially

updating beliefs of its environment and itself, under the

generative model, so that the evolution of the system will

inevitably lead to a non-equilibrium steady state of minimal free

energy. Again, this appears rather intuitive in a developmental or

regenerative biological context: cells function to remodel tissues

and organs, in order to minimize the global difference between

the current configuration and a species-specific anatomical

goal state (Pezzulo and Levin, 2015; Pezzulo and Cisek, 2016).

Such cellular behavior is based on perceived signals from their

environment, and act with respect to expectations that are

genetically encoded, and shaped by cellular learning (Baluška

and Levin, 2016).

As free energy corresponds to (an upper bound on) Bayesian

model evidence − ln p(s̃, ã, ĩ|m) as introduced in Equation

(11)—the ensuing self-organization is also self-evidencing. Self-

evidencing in neuroscience refers to the idea that the brain

is separated from its environment by a “statistical boundary,”

which can be formally described by the statistical construct

of a Markov blanket (Kirchhoff et al., 2018). We note that

such a description of a system’s dynamics in Bayesian terms

[such as Bayesian beliefs q(ẽ)] and self-evidencing is a purely

technical formulation based on the underlying mathematical

definitions within the framework, which can be ascribed to

simple systems like macromolecules and cells, as opposed to just

higher cognitive organisms.

The simulations in this work encompass a small set of

cells that are each equipped with the same generative model—

such that they collectively self-organize to minimize variational

free energy in an interdependent way, which has all the

characteristics of morphogenesis. This example is appropriate to

models such as the highly-regenerative planaria (Durant et al.,

2016; Levin et al., 2019), which we will use multiple times in

illustrating the principles in this work.

All the cells in our simulations are initialized with random

signaling profiles near the center of their environment. The

morphogenetic task of self-organization to a target configuration

thus corresponds, in this framework, to each cell inferring its

own location within the ensemble by forming and testing its

beliefs (or predictions) q(e) about the hidden causes of the

signaling concentrations it senses (i.e., the signaling molecule

secretion profiles and hence cell identities of the other cells

(Figure 2).

The active states a cell has control are the type of signals

it can secrete, and its movement in any direction in 2D.

Furthermore, each cell possesses a place-encoded model of a

target configuration common to all cells based on signaling

concentrations that would be sensed under that configuration.

Therefore, for each of the four possible cell types corresponding

to specific positions in the cell cluster, cells expect to sense

specific concentrations of signaling molecules.

Sensory states s are therefore chemotactic concentrations of

intracellular, exogenous and extracellular signals:

s =







sc

sx

sλ






=







ec

ex

λ(ex, ec)






+ ω , (17)

where e are the external states of concentrations c and positions

x of other cells. The signal concentration sλ at each position

of the i-th cell is given through the secretion and diffusion of

signaling molecules of each other cell j and of itself, determined

by the coefficient:

λi(ex, ec) = τ ·
∑

j

ecj · exp(−k dij) . (18)

Here, ecj is the combination of the four signals expressed at

each position j, depicted in Figure 2B as color coded around the

target positions e∗, that are defined in Figure 2C, and

dij =| exi − exj | , (19)
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FIGURE 2

Schematic of variational Bayesian simulation of simple body shape morphogenesis illustrated by the example of regenerative patterning

observed in planarian flatworms. (A) When dissecting out the center piece of a planarian flatworm, the constituent cells will remodel into a

whole new worm with normal body axis. For the purpose of illustrating our simulation and for simplicity, cells that form di�erent tissue types

were grouped together as one cell. (B) Expected Signal concentrations (background color hues) at each target final position (colored stars) in

the target morphology encode the cellular model of inference, with the same color encoding cell type from (A). (C) The target morphology for

the arrangement of cells is encoded by expectations of external signals e∗c for any given position e∗x in the defined target morphology that

constitutes the final configuration of cells. Each row in e∗c corresponds to a di�erent signaling type, while every column represents the signal

expression states for a di�erent cell. Adapted from Kuchling et al. (2020).

is the distance between the i-th cell and the remaining cells, to

which the secreted signal diffuses with diffusion coefficient k.

Analogous to stem cell-like behavior, we specify the same

generative model g for each cell:

g(e) =







e∗c
e∗x
λ∗






σ (e), (20)

where λ∗ = λ(e∗c , e
∗
x) is the signal concentration at the target

locations, and

σ (ej) =
exp ej

∑

j exp ej
(21)

is the softmax function (or normalized exponential). This is a

commonly utilized function in neural networks to enforce a sum

to one constraint, which allows an interpretation as a categorical

distribution over mutually exclusive outcomes.

Using these expressions—and the equations of motion from

the previous section—we can express the flow of internal and

active (i.a. autonomous) states from Equation (12) as

(a′′) fa(s̃, ã, ĩ) = (Qa − Ŵa)∇ãF(s̃, ã, ĩ) = Dã−∇ã s̃ · 5
(1)ǫ̃

(b′′) fi(s̃, ã, ĩ) = (Qi − Ŵi)∇ĩF(s̃, ã, ĩ) = Dĩ−∇ãǫ̃ · 5(1)ǫ̃

− 5(2) ĩ ,

(22)
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while suppressing higher order terms. Here, ǫ = s − g(i) is

the prediction error associated with sensory states—the state of

chemotactic signal receptors—and can hence be expressed as:

ǫ =







ǫc

ǫx

ǫλ






=







sc − e∗c σ (i)

sx − e∗xσ (i)

sλ − λ∗σ (i)






. (23)

D is the matrix derivative operator on generalized states and

the signal precision5(1) is set to 1. We assumed Gaussian priors

(with a mean of 0) over the hidden states with a small precision

5(2) (i.e., high variance) with a log precision of minus two.

With this generative model in place, the internal states

organize themselves to minimize (precision-weighted)

prediction error based upon predictions of sensed signaling

states from neighboring cells. In neuroscience, this scheme is

also referred to as predictive coding and can be viewed as a

generalized form of Bayesian (variational) filtering as described

earlier. Predictive coding describes the dynamics of the system

in terms of prediction errors ǫ through accumulation of model

evidence lnp(s̃, ã, ĩ|m), which maximizes likelihood p(s̃, ã, ĩ|ẽ1)

(Friston et al., 2009). This is exactly the type of process

underlying the formulation of variational free energy above.

Matlab software running these simulations, under different

conditions can be downloaded as part of the academic

SPM software from https://www.fil.ion.ucl.ac.uk/spm/software/

(accessed via a graphical user interface invoked with the

command >> DEM). The code of the simulations can be found

at https://github.com/LPioL/active_inference_morphopsy/.

5. Developmental defects as the
result of a deficit of sensory
attenuation or aberrant precision

Here, we use active inference to simulate dysmorphogenesis

and disorders of sensory attenuation, similarly to what we

discussed above, in relation to schizophrenic and autistic

patients. We first present the standard (non-pathological)

simulation of morphogenesis by setting appropriate values of

sensory and prior precisions. Then, we show and analyze three

simulations of aberrant morphogenesis. The first simulation

illustrates the effects of high sensory precision in driving

aberrant morphogenesis, analogous to what is observed in

negative symptoms of schizophrenia and autism. The second

simulation illustrates the effects of excessive prior precision in

driving aberrant morphogenesis, analogous to so-called positive

symptoms of schizophrenia (e.g., hallucinations and delusions,

Powers et al., 2017). The third simulation illustrates the effects

of low sensory precision in driving dysmorphogenesis, which

might be analogous to forms of hyporeactivity.

5.1. Standard (non-pathological)
morphogenesis

Setting appropriate values for the precision terms leads

to normal morphogenesis and the normal differentiation and

migration of cells, which reach the appropriate location in

the morphospace. The cells correctly infer their locations

by forming predictions about the hidden causes of the

signaling concentrations (without any perturbation of their

precision parameters) and they reach the target morphology (see

Figure 3).

In this simulation, ascending prediction errors are associated

with an appropriate sensory precision, and sensory signals are

processed in a context-sensitive way leading to an appropriate

collective inference.

5.2. Excessively high sensory precision in
morphogenesis

This simulation illustrates a deficit of sensory attenuation

(analogous to what is observed in autism and schizophrenia).

For this, we assigned an excessively high precision to the

biochemical signals sensed by all cells (see Figure 4), i.e., a value

that greatly exceeds the optimal value in this case. An excessively

high sensory precision will increase the influence of ascending

prediction errors of sensory channels in which the cells will place

more confidence. We can observe that during differentiation, all

cells become intestinal cells and they migrate without following

the body plan of the planaria; in other words, the cells tend to

stay around a circle. By assigning a high sensory precision, the

cells develop a deficit of sensory attenuation and do not behave

properly. They secrete chemicals as if they were already intestinal

cells and the collective organization and communication fail to

give them the appropriate information necessary to reach the

appropriate morphology. Sensory prediction errors stay high

during development, and top-down prediction errors are not

taken into account by the cells leading to this development

defect. Cells only integrate local cues, and high sensory precision

leads to their inability to contextualize sensory information.

This behavior renders sensory prediction errors too precise and

context insensitive as top-down information won’t be taken

into account.

This example illustrates a possible development of a

homogeneous tumor from a deficit of sensory attenuation.

The majority of the cells stay close to each other and do not

migrate appropriately. We can also observe some cells that

migrate very fast at the beginning of the morphogenesis. We

can draw a parallel in development with neurocristopathies

(Bolande, 1974). Neurocristopathies are a developmental defect

that are characterized by the abnormal specification, migration,

differentiation, or death of neural crest cells during embryonic
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FIGURE 3

(A) Time-lapse movie montage of simulation of normal morphogenesis. The eight initially unspecified cell types perform chemotaxis and update

their posterior beliefs in order to infer the correct target morphology. (B) Di�erentiation profile of the eight cells during morphogenesis. (C)

Free-energy minimization during morphogenesis.

FIGURE 4

(A) Time-lapse movie montage of simulation of morphogenesis with a deficit of sensory attenuation high precision on the sensory signals

received by the cells. The eight initially unspecified cell types perform chemotaxis and update their posterior beliefs in order to infer the correct

target morphology. (B) Di�erentiation profile of the eight cells during morphogenesis. (C) Free-energy minimization during morphogenesis.

development. High sensory precision leads to increased

estimates of and larger updates about environmental volatility

as is sometimes observed in relation to autism (Lawson et al.,

2017). Excessively precise systems (including cells) try to extract

too much information from noisy signals (or too close signals),

instead of treating noise as irreducible. This implies that such

a system will update its generative model frequently, without

improving its estimate over time. The system remains with some

unaccounted uncertainty and this may be stressful in biological

systems looking for homeostasis.

In Figure 5A, from two cells having too high precision,

we have a developmental defect where one head (red) cell
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FIGURE 5

(A) Results of the simulations for one to eight cells having a too high precision. (B) Results of the simulations for one to eight cells having a too high prior on their identity, the cells think they are

intestinal cells.
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FIGURE 6

(A) Time-lapse movie montage of simulation of morphogenesis with a deficit of sensory attenuation via high prior on identity of the cells. The

eight initially unspecified cell types perform chemotaxis and update their posterior beliefs in order to infer the correct target morphology. (B)

Di�erentiation profile of the eight cells during morphogenesis. (C) Free-energy minimization during morphogenesis.

can’t reach the appropriate location, but instead stays close

to intestinal cells and doesn’t completely differentiate. With

the increasing number of cells having too high precision, the

development of the tumor composed only of intestinal cells is

also increasing. The cells fail to infer their location and identity

as a collective, they are no longer able to communicate and infer

with the other cells.

5.3. Excessively high prior on the identity
of cells in morphogenesis

This second simulation illustrates the effects of assigning

an excessively high prior on the identity of the cells analogous

to what is hypothesized for the positive symptoms of

schizophrenia (see Figure 6). Too strong of a prior makes the

cells not accept contradictory information effectively, sensory

attenuation is too high reducing their ability to handle novel

circumstances (such as regenerative repair). Here, all cells

believe before differentiation and migration that they are

intestinal cells. We can observe that at the beginning of

morphogenesis (see Figure 6), cells are confused and migrate

in all directions and mostly at the center as if they were

intestinal cells. The differentiation in intestinal (yellow) cells

last 28 steps of the simulation and then the cells undergo

a partial differentiation to their appropriate identity trying

to recover the target morphology. We can observe that the

cells of the head and tail do not migrate perfectly to the

target morphology. Their location and their differentiation

are incomplete. Biologically, this resembles the remodeling of

scrambled “Picasso head” in tadpoles, with eyes, jaws, and other

organs in the wrong locations, into normal frog faces (Levin,

2021a).

This example also illustrates the pluripotential capacities of

the cells and the ability of self-assembly to recover from drastic

changes in precision and sensory attenuation.

Similar to the previous simulation, we can observe an

abnormal migration of cells as in neurocristopathies that result

from a derangement of neural crest migration, colonization, or

differentiation (Bolande, 1974, 1997).

As we can observe in Figure 5B, from four cells with a too

high expectation on their identities, we can observe incomplete

differentiation of several cells. After a period of time, cells

recover the target morphology with respect to the migration

to the appropriate locations, but the differentiation is not

complete. There is an important developmental noise, which

leads to a disorder of inference for the other cells in terms

of differentiation.

5.4. Excessively low sensory precision in
morphogenesis

This simulation illustrates the effects of setting a very low

sensory precision for all cells in the collective (see Figure 7).

A low sensory precision relative to the precision of prediction
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FIGURE 7

(A) Time-lapse movie montage of simulation of morphogenesis with a deficit of sensory attenuation via low sensory precision of the cells. The

eight initially unspecified cell types perform chemotaxis and update their posterior beliefs in order to infer the correct target morphology. (B)

Di�erentiation profile of the eight cells during morphogenesis. (C) Free-energy minimization during morphogenesis.

errors higher in the hierarchy, will bias perception toward prior

beliefs, which in this case are randomly initialized.

We can observe that intestinal cells do not successfully

differentiate; this is indicated by the fact that they remain brown

throughout the entire simulation. Only one pharynx cell (blue)

differentiates properly. The other pharynx cell is between an

undifferentiated state (brown) and a tail state (green). Overall

the cells didn’t migrate to the exact location of the target

morphology, but this brown-green incompletely differentiated

pharynx cell deviated the most from its target.

Low sensory precision is associated with hyporeactivity (Idei

et al., 2021). In this case, the cells would not react enough

to the chemicals they were sensing, leading to incomplete

differentiation and migration of several cells of the collective;

this in turn leads to failure of anatomical maturation.

5.5. Simulated biomedical intervention to
rescue a collective with two cells having
too high sensory precision

This simulation shows the effect of the reduction of

concentration signaling and sensitivity to the other cells signals

of the two cells having a too high precision (see Figure 8).

Without this intervention, the collective is unable to reach

the target morphology and one head (red) cell stays close to

intestinal cells and never fully differentiates. After the simulated

biomedical intervention, as we can observe in Figure 8, the

developmental defect is cured and all cells reach their location

with the appropriate differentiation. The developmental noise

we can observe in the pathological case is also removed.

This resembles the effects of antipsychotics for the treatment

of schizophrenia. Most of them are antagonists of D2 receptors

and therefore reduce the sensitivity of neurons to dopamine

(Seeman and Kapur, 2000). In our simulation, we reduced the

sensitivity to the other cell signals for the two cells having a

too high precision, suggesting that dopaminergic drugs acting as

antagonists could be tested in morphogenesis. Indeed, in active

inference, the precision of sensory information is assumed to be

mediated by neuromodulators, such as dopamine (Friston et al.,

2012) or acetylcholine (Vossel et al., 2014).

6. Experimental test of the dopamine
antagonist thoridazine on the
development of Xenopus laevis
embryos

Our framework emphasizes strong parallels between the

dynamics of cognition and those of collective cell behavior

during embryogenesis and regeneration. Due to evolutionary

conservation (Fields et al., 2020), these parallels are not

only functional but are mechanistic: the same machinery

used to drive information processing in the brain should be

implicated in the control of anatomical development. While

this first generation of such models do not have the detail

to be able to predict precisely that anatomical outcome of

specific perturbations, they do make a surprising prediction
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FIGURE 8

Timelapse of the rescue of two cells with too high precision via reduction of concentration signals and sensitivity to cell signals of the other cells.

not implied by other existing models of developmental events:

that perturbation of dopamine signaling will cause errors

in morphogenesis, including of non-neural tissues. Thus, we

next tested a prediction of our models—that finely-tuned

levels of sensory precision in cells are necessary for correct

embryogenesis—using a loss-of-function pharmacological assay

in early frog embryos. Thioridazine is a dopamine receptor

antagonist and has been used to treat schizophrenia (Fenton

et al., 2007). In the active inference framework, as a

dopamine receptor antagonist, this drug may reduce sensory

precision in biological systems (Friston et al., 2012) and

according to our simulations this drug should induce different

developmental defects. Thus, we applied this drug to Xenopus

laevis embryos during early stages (see section 6) and

scored their morphogenesis by the swimming larva stage.

Compared to normal embryos (Figures 9A-left, Figures 9B-

top), treated embryos exhibited abnormalities that included

hypopigmentation, kinked primary axes, edemas, abnormal face

shapes, malformed guts, and cleft cement glands (Figures 9A-

right, Figures 9B-bottom). The percentage of embryos with each

defect is shown in Figure 9C; raw counts are shown in Table 1.

These results are consistent with our models, which suggest

that modulation of mechanisms, such as neurotransmitter

signaling (known to be involved in information processing

in the field of behavioral and brain sciences), can regulate

morphogenesis of non-neural structures. More broadly, these

results contribute to the study of morphogenesis as behavior of a

collective cellular agent in anatomical morphospace (Fields and

Levin, 2022).

6.1. Experimental methods

6.1.1. Animal husbandry

Xenopus laevis tadpoles were raised in 0.1X Marc’s Modified

Ringers solution (MMR), pH 7.8, and were staged according

to Nieuwkoop et al. (2020). All embryos (pooled from separate

female frogs and then randomly divided) were raised at 14◦C.

Feeding stage animals were fed three times a week with Sierra

Micron powdered diet, and media changes were performed

on alternate days. Tadpoles were raised at a density of 100

tadpoles per 40 ml of media in 100 × 20 mm petri dishes.

All experiments were approved by the Tufts University Animal

Research Committee (M2020-35) in accordance with the guide

for care and use of laboratory animals.

6.1.2. Pharmacological exposures

Thioridazine (thioridazine-HCl, Sigma-Aldrich) was

dissolved in deionized water at 1mM, and were then frozen

in single use aliquots to prevent continuous re-thawing. Drug

exposure occurred at 90 µM in 0.1X MMR conducted on NF

stage 12.5–26 embryos that had been reared at 14◦C prior to

exposure. During the treatment, experimental and controls
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FIGURE 9

Experimental results showing the e�ects of thioridazine on the development of Xenopus laevis embryos. Compared to normal embryos in (A),

treated embryos exhibit significant levels of abnormalities that include hypopigmentation, kinked bodies, edemas, abnormal face shapes,

malformed guts, and cleft cement glands (B). The percent of embryos that had each defect is shown in (C). Treated embryos had higher

incidents of hypopigmentation (7.17%), edemas (12.67%), abnormal face shapes (13.5%), and cleft cement glands (4.5%) than their control

counterparts, summarized in (C). Each point represents one separate trial of 100 embryos each and is graphed as a mean with SEM and **p <

0.01 and *p < 0.05.

TABLE 1 Raw counts of thioridazine induced defects in six separate trials of 100 embryos.

Thioridazine Control

Hypopigmentation 7 1 1 22 1 11 0 0 0 0 0 0

Kinked body 4 4 4 1 2 14 0 0 6 5 3 0

Edema 4 1 1 46 18 6 0 0 6 2 1 0

Abnormal face shape 12 2 2 55 0 10 0 0 0 0 0 0

Gut 9 0 0 0 0 3 2 0 3 0 2 0

Cleft cement gland 0 4 4 0 0 19 0 0 0 0 0 0

embryos were kept at 18◦C. After the exposure they were

returned to 14◦C until they reached scoring stage 45. Scoring

was performed by inspection of morphology using transmitted

light microscopy.

7. Discussion

In this article, we simulated disorders of morphogenesis as

disorders of (collective) inference. The decision of one cell is a

function of the states of the other cells; or in other words, the

collective sends the appropriate signals to each individual cell. In

a functional sense, the collective “remembers” the body shape;

if one cell diverges, the collective continues emitting signals

that guide that cell until it again reaches the correct position.

We implemented deficits of sensory attenuation and aberrant

precision that are usually invoked as explanations of autism and

schizophrenia and also considered a low precision simulation

that has been linked to hyporeactivity. All of these simulations

lead to developmental defects via aberrant sensory precision

relative to the prior precision. We presented a proof of concept

appealing to disorders of inference and showed that precision

control is useful in understanding not only psychopathological

conditions, but also developmental defects and morphogenesis

(see Table 2).

We have furthermore shown how manipulations of the

information processing modes, in terms of precision and prior

strength, interplay with biochemical signals in developmental

biology, such as signaling ligand concentration and receptor

sensitivities. Crucially, our (simulated) results showed that the

Frontiers inComputationalNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fncom.2022.988977
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Pio-Lopez et al. 10.3389/fncom.2022.988977

TABLE 2 Table of the associations between active inference, psychopathology, and dysmorphogenesis.

Active inference Psychopathology Dysmorphogenesis

Excessively high sensory precision

Autism

Deficit of sensory attenuation

like in schizophrenia

Larger update about environmental volatility

Homogeneous tumor

Neurocristopathies

Total disorganization

Excessively high prior

(e.g., on belief states or the identity of cells)

Deficit of sensory attenuation

like in schizophrenia

Organs in the wrong place (Robin and Nadeau, 2001)

Not enough of one organ

Incomplete differentiation

Excessively low sensory precision Hyporeactivity

No differentiation of some cells (not enough growth)

Deficits of migration

Wrong organ

disrupting effect of individual cells’ signaling aberrations on the

overall morphology can be rescued by decreasing the diffusion of

signaling ligands and receptor sensitivities, an effect that would

have been hard to predict without our proposed view of certain

morphological defects as disorders of inference and precision

control (Pezzulo and Levin, 2015). This simulated result remains

to be experimentally tested in vivo and is left as future work. This

new framework that focuses on the precision of spatiotemporal

signal progression during development comes at an opportune

moment, when tools such as optogenetics (Bugaj et al., 2017)

and microfluidics (Sonnen and Merten, 2019) have provided

us for the first time with enough spatiotemporal precision to

study and manipulate these events in real time on a single

cell level.

If developmental defects are the results of disorders of active

inference similar to what we can find in psychopathologies

like schizophrenia or autism, it may be possible that the

psychoparmacology used for hyper- or hyporeactivity,

hallucinations, or other symptoms related to these diseases

could be used to address developmental defects. Various

case studies highlight this possibility. Indeed, by applying

different reagents targeting the glutamatergic, adrenergic,

and dopaminergic pathways to Xenopus laevis embryos

from gastrulation to organogenesis stages, Sullivan and

Levin observed numerous developmental defects, including

craniofacial defects, hyperpigmentation, muscle mispatterning,

and miscoiling of the gut (Sullivan and Levin, 2016). Serotonin

pathways are also implicated in left-right asymmetry and the

pre-neural morphogenesis (Fukumoto et al., 2005; Levin et al.,

2006). Serotonin signaling has also been linked to autism

and may be involved in this pathology during early brain

development (Yang et al., 2014). In addition, usually, dopamine,

serotonin, and adrenaline receptors, are molecular targets for

antipsychotics and schizophrenia (Stepnicki et al., 2018); and

we have now provided evidence that modulators of decision-

making in traditional behavioral systems have predicted effects

on morphogenetic behavior of cell collectives. Therefore, by

targeting similar pathways during development, we may be able

to reverse developmental defects.

These ideas are part of a bigger effort to solve the

inverse problem in regenerative medicine (Lobo et al.,

2014): strategies such as CRISPR and genome editing cannot

reach their full potential because it is usually too difficult

to know what to change at the hardware level (DNA

and pathways) to achieve desired changes at the level of

anatomy. Fortunately, neuroscience has blazed the trail in

a pluralistic understanding of complex systems: work in

that field (and types of intervention targets) ranges across

studies of ion channel protein structure, synaptic plasticity,

network roles in image processing and memory, behavioral

responses, and psychological drives and analysis. Neuroscience

would greatly benefit from understanding how non-neural

cells work, because neurons share many molecular and

functional properties with non-neural cells. Thus, while

current biomedical approaches have focused entirely on

manipulating the lowest level (gene regulatory networks

and protein structure/pathways), we propose to begin to

deploy interventions across scales in regenerative medicine, as

commonly occurs in the behavioral sciences.We have previously

proposed that high-level manipulation of tissues’ perceptions

and memories (via training for example) may be a better way

to manipulate large-scale properties of morphogenesis in health

and disease than bottom-up micromanagement of the protein-

level hardware (Pezzulo and Levin, 2015; Mathews and Levin,

2018).

The active inference framework is a very powerful aspect

of system-level functionality in cognition (Friston K. et al.,

2017; Pezzulo et al., 2018; Parr et al., 2022), and a key target

of strategies to exploit invariants between neuroscience and

other fields (Friston, 2013; Fields and Levin, 2020; Fields et al.,

2021). Thus, once we reach a better understanding of the

role of precision in development and morphogenesis, it may

be possible to apply “reverse inference” as we can see for

computational psychiatry (Schwartenbeck and Friston, 2016).
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Reverse inference in development/morphogenesis reflects the

probability of a developmental process being present given

the knowledge of activation in a particular tissue region.

The aim is to infer from a specific anatomy which precision

parameters caused it (i.e., which precision parameters were

incorrectly set). Similarly to Schwartenbeck and Friston (2016)

where the researchers infer the model parameters of a single

subject or a group of subjects from measured behavioral

or neuronal responses, it could be possible to develop a

“computerized clinical diagnosis” for developmental defects

leading to specific biomedical interventions. These are just

the first steps on a roadmap to regenerative medicine that

borrows from neuroscience the highly fruitful approaches

focused on modulation of systems at different levels, from

molecular pathways to behavioral decision-making. A future

computational somatic psychiatry will take advantage of the

tools of behavioral and cognitive sciences to manipulate not

only the hardware of cellular pathways, but also the decision-

making of cellular collectives. By taking seriously the native

competencies of tissues (Levin, 2021b, 2022c), it may eventually

be possible to effectively modulate outcomes in birth defects,

traumatic injury, and cancer, not by micromanagement but by

quantitative behavior shaping in morphospace.
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