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Noise-tuned bursting in a
Hedgehog burster

Jinjie Zhu1,2* and Hiroya Nakao2

1School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, China,
2Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan

Noise can shape the firing behaviors of neurons. Here, we show that noise

acting on the fast variable of the Hedgehog burster can tune the spike counts

of bursts via the self-induced stochastic resonance (SISR) phenomenon. Using

the distance matching condition, the critical transition positions on the slow

manifolds can be predicted and the stochastic periodic orbits for various noise

strengths are obtained. The critical transition positions on the slow manifold

with non-monotonic potential di�erences exhibit a staircase-like dependence

on the noise strength, which is also revealed by the stepwise change in the

period of the stochastic periodic orbit. The noise-tuned bursting is more

coherent within each step while displaying mixed-mode oscillations near the

boundaries between the steps. When noise is large enough, noise-induced

trapping of the slow variable can be observed, where the number of coexisting

traps increases with the noise strength. It is argued that the robustness of SISR

underlies the generality of the results discovered in this paper.
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self-induced stochastic resonance, noise-induced phenomenon, bursting, mixed-
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1. Introduction

How can we change the spike counts of a bursting neuron? From the viewpoint

of dynamical systems, a burst consists of a series of spikes followed by a period of

quiescence, and the spiking activity is caused by the fast currents while modulated by

the slow currents through a variety of bifurcations (Izhikevich, 2007). For a single unit,

varying the bifurcation parameter or the timescale separation parameter may lead to

changes in spike counts of a burst (Wang, 1993; Barrio and Shilnikov, 2011; Zhu and

Liu, 2017). For coupled bursting neurons, the effects of time delay and coupling can also

induce various bursting patterns with different numbers of spikes in each burst (Dhamala

et al., 2004; Zhu and Liu, 2017; Jia et al., 2018) or even termination of bursting such as

amplitude death (Thottil and Ignatius, 2017).

Noise is inevitable and may play functional roles in neuronal systems (Lindner et al.,

2004; Faisal et al., 2008; McDonnell and Ward, 2011; Schmerl and McDonnell, 2013;

Bauermann and Lindner, 2019). For excitable neurons close to bifurcation, noise of

moderate strength can give rise to coherent oscillations. This noise-induced oscillatory

phenomenon was named coherence resonance (CR) (Hu et al., 1993; Longtin, 1997;

Pikovsky and Kurths, 1997). For noise acting on the fast variable, DeVille et al. (2005) and

Muratov et al. (2005) found a stochastic resonance-like coherent behavior and referred
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to it as self-induced stochastic resonance (SISR). Both CR and

SISR can be significantly relevant to the dynamical behaviors

in neuronal systems (Yamakou and Jost, 2019; Touboul et al.,

2020; Yamakou et al., 2020; Baspinar et al., 2021; Zhu et al.,

2022). In particular, SISR is proven to be more robust than CR

since SISR does not require the system to be close to bifurcation

(DeVille et al., 2005). Further, SISR can occur in a wider range of

noise strengths and different noise strengths can induce different

coherent stochastic orbits (DeVille et al., 2005; Zhu and Nakao,

2021). This property is highly relevant to our question, that is,

noise may also tune the spike counts in a bursting neuron.

The mathematical mechanism of the SISR oscillator was first

analyzed by Freidlin regarding the motion of a light particle in

the force field perturbed by small noise (Freidlin, 2001). Later,

Muratov et al. (2005) showed its ubiquity in randomly perturbed

excitable systems and termed it as SISR. The large timescale

separation is important for the realization of SISR in that larger

timescale separation enables the coherent oscillations to occur

in larger intervals of the noise strength (Muratov et al., 2005;

Yamakou and Jost, 2018). In the limit of vanishing noise and

large timescale separation of fast-slow systems, the stochastic

dynamics exhibit almost deterministic periodic oscillations,

which can be predicted by the timescale matching condition

(DeVille et al., 2005; Muratov et al., 2005; Yamakou and Jost,

2018; Yu and Liu, 2021). However, this condition does not

consider the differences in timescales on different branches,

which can be important to the transition positions, e.g., in the

FitzHugh-Nagumo (FHN) neuronmodel (Zhu andNakao, 2021;

Zhu et al., 2022). Recently, we proposed a distance matching

condition, which solves this problem by defining the so-called

mean first passage velocity (Zhu and Nakao, 2021). In this

paper, we use this condition to analyze the bursting neuron

whose potential difference between the slow manifold and the

barrier is non-monotonic. Our analysis reveals the possibility to

control the spike counts in the bursting neurons solely by the

noise strength.

2. Materials and methods

2.1. Hedgehog burster

We consider a modified version of the FHN neuron model,

which can exhibit bursting behaviors in two dimensions. This

model is named Hedgehog burster by Izhikevich (2000) due to

the hedgehog-like limit-cycle attractor. The governing equations

are as follows:

ε
dx

dt
= f (x, y),

dy

dt
= g(x, y),

(1)

where f (x, y) = x − x3

3 − y + 4 L(x) cos(40y), g(x, y) =
x + a, and x, y represent the fast membrane potential and the

slow recovery variable, respectively. The timescale separation

is characterized by the small parameter ε = 0.0001. The

bifurcation parameter a = −0.2 is fixed so that the fixed

point is unstable and there is a stable limit cycle as shown in

Figure 1A. The Hedgehog burster described by Equation (1) is

different from the original FHN model because of the cosine

term cos(40y) with the logistic function L(x) = 1
1+exp[5(1−x)]

.

The logistic function L(x) is chosen so that the left branch

of the x nullcline remains nearly unchanged while the right

branch fluctuates, which is key to the realization of the bursting

behavior. The large timescale separation forces the Hedgehog

limit cycle to stick to the slow manifolds (the left and right

branches of the x nullcline). As such, the wavy right branch

of the x nullcline determines the spike counts in each burst

(six spikes in Figure 1B), which can be also observed in the

time series of y(t) as in Figure 1C. It can also be observed

that there is a closed loop of the x nullcline on top of the

right branch (in fact, there are more such loops above). Initial

states on this loop remain on it for a while and then jump to

the left nullcline, giving a single spike. However, the dynamics

related to this loop are transient, which are out of the scope of

this paper.

2.2. Stochastic periodic orbits by SISR

Noise can not only modify the system’s deterministic

behavior, but can also induce new phenomena that are not

observed in deterministic systems. DeVille et al. (2005)

and Muratov et al. (2005) showed that noise acting on the

fast subsystem can give rise to a stochastic resonance-type

phenomenon, which was named SISR. In SISR, the system’s

state follows the slow manifold while making an almost

deterministic transition at a critical position so that the

resulting stochastic oscillation can be very coherent. SISR

resembles the stochastic resonance (SR) phenomenon in

that both SR and SISR exhibit barrier-crossing behaviors.

However, the potential difference is modulated by the

external periodic signal in SR while by the slow variable

in SISR.

The noise-induced coherent orbits caused by SISR are

completely different from the deterministic limit cycle, as we

will see later for the Hedgehog burster. Here, we show for the

Hedgehog burster with non-monotonic potential differences,

the SISR can still be predicted by using our previously proposed

distance matching condition (Zhu and Nakao, 2021).

The governing equation for the noise-perturbed Hedgehog

burster is as follows:

ε
dx

dt
= f (x, y)+

√
εξ (t),

dy

dt
= g(x, y),

(2)
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FIGURE 1

Phase portrait and time series of the Hedgehog burster (Equation 1). (A) Phase portrait. The blue curves and the red line represent the x and y

nullclines, respectively. The black curve with arrows illustrates the stable limit cycle, where the dots indicate the states on the limit cycle with

equal time intervals. (B,C) Time series of the membrane potential x(t) and the recovery variable y(t).

FIGURE 2

(A) Potential function U(x; y), where y is regarded as a fixed parameter. The red curve is the x nullcline, which follows the local extrema of the

potential for each fixed y. (B) Potential di�erences between the middle and left branches, dUml = Um − Ul and between the middle and right

branches, dUmr = Um − Ur , where Ul , Um, and Ur denote the potential values on the left, middle, and right branches for given y, respectively.

where f (x, y) and g(x, y) are the same as in Equation (1),

ξ (t) is the Gaussian white noise satisfying 〈ξ (t)〉 = 0, and

〈ξ (t)ξ (t′)〉 = σδ(t − t′), where σ represents the noise strength.

Figures 5, 6 illustrate typical noise-tuned bursting dynamics

of the system (Equation 2) obtained by the Monte Carlo

simulations with several noise strengths. Depending on the noise

strength, the system exhibits different stochastic periodic orbits.

To theoretically predict the stochastic periodic orbit of the SISR

phenomenon, we follow the similar procedure as in Zhu and

Nakao (2021).

3. Results

3.1. Noise-tuned bursting in hedgehog
burster

In what follows, we will apply the distance matching

condition (Zhu and Nakao, 2021) to predict the transition

positions on the stable branches of the x nullcline. The distance

matching condition compares the noise-induced displacement

of the state away from the stable branch and the distance
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FIGURE 3

Identification of the critical transition positions by the distance matching condition, Equation (5). (A) Left branch. The blue curves and the black

curve represent the lhs and rhs of Equation (5), respectively. (B) Right branch. The red curves and the black curve represent the lhs and rhs of

Equation (5), respectively. Six patches in gray and yellow correspond to those in Figure 1A. Noise strengths for the integration curves of the lhs

of Equation (5) are from 10−3 to 10−0.5 with equal logarithmic intervals [(A): from left to right; (B): from right to left]. The red dashed curves in (B)

display the result for σ = 10−0.5.

from the stable branch to the unstable one. When these two

distances are equal to each other, transition happens with a large

probability.

When the state is on the left branch of the x nullcline, for

each fixed y, there is a corresponding mean first passage time

(MFPT) Te obtained from the Kramers rate (Kramers, 1940;

Gardiner, 1985):

Te(y) =
2π

√

|U′′
m(x; y)|U′′

l
(x; y)

exp

(

2dUml

σ

)

, (3)

where the potential function U(x; y) = −
∫

f (x, y)dx + C (C is

a constant and y is regarded as a fixed parameter). The double

prime over the potential function represents the second-order

derivative with respect to x. Denoting the potential function

on the left, middle, and right branches as Ul, Um, and Ur ,

respectively, the potential difference between the middle and

left branches, dUml = Um − Ul, and the middle and right

branches, dUmr = Um − Ur , can be easily calculated. The

landscape of the potential function (the constant C can be safely

set to zero as it is eliminated in Equation 3) and the potential

differences are shown in Figure 2. The potential difference

dUml monotonically decreases for decreasing y. However, the

potential difference dUmr largely fluctuates while decreases

on average for increasing y. Thus, the potential differences

have more than one intersection points, which is significantly

different from the FHN neuronmodel with monotonic potential

differences (Zhu and Nakao, 2021). The intersection points

in Figure 2B give the values of y at which the two potential

differences are equal to each other. At these points, the boundary

crossing of x from the left branch to the middle branch and that

from the right branch to the middle branch are equally difficult.

From the MFPT, the mean first passage velocity (MFPV)

function can thus be defined as in Zhu and Nakao (2021):

Ve(y) =
S(y)

Te(y)
, (4)

where S(y) = xm(y) − xl(y) is the distance between the middle

and the left branches of the x nullcline for fixed y. The distance

matching condition for the transition from the left branch to the

middle branch is as follows: for the system state starting from

y0(t0) and reaching the critical transition position y∗(t∗), the
total displacement in the x direction from the left branch can

be obtained by integrating the MFPV over time, which should

be equal to the distance S(y) between the branches. By using

Equations (3) and (4), we can express the distance matching

condition in a self-consistent manner (Zhu and Nakao, 2021) as

∫ y∗

y0

S(y)
√

|U′′
m(x; y)|U′′

l
(x; y)

2π
(

xl(y)+ a
)

ε exp
(

2dUml
σ

) dy = S(y∗), (5)

where we have changed the variable of integration from t to y by

using dy = ε(x + a)dt. By solving Equation (5), we can obtain

the critical transition position y∗.
Figure 3A plots the integral on the left-hand side (lhs) and

the distance on the right-hand side (rhs) of Equation (5) for

the left branch as functions of y for different noise strengths.

The intersection points between the lhs (blue) and rhs (black)

correspond to the critical transition position y∗. The starting
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FIGURE 4

Critical transition positions and bursting periods. (A) Critical transition positions on the left branch (blue triangles) and right branch (red circles).

The black crosses represent the transition positions on the left branch obtained by modifying the lower limit of integration as explained in the

text. (B) Bursting periods. Theoretical prediction, Equation (6) vs. the Monte Carlo simulations (averaged for t = 200 with error bars showing the

standard deviation). Noise strengths are the same as in Figure 3.

position of the system state is chosen as y0 = 0.221, which is

the maximum value of y for the deterministic limit cycle on the

left branch shown in Figure 1A.We will see later that the starting

position is not important as long as it is far enough from y∗. The
critical transition position on the left branch is plotted against

the noise strength in Figure 4A (blue triangles). As expected, the

transition position gradually increases with the noise strength.

The critical transition position on the right branch can

be similarly calculated. However, due to the non-monotonic

potential difference as shown in Figure 2, the transition process

along the right branch should be treated differently. To this

end, we divide the right branch into six regions as shown in

Figure 1A and apply the distance matching condition separately.

In each region, we start the system state from the bottom-

rightmost position on the branch (where the potential is locally

minimum) and seek the self-consistent solution to Equation (5),

where the lower limit y0 of integration is taken as the y

coordinate of the starting position. This procedure is started

over again in every region. The results on the right branch are

illustrated in Figure 3B for different noise strengths, where the

first intersection of the lhs (red) and rhs (black) gives the critical

transition position. It should be noted that the intersection takes

place only on the left half of each region before the minimum of

the distance curve (rhs, black). This means that if the transition

cannot occur before the position with the minimum potential

difference, then the transition after that position is extremely

difficult in each region.

Figure 4A also displays the obtained critical transition

positions for various noise strengths on the right branch (red

circles), which shows a significantly different tendency from

those on the left branch (blue triangles). The transition positions

exhibit several stages and decrease stepwisely with the noise

strength, corresponding to the different regions on the right

branch in Figure 1A. In Figure 4A, the transition positions on

the left and right branches intersect at (σ , y∗) ≈ (0.173,−0.253),

which corresponds to the case that the transitions occur at

the same position (y∗l = y∗r ≈ −0.253). Above this noise

strength, i.e., σ > 0.173, the predicted transition positions

cannot constitute a complete orbit and are meaningless.

In numerical simulations, further increasing the noise

strength (σ > 0.173) will make the actual transition positions on

the left and right branches asymptotically approach each other

(but never cross). The crossing at (σ , y∗) ≈ (0.173,−0.253)

of the predicted transition positions in Figure 4A is due to

the fixed initial position y0. A more appropriate value for the

starting position y0 is to choose the critical transition position

on the other branch. We modify the starting positions on the

left branch to the transition positions on the right branch and

obtain the corrected y∗ as in Figure 4A. The modified results

almost coincide with the original ones except when the two

transition positions on the left and right branches get too close.

This is because only a small interval of y contributes to the

transition process, as can be seen from the steep curves in

Figure 3. Therefore, y0 can be chosen arbitrarily above but not

close to the transition position (Zhu and Nakao, 2021).

After computing the transition positions on each branch, the

complete stochastic periodic orbit can be accordingly obtained

by gluing the slow motions along the slow manifolds at these

transition positions. Figure 5 plots the predicted stochastic

periodic orbits for several representative noise strengths that

correspond to the black dashed lines labeled as S1–S4 in

Figure 4A. The theoretical predictions are in good agreement
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FIGURE 5

Stochastic periodic orbits and time series with the single-escape transition for di�erent noise strengths. The bold orange and the thin gray

curves are the theoretical periodic orbits and the results of Monte Carlo simulations, respectively. From top to bottom, the parameters are:

σ = 0.00455 (S1), σ = 0.0207 (S2), σ = 0.0695 (S3), and σ = 0.16 (S4). They correspond to the black dashed lines S1–S4 in Figure 4A.

with the results of Monte Carlo simulations. Even for large

enough noise (S4), the range of y can be well predicted despite

the relatively poor prediction on x. Increasing the noise strength

will decrease the size of the stochastic periodic orbit. Therefore,

it can be seen that noise can tune the spike counts in every burst

at different stages in Figure 4A. From S1 to S4, there are 6,5,3,

and 1 spikes in each burst.

Considering the large timescale separation, the period of the

bursting orbit can be approximated by themotion along the slow

manifolds on the left and right branches, which is given as

Tbursting =
∫ ycl

ycr

dy

ε
(

xl(y)+ a
) +

∫ ycr

ycl

dy

ε
(

xr(y)+ a
) , (6)

where ycl and ycr denote the critical transition positions on

the left and right branches, respectively. The predicted periods

are also in good agreement with the simulation results in

different transition stages as shown in Figure 4B. The small

standard deviation within each stage implies highly coherent

oscillations, which can be observed in Figure 5. We can see that

for each noise strength, the transition occurs near the leftmost

tip of the right branch of x nullcline in each region. There

is only one transition position on the right branch, which we

call single-escape transition. On the other hand, the period

near the boundary between two different stages has a larger

standard deviation. The overestimation and underestimation of

the bursting period near the boundaries imply the emergence

of the mixed-mode oscillations. Three typical noise-induced

mixed-mode oscillations are illustrated in Figure 6. In contrast

to Figure 5, the system state can transit at two tips of the right

branch, which we call double-escape transition. Indeed, for the
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FIGURE 6

Stochastic periodic orbits and time series with the double-escape transition for di�erent noise strengths. The thin gray curves are the results of

Monte Carlo simulations. From top to bottom, the parameters are: σ = 0.013 (D1), σ = 0.04 (D2), and σ = 0.1 (D3). They correspond to the pink

dot-dashed lines D1–D3 in Figure 4A. The red and blue arrows in the left panel display the two transition positions, which lead to di�erent spike

counts in the burst. The red and blue lines in the right panel illustrate mixed-mode oscillations of the slow variable y(t).

noise strength near the boundary between the two stages of

coherent oscillations, the critical transition position begins to

switch from one region to the other (i.e., the first intersection

point switches from one valley to the other of the black distance

curve in Figure 3B). Therefore, for these noise strengths, the

transition can occur at different tips on the right branch for

different realizations.

3.2. Large noise-induced slow variable
traps

As discussed in the previous section, for large noise, the

critical transition positions on the left and right branches

approach each other asymptotically. For the FHN model, we

have shown in Zhu and Nakao (2021) that, as the noise strength

increases, the size of the stochastic periodic orbit will shrink and

the period will approach zero. This is also true in the present

case as we can see from Figure 4B or Figure 5. Furthermore, for

sufficiently large noise, there appears a stable region where the

slow variable y is almost clamped at a fixed value in the steady

state after the transient in the FHN system (Zhu and Nakao,

2021) (see also Touboul et al., 2020 for large noise-induced

asynchrony in interacting neuronal ensembles).

For theHedgehog burster investigated in this paper, the non-

monotonic potential difference enables more than one stable

regions where the slow variable y is restricted in a small interval,

which we call slow variable traps. Due to the large noise strength,

the transition occurs in a small window of the slow variable y

(below the small window, the transition from the left branch

is instant and above it the transition from the right branch
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FIGURE 7

Slow variable traps for large noise. From top to bottom, σ = 0.5, 0.65, and 0.8. Left panels show the stable phase portraits and orbits; right panels

show the time series from five di�erent initial conditions.

is instant). In Figure 7, the slow variable trap phenomenon is

shown for three large values of the noise strength. For σ =
0.5, 0.65, and 0.8, there are 3, 4, and 6 stable slow variable traps,

respectively.

The widths of the orbits, i.e., the fluctuations of the slow

variable in the traps are slightly different from each other. The

thinnest orbit in the left panel of Figure 7 is the yellow one near

y = −0.25, which corresponds to the first intersection point of

the potential difference curves dUml and dUmr in Figure 2B (or

the crossing of the transitions positions on different branches

in Figure 4A). For upper traps, the potential difference dUml

is large and it requires longer interval for the transition from

the left branch to occur; while for lower traps, the potential

difference dUmr is large and it requires longer interval for

the transition from the right branch to take place. At the

middle trap at y ≈ −0.25, the transitions from the left and

right branches are balanced, resulting in smaller fluctuations

in y.

In Figure 7, it is interesting to note that before the state

becomes trapped into the stable region, the state remains in

another metastable region for certain time in the case with σ =
0.5 (cyan and green). This kind of transient trap phenomenon

may also occur in coupled SISR systems and influence the

collective dynamical behavior in large ensembles.

4. Discussion

We have investigated the noise-tuned bursting in a

Hedgehog burster, where the noise is applied to the fast

variable. Through the proposed distance matching condition,

the stochastic periodic orbits were well predicted and the results

of Monte Carlo simulations were reproduced. It was found that

increasing the noise strength leads to the shrinking of the orbits.

This implies that the spike counts in each burst can be tuned

by varying the applied noise strength. Moreover, mixed-mode

oscillations with the double-escape transition from the right

branch can be realized near the boundaries between different

stages. Finally, large noise-induced slow variable traps were

analyzed, where the number of stable traps depends on the noise

strength. The coexistence of multiple traps for the Hedgehog

burster is a notable phenomenon that cannot be observed in the

FHNmodel that permits only one trap when large enough noise

is applied on the fast variable.
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FIGURE 8

Noise-induced and noise-tuned bursting in excitable Hedgehog bursters. (A–E) The bifurcation parameters are: a = 1.5, 1.4, 1.3, 1.2, and 1.1,

respectively. Black and blue curves represent trajectories for noise strengths above and below the threshold values shown in the inset of (F). Red

dots denote the stable equilibrium points. (F) Variation of the y nullcline with the bifurcation parameter a. The inset displays the threshold values

of noise strength obtained from the distance matching condition (Equation 5).

It should be noted that although the Hedgehog burster

considered in this paper is in the oscillatory case, noise-

tuned bursting can also occur in the excitable situation

as shown in Figure 8 (see Appendix A). In that case, a

lower bound of the noise strength exists for the coherent

oscillations to occur, which depends on the bifurcation

parameter a. Larger values of a lead to higher transition

positions on the left branch as shown in Figure 8, which

illustrates that the bifurcation parameter in the excitable

Hedgehog burster also has a significant influence on the noise-

tuned bursting.

Despite that the Hedgehog burster studied in this paper

is quite artificial, it shares similar dynamics with other

high-dimensional bursting neurons, such as the Hindmarsh-

Rose neuron model. It should be noted that the SISR

mechanism allows coherent oscillations to occur away

from local bifurcations, which leads to robustness of the

phenomena investigated in this paper to parameter variations.

Therefore, it is promising to observe these phenomena in

other fast-slow dynamical systems experimentally. Besides,

neurons behave collectively in vivo. It has been shown

that SISR can play an important role in the interacting

excitable FitzHugh-Nagumo systems with synchronization

and anticoherence (Touboul et al., 2020). As synchronization

manifests its significance in both normal and pathological

(e.g., in Parkinson’s disease and epilepsy) cases, the control

of bursting patterns on a single neuron and the ensembles

related to the contents investigated in this paper is of great

interest. These open problems will be investigated in our

future works.
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Appendix

Noise-induced and noise-tuned
bursting in excitable Hedgehog
burster

Although the Hedgehog burster investigated in this paper

has a stable limit cycle without noise, we have shown that the

stochastic periodic orbits induced by SISR are different from

the deterministic limit cycle. In fact, even when there is no

deterministic limit cycle in the Hedgehog burster, i.e., when the

bifurcation parameter a > 1 in system (Equation 1), noise can

still induce coherent oscillations.

Different from the oscillatory case, the excitable Hedgehog

burster has a lower bound of the noise strength (Yamakou

and Jost, 2018; Zhu and Nakao, 2021), below which the

transition to the right branch approximately obeys a Poisson

process. The lower bound of the noise strength is given by the

point at which the intersection of the lhs and rhs ceases to

exist. The critical values are plotted in the inset of Figure 8F.

As expected, the lower bound increases with a since an

earlier transition requires a larger noise strength. Figures 8A–E

illustrate stochastic trajectories above and below the lower

bound of the noise strengths, where coherent oscillations can be

induced in the former case while the noise is too weak to initiate

transitions in the latter case.

The noise-tuned bursting behaviors can be similarly

investigated as in the main text. The difference is that there

is a lower bound of the noise strength in the excitable case in

contrast to the oscillatory case and coherent oscillations can only

be observed above this bound. As a result, the spike counts in

each burst can be also influenced by the bifurcation parameter.

For example, there are at most five spikes for a = 1.3 (Figure 8C)

whatever the noise strength is. Thus, in the excitable Hedgehog

burster, the bifurcation parameter a can also have significant

influences on the noise-tuned bursting. On the one hand, the

transition position on the left branch can be raised by lifting

the equilibrium point. On the other hand, the lower bound of

the noise strength for coherent oscillations will also modify the

transitions on the right branch.
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