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Perineuronal nets restrict
transport near the neuron
surface: A coarse-grained
molecular dynamics study

Kine Ødegård Hanssen* and Anders Malthe-Sørenssen

Department of Physics, University of Oslo, Oslo, Norway

Perineuronal nets (PNNs) are mesh-like extracellular matrix structures that

wrap around certain neurons in the central nervous system. They are

hypothesized to stabilize memories in the brain and act as a barrier between

cell and extracellular space. As a means to study the impact of PNNs on

di�usion, the nets were approximated by negatively charged polymer brushes

and simulated by coarse-grained molecular dynamics. Di�usion constants

of single neutral and single charged particles were obtained in directions

parallel and perpendicular to the brush substrate. The results for the neutral

particle were compared to di�erent theories of di�usion in a heuristic manner.

Di�usion was found to be considerably reduced for brush spacings smaller

than 10 nm, with a pronounced anisotropy for dense brushes. The exact

dynamics of the chains was found to have a negligible impact on particle

di�usion. The resistance of the brush proved small compared to typical values

of the membrane resistance of a neuron, indicating that PNNs likely contribute

little to the total resistance of an enwrapped neuron.

KEYWORDS

perineuronal net, molecular dynamics, coarse-grained molecular dynamics, polymer

brush, di�usion, transport, resistance

1. Introduction

Perineuronal nets (PNNs) are mesh-like extracellular matrix structures that ensheath

the soma and proximal dendrites of neurons in the brain, particularly parvalbumin-

positive (PV) interneurons (van ’t Spijker and Kwok, 2017). They have garnered

particular interest over the last two decades because of their proposed role in stabilizing

long-term memory (Pizzorusso et al., 2002; Tsien, 2013), a hypothesis which have later

been corroborated by experiments (Thompson et al., 2018; Carulli et al., 2020). The nets
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have a complex structure and consist to a large degree of

glycosaminoglycans, a family of long, unbranched and highly

negatively charged polysaccharides. Due to their large negative

charge, the nets are hypothesized to restrict ion transport

(van ’t Spijker and Kwok, 2017). Developing an improved

understanding of how PNNs can act as transport barriers is

important because ion concentration and transport affect cell

function.

PNNs may be considered to comprise a porous system, with

similarities to polymer brushes. However, the exact structure

of PNNs remains difficult to characterize. The impact of the

structure of PNNs on transport into, out of and around

neurons is therefore sparsely understood. Given the limited

insight into the precise structure of PNNs, it is important to

develop an improved understanding of the general properties

of diffusional transport in polymer networks and brushes that

reflect general aspects of PNNs. While the fundamental process

of diffusion has been well understood since Einstein’s seminal

paper in 1905 (Einstein, 1905; Tartakovsky andDentz, 2019), our

understanding of diffusion near surfaces and inside tight porous

media is still being developed. For example, recent studies

address surface diffusion (Postl et al., 2022), diffusion inside

nanotubes (Zelenovskiy et al., 2020) and inside planar polymer

brushes (Wetzler et al., 2020; Luo et al., 2021) or diffusion of

spherical brushes in a polymermelt (Chen et al., 2022). Diffusion

in polymer brushes are also of interest in other applications, such

as for our understanding of lubricants (Spirin et al., 2011) and

for nanoscience and technology (Zhang and Xiang, 2013).

Computational studies of diffusional transport can

complement experimental studies in particular in cases where

detailed measurements prove difficult, like inside shearing

brushes (Ou et al., 2012). Molecular dynamics (MD) simulations

have the advantage of yielding deterministic, time-dependent

trajectories. A number of molecular dynamics studies have

been conducted both on polymers in general and polymer

brushes in particular. Singh et al. (2015) applied implicit

solvent molecular dynamics simulations through the Langevin

equation on apposing neutral polymer brushes represented by

a coarse-grained bead-spring model without bending terms

in the potential. The density profiles, compression curves and

friction was found. Studies of charged apposing brushes using

implicit solvent were performed by Ou et al. (2012) and Cao

et al. (2010). Both papers found the friction coefficient µ,

monomer density profile ρm and degree of interpenetration

I under shear motion for two apposing charged polymer

brushes with bond stiffness and steric effects through the finitely

extensible linear elastic (FENE) (Kremer and Grest, 1990) and

Lennard-Jones (LJ) potentials, but no potential accounting for

bending stiffness. The osmotic pressure and virial terms were

plotted against the separation distance by Cao et al. (2010).

Ou et al. (2012) found the normal pressure for three different

separation distances, but put effort into comparing µ, ρm and I

of apposing charged and apposing neutral brushes with different

counterion valency. Singh et al. (2016) studied the effect of

chain stiffness, grafting density and wall separation on apposing

electrically neutral polymer brushes by incorporating a tunable

cosine bending potential, finding the normal stress, shear stress

and friction coefficient. Additionally, they probed the structure

by measuring the brush height and number density as a function

of chain stiffness and grafting density. A relation between the

radius of gyration Rg and the of bending stiffness was found.

Unlike the papers of Cao et al. (2010), Ou et al. (2012), Singh

et al. (2015), and Singh et al. (2016) made use of explicit water.

MD studies of insertion forces, inclusion free energy and

osmotic pressure in coarse-grained polymer brushes were

performed for particles of different shapes and sizes by de Beer

et al. (2016) and different sizes, solvent conditions and degree

of polydispersity by Merlitz et al. (2012) using the LJ and FENE

potential and implicit solvent through the Langevin equation.

Brush configurations were studied by Li et al. (2018) who

investigated the effect of counterion valence on the configuration

of a spherical brush confined between two planes. The structure

was probed by the end monomer distribution, ρm, brush

thickness, Rg , and the radial distribution function gnp between

brush monomers and counterions. Lastly, the mean square

displacement of the counterions was found in directions parallel

and perpendicular to the confining planes. The LJ, FENE and

Coulomb potentials were applied.

Zhang and Xiang (2013) studied diffusion of a single free

nanoparticle in a polymer brush through the particle-wall

distance znp, ρm, the lateral diffusion coefficient D‖ and the

force on the particle Fnp. They found a decrease of D‖ and

increase of znp with increasing grafting density. The simulation

was set up using the Langevin equation and the LJ and FENE

potentials. Csajka and Seidel (2000) used the same interactions,

but also included the Coulomb potential in order to study

polyelectrolyte brushes using MD. Instead of one diffusing

particle, they had several counterions inside the brush. Their

analysis included the counterion diffusion constants parallel

and perpendicular to the plane, Dxy and Dz , which were both

found to increase with the grafting density due to a decrease

in the number of condensed counterions for denser brushes.

While the work of Csajka and Seidel provides broad insight

into polyelectrolyte brushes, it does not include a potential

accounting for bending stiffness. Due to the semi-flexible nature

of the constituents of the perineuronal nets (Richter et al.,

2018), additional simulations are therefore required in order to

understand diffusion in the PNNs. Furthermore, neither (Zhang

and Xiang, 2013) nor (Csajka and Seidel, 2000) attempted to

compare the diffusion constant to existing models of diffusion.

Important insights might be gained from such models. Finally,

estimating the effective resistance due to ion diffusion through

a model polymer brush system may provide insights into the

effects of PNNs on nerve signal propagation.

In this paper, we study diffusion in a charged, coarse-grained

planar polymer brush by use of molecular dynamics as a first

attempt at a model for diffusion in PNNs. The root mean

square displacement of a single neutral or a single charged
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FIGURE 1

A schematic of the perineuronal net structure.

particle obtained through 1,000 system realizations is utilized to

obtain the diffusion coefficient in directions perpendicular and

parallel to the explicit substrate plane. Lennard-Jones, harmonic

stretching and harmonic bending potentials are included in

order to account for steric interactions, the stiffness of the bond

and chain flexibility. Debye interactions account for screened

electrostatic forces due water polarizability and dissolved ions

in the liquid. The diffusion constants are found as a function

of polymer chain spacing and compared to theory for a neutral

particle. The diffusion constant for particles of various charges

are then obtained and used to estimate the resistance of a 500

nm thick brush.

2. Model

Perineuronal nets consist of hyaluronan, chondroitin sulfate

proteoglycans (CSPGs), Tenascin-R (Tn-R) and HAPLNs, the

first acting as a scaffold and the latter two being cross-linkers

(Richter et al., 2018). Hyaluronan (HA) and chondroitin sulfate

(CS) are glycosaminoglycans (GAGs), which are unbranched,

highly negatively charged sugar molecules of significant length

(Richter et al., 2018). Although detailed information on the

PNN structure is not known, it is hypothesized to look like

Figure 1 (Richter et al., 2018). The nets form a cross-linked

brush that is locally planar due to the relative sizes of the nets

and the cell. As visible from Figure 1, several length scales are

present in the system, namely the length of the chondroitin

sulfate chains on the CSPGs, the length of the protein backbone

of the CSPGs, the distance between chondroitin sulfate chains

on the CSPGs, the distance between CSPGs on the hyaluronan

chains, the length of the hyaluronan and the distance between

neighboring hyaluronan chains. While a detailed model would

FIGURE 2

Snapshot of the modeled system for d = 15σ . The snapshot is

rendered in OVITO with two periodic images in the x- and y-

directions. Magenta beads-wall; coral beads-the two first beads

of the chain (kept in place to ensure tethering to wall); blue

beads-chain elements; yellow bead-di�using particle (slightly

enlarged for visibility). There is more than one yellow bead

visible due to the periodic images, while only one particle is

di�using in the simulations.

FIGURE 3

Di�usion constant D vs. radii a of a free particle in bulk.

DR - total di�usion constant; D⊥-di�usion constant in the

z-direction; D‖-di�usion constant in the xy-plane; kT/γ -the

theoretical value of D. Standard deviations are indicated by

shaded regions. Insert: A log-log plot of the same data.

be ideal, few of these PNN parameters are known. Instead of

implementing a complicated, large-scale structure for which the

exact structure is not known, the system was simplified to a

planar glycosaminoglycan brush without attached CSPGs and

cross-links in order to study diffusion in a GAG-rich structure.

Investigating the effect of cross-linking and side-chains is left to

future works.

As glycosaminoglycans are made up of repeating

disaccharide units (Richter et al., 2018), larger systems can

be modeled by coarse-graining the disaccharides into one bead
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FIGURE 4

Brush configurations for di�erent spacings d. (A) d = 3σ , (B) d = 10σ and (C) d = 50σ . The chains are much straighter in A than in C. Magenta

beads-wall; blue and coral beads-chain beads; yellow bead-free particle (slightly enlarged for visibility). The figure is rendered in OVITO.

TABLE 1 Potential energy of the free particle and the brush.

d (σ ) 1 3 10 50

Particle
∑

E/Nt (ǫ_E) 0.0027± 0.0010 1.0e-4± 1.2e-4 8.0e-6± 3.4e-5 1.2e-7± 2.6e-7

E (ǫ_E) 0.0027± 0.0010 8.0e-4± 3.4e-3 5.0e-4± 3.4e-3 2.7e-5± 2.8e-4

NE 0.9997± 0.0005 0.179± 0.026 0.023± 0.010 0.007± 0.006

Chain
∑

E/Nt (ǫ_E) 281.0± 0.6 9.94± 0.25 2.14± 0.04 0.1634± 0.0016

Average potential energy
∑

E/Nt for the diffusing particle along with the average size E of the potential energy E when E 6= 0, and the fraction of time steps NE with a non-zero potential

energy E 6= 0 for selected spacings d. Only
∑

E/Nt is included for the potential energy of the chain beads as the chain beads are interacting with their neighbors and the substrate at all

times. All energies are per atom. ǫ_E= 1.4*10−21 J.

instead of having explicit particles for every atom. One bead has

length 1 nm, corresponding to a disaccharide unit of HA or CS,

and the charge is −e just like in HA or unsulfated chondroitin.

The disaccharide beads are linked together to form chains of

N = 101 beads each, tethered to the membrane through two

immobile beads. This length is short for membrane-attached

HA, but a compromise was made in order to study sufficiently

large system sizes. The chains proved sufficiently long to observe

the most important effects of PNNs. The immobile beads form

a 3 × 3 quadratic grid with lattice spacing d. To adhere to the

GAG structure, chains are unbranched. Chains are kept flexible

and of appropriate length through adjustable bond stretching

and bond bending interactions, while the Lennard-Jones

interaction prevents overlaps. The membrane is modeled by

a rectangular lattice of immobile beads, whose LJ potential

prevents other beads from passing through. A single unbonded

particle is inserted close to the wall to probe diffusion in the

brush. Periodic boundary conditions are applied in directions

parallel to the substrate. A snapshot of the system is provided

in Figure 2. The snapshot is rendered in OVITO (Stukowski,

2009), and two periodic images are included.

3. Methods

3.1. Simulation setup

In order to capture properties of diffusion in the

PNNs, molecular dynamics simulations of one particle in

a system of tethered negatively charged polymer chains

on a substrate were performed. The LAMMPS molecular

dynamics package (Thompson et al., 2022) was used

to run the simulations. Simulations were performed

for 1,000 realizations of the system in order to gain

appropriate statistics. Each realization had a different

starting configuration of the particle and the chain

beads.

The potentials used in the molecular dynamics simulations

were selected to capture key properties of the PNNs. The

Lennard-Jones potential was used to account for the spatial

extent of the molecules. We have chosen the truncated 12–6

Lennard-Jones potential as it is common in the literature

(see e.g., Merlitz et al., 2012). The potential ULJ =
∑

i<j uLJ(rij) works between all pairs of beads, including wall
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beads

uLJ(r) = 4ǫLJ

[

(σLJ

r

)12
−

(σLJ

r

)6
]

, r < rc,LJ, (1)

where ǫLJ is the interaction strength and r is the

distance between the beads. σLJ is the Lennard-

Jones distance, which is related to the separation

distance rmin of minimal potential energy by rmin =

21/6σLJ. rc,LJ is the cutoff for the Lennard-Jones

force.

As the repeating units of the GAGs have an approximately

fixed size, we introduce a stretching potential following e.g.,

Zhang and Xiang (2013) and Csajka and Seidel (2000).

Preliminary simulations showed that similar bond lengths were

obtained using both the FENE potential (Kremer and Grest,

1990) and a harmonic stretching potential. We therefore chose

a harmonic stretching potential as for example done by Horkay

et al. (2020) and Kinjo et al. (2018). The harmonic stretching

potential Ubond =
∑

i<j ubond(rij) acts between every bonded

pair of beads and is given as

ubond(r) = Kbond(r − r0)
2, (2)

where Kbond is the interaction strength, r0 is the equilibrium

bond length, and r is the distance between the bonded neighbors.

As the glycosaminoglycans comprising the majority of the

PNNs are semi-flexible with a well defined persistence length

(Richter et al., 2018), a harmonic bond bending potential was

introduced as in Hehmeyer and Stevens (2005). The potential

Ubend =
∑

i<j<k ubend(θijk) acts between every subsequent

pair, ij, jk, of neighboring bonds

ubend(θ) = Kbend(θ − θ0)
2, (3)

where Kbend is the interaction strength, θ0 is the equilibrium

angle, and θ is the angle between two subsequent bonds.

As the PNNs possess a highly negative charge, electrostatic

interactions also need to be included. Furthermore, the

cerebrospinal fluid contains dissolved ions that will screen

charges in the extracellular matrix. The electrostatic interaction

was therefore represented by the Debye potential. The Debye

potential UDebye =
∑

i<j uDebye(rij) acts between all pairs of

charged beads

uDebye(r) =
Cqiqj

ǫr
e−κr , r < rc,Debye, (4)

where qi and qj are the bead charges, κ is the inverse of

the Debye length (Nelson, 2014) and rc,Debye is the cutoff

for the interaction. C is an energy-conversion constant and

ǫ is the dielectric permittivity. We assume that the Debye

potential approximation is reasonable for modeling diffusion

in interstitial fluids in the brain, with a Debye constant of

approximately 1 nm (Syková and Nicholson, 2008).

FIGURE 5

Rg vs. d for the dynamic brush. The grafted polymers are in the

brush configuration for d < 2Rg and in the mushroom

configuration for d > 2Rg (Kim et al., 2015), as indicated by the

colored background. The standard deviation is indicated by the

shaded blue area.

The potential energy of the system is given by the sum of the

stretching potential, the bending potential, the Lennard-Jones

potential and the Debye potential

U = Ubond + Ubend + ULJ + UDebye. (5)

As incorporating explicit water molecules and ions is

computationally expensive, the solvent was modeled implicitly.

The Langevin equation is utilized as it mimics interactions with

water by adding terms representing random collisions and drag

effects of the fluid:

m
dv

dt
= F(t)− γ v+ B(t), (6)

where B(t) is a random term (Lemons and Gythiel, 1997).

The damping coefficient γ is defined as γ = 6πaη

where a is the radius of the particle and η is the liquid

viscosity.

Simulations were run for several types of systems. For the

dynamic brush system (abbreviated as Dyn.), both the chains

and the diffusing particle were considered dynamic particles

and their time dynamics were calculated using molecular

dynamics. For the static brush system (Stat.), the chains were

modeled as static configurations by first equilibrating the

chains, then fixing the chains while allowing the free particle

to diffuse. This allowed us to compare the static and the

dynamic system to provide insight into the role of geometry

and flexibility on the diffusional properties of the system. In

addition, simulations were performed on a dynamic brush

system without bending terms (No stiff.) and in a static system

with completely straight chains (Straight). Interactions between

all particles, static or dynamic, were included in force and energy

calculations.

Two types of grid geometries of the chain tethering points

were studied: a quadratic and a hexagonal grid. However,

preliminary simulations showed no systematic difference in
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FIGURE 6

D/Dbulk vs. d in di�erent directions for a neutral particle in dynamic and static brushes. (A) D/Dbulk for d ∈ [1σ , 100σ ]. D/Dbulk ≈ 0 for d < 2σ ,

then increases with d and eventually converges to 1. (B) D/Dbulk for d ≤ 10σ . Di�usion constants for straight, immobile chains and chains

without a bending term are included. Blue line, D⊥; green line, D‖. Bold colors, dynamic brush; light colors-static brush. Red, D⊥ for the straight

system; light red-D⊥ for the system without bending sti�ness. Black, D‖ for the straight system; light gray, D‖ for the system without bending

sti�ness. Standard deviations are indicated by shaded regions.

FIGURE 7

Di�usion constants as a function of d together with fits. Solid line-D‖/Dbulk and D⊥/Dbulk vs. d for dynamic and static brushes. (A) D‖/Dbulk for

the dynamic brush. (B) D‖/Dbulk for the static brush. (C) D⊥/Dbulk for the dynamic brush. (D) D⊥/Dbulk for the static brush; D, data; hr, Hyperbola

of revolution fit; c, Custom model fit; pl, Power law fit. Standard deviations are indicated by shaded regions. Parameters of the fits are listed in

Table 2.

the measured properties for the two grid types as illustrated

in Supplementary Figure S1. We therefore limited the study to

quadratic grids only.

A 3 × 3 quadratic grid was deemed sufficient as periodic

boundary conditions were applied and no long-range forces

were present. To verify that this assumption holds, the diffusion

constants were found for systems of size 3 x 3, 4 x 4, 5 x 5, 6 x 6,

and 9 x 9 for spacing d = 3σ . The diffusion constants agreed

within the standard deviation. Furthermore, the sheer number

of realizations for each grid spacing d should ensure that spatial

heterogeneities are taken into account.

3.1.1. Parameter selection

The persistence length of a polymer characterizes its bending

stiffness and is defined as the separation distance for which the

correlation of bond vectors have fallen by 1/e. Its mathematical
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TABLE 2 Parameters af of the fits to models listed in Shen and Chen (2007) for the dynamic and static brush.

op hr hc rm

Dynamic brush

af,‖ (nm) 3.97± 0.11 3.15± 0.09 4.77± 0.23 15.89± 0.10

af,⊥ (nm) 2.32± 0.13 1.83± 0.10 1.32± 0.13 21.4± 0.6

af,‖−af,⊥
af,‖

0.42 0.72 0.42 - 0.34

Static brush

af,‖ (nm) 3.55± 0.12 2.82± 0.10 2.81± 0.18 17.55± 0.25

af,⊥ (nm) 2.47± 0.15 1.96± 0.12 1.39± 0.16 21.3± 0.7

af,‖−af,⊥
af,‖

0.30 0.30 0.51 -0.21

op, ordered packings; hr, hyperbola of revolution; hc, heterogeneous catalyst; rm, cation-exchange resin membrane.

TABLE 3 Parameter k of the fit to the custommodel and parameters n and c of the fit to the power law.

Dyn. ‖ Dyn.⊥ Stat. ‖ Stat.⊥

k 0.9811± 0.0011 0.947± 0.007 0.9829± 0.0014 0.957± 0.007

n 0.189± 0.22 0.53± 0.12 0.31± 0.05 0.46± 0.14

c 1.116± 0.019 1.22± 0.12 1.29± 0.08 1.18± 0.14

Note that within more than 2–3 standard deviations, k does not reach one, guaranteeing the numerical stability of Equation (22). Dyn., dynamic brush; stat., static brush.

FIGURE 8

D⊥/D‖ vs. d for the dynamic brush, together with a fit to the

power law Ad−l + 1. Insert: A log-log plot of D⊥/D‖ − 1 together

with Ae−d/l. The fit is performed in the range d ∈ [2.5σ , 25σ ].

Standard deviations are indicated by shaded regions. Insert: A

log-log plot of D⊥/D‖ − 1 and Ad−l. Note that D⊥/D‖ − 1 fell

below zero for d = 15σ and d = 25σ so that these points are not

visible in the log-log plot.

expression may be given as follows Kamerlin (2017):

〈cos θ(s)〉 = e−s/lp , (7)

where θ(s) is the angle between two bonds separated by the

distance s along the polymer and lp is the persistence length.

For distances smaller than lp, the bond orientations display a

significant correlation (Kamerlin, 2017).

The parameters of the polymer model were tuned to yield

a persistence length of 10 nm in accordance with Bathe et al.

(2005), resulting in interaction parameters of Kbond = 140.2

and Kbend = 14.02. Lennard-Jones units were used, and the

unit length σ was set to the length of a disaccharide unit, that

is the bond length, so that σ = r0 = 1 nm (Richter et al., 2018).

Themass of the disaccharide unit is set to unity. The equilibrium

angle was set to θ0 = π in order to recreate the relatively linear

nature of glycosaminoglycans.

In the Lennard-Jones interaction, the cutoff rc,LJ is set to

1.122σLJ to coincide with the energy minimum at rmin =

21/6σLJ, corresponding to good solvent conditions. The

Lennard-Jones distance σLJ should be sufficiently large to avoid

overlap between monomers. This is accomplished by ensuring

that σLJ is equal to the length of a disaccharide unit, whichmeans

that σLJ = σ for chain beads. In the simulations the diffusing

particle is the same size as the chain beads, σLJ = σ , except when

finding Dbulk as a function of the particle radius a = σLJ/2. The

interaction parameter ǫLJ = 0.73 in LJ units is derived from the

carbon-carbon interaction parameter of 0.15 kj/mol that (Bathe

et al., 2005) used in their coarse-graining of GAGs.

The chain beads hold a charge of −e each, corresponding

to the charge of the repeating disaccharide unit of HA and

unsulfated chondroitin (Richter et al., 2018). The substrate is

neutral while the diffusing particle may be charged or neutral.

The Debye length was set to match that of the brain extracellular

fluid, namely 1/κ = σ = 1 nm (Syková and Nicholson, 2008),

and the dielectric permittivity was set to match that of water. A

cutoff of rc,Debye = 3κ−1 = 3σ was implemented in agreement

with Bathe et al. (2005).
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TABLE 4 Parameters of the fits of D⊥/D‖ to f(d) = Ad−l + 1 for the di�erent system types.

Brush type Dynamic Static Straight No stiffness

A 49.9± 15.6 26.8± 6.7 104.1± 22.1 18.9± 1.7

l (σ ) 2.29± 0.28 2.03± 0.27 2.15± 0.14 2.10± 0.11

dstart (σ ) 2.5 2 4 2

The last line indicates the start dstart of the fit, which is performed on the interval d ∈ [dstart , 25σ ].

FIGURE 9

Di�usion properties for an uncharged particle of di�erent radii a in a dynamic brush. (A) D⊥/D⊥(a=0.5nm) vs. d, where D⊥(a=0.5 nm) is D⊥ for a = 0.5

nm. The dashed lines indicate the expected scaling of the di�usion constant as presented in Cai et al. (2011). (B) Di�usion times through the

brush vs. d for a brush height of h = 500 nm. The curves were found through application of Equation (10).

4. Results

4.1. Anisotropic di�usion

A well-known result in physics is that the diffusion constant

DR in an isotropic system is related to the mean square distance

〈1R2(t)〉 traveled by the diffusing particles. In three dimensions,

it takes the mathematical form of

〈1R2(t)〉 = 〈1x2(t)+ 1y2(t)+ 1z2(t)〉 = 6DRt, (8)

where 1x2(t), 1y2(t) and 1z2(t) are the squared displacements

in the x-, y- and z directions at time t, and 1R2(t) is the total

displacement.

The presence of a wall limits transverse motion,

resulting in an anisotropic diffusion constant. Anisotropic

diffusion has also been observed in brain areas with high

concentration of PNNs (Morawski et al., 2015). In order

accurately characterize diffusion in such systems, the mean

square distance needs to be separated into contributions in

directions parallel and perpendicular to the wall, as done by

Carbajal-Tinoco et al. (2007)

〈1x2(t)+ 1y2(t)〉 = 4D‖t (9)

〈1z2(t)〉 = 2D⊥t. (10)

Here, D‖ and D⊥ are the diffusion constants in directions

parallel (xy-plane) and perpendicular (z-axis) to the wall,

respectively. Note that Equations (9) and (10) are valid in the

diffusive regime, i.e., only for time scales longer than the initial

ballistic regime. Strictly speaking, the diffusion constant of the

particle should be a function of the particle-wall distance due

to the anisotropy posed by the substrate. However, since the

overall diffusive properties inside the nets are of interest, this is

considered a detail outside the scope of this paper.

To ensure that the diffusion constant is characteristic for the

brush, two versions of the mean square displacement (MSD)

curve were found. The first curve is the MSD for the particle

at all times regardless of whether or not it is still in the brush.

At each point in time, the second curve is the MSD of particles

still inside the brush. We disregard the initial part of the graphs,

where inertial effects are prominent and the MSD curves are

non-linear. The fits to Equations (9) and (10) were performed

on an interval where the two MSD curves had similar slopes. In
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FIGURE 10

D/Dbulk vs. d for a di�using particle of charge q. (A) D‖/Dbulk vs. d. (B) D⊥/Dbulk vs. d. Standard deviations are indicated by shaded regions.

order to obtain error estimates, the MSD curves were divided

into groups of 100 so that ten estimates of D‖ and D⊥ could

be obtained using NUMPY’s polyfit function (Harris et al.,

2020). The average and standard deviation were calculated from

these ten values. A plot illustrating the procedure is given in

Supplementary Figure S2.

The free particle is subject to interactions with chain- and

substrate beads in the system. For interacting particles, two

diffusive regimes occur. On shorter time scales, the particle

moves close to a local energy minimum in the energy landscape

(Dhont, 1996). As time progresses, the particle passes many

energy barriers and visits many local minima. Additionally,

changes in brush configuration alter the potential energy

landscape, creating new minima for the particle to visit. The

short-time and long-time diffusion constants are therefore

different. Between these time scales, where only a few minima

has been visited, theMSD is non-linear (Dhont, 1996). OurMSD

plots did not display such a non-linear interval while the particle

was inside the brush, indicating that long-time diffusion was not

reached. Note that particles exiting the brush puts an upper limit

on the time scale of diffusion.

Figure 3 shows the bulk diffusion constant Dbulk as a

function of the radius a of the diffusing particle found by

Equations (8)–(10). The bulk diffusion constant was found by

tracking the movement of a single particle subject to only

Equation (6), where γ depends on a. The system is otherwise

empty, meaning that F=0 in Equation (6) in this instance. We

see a sharp decrease of Dbulk with increasing a. The diffusion

constants in all directions are within the error margins of each

other, as expected due to the isotropic nature of the bulk system.

The insert in Figure 3 shows a log-log plot of Dbulk vs. a. The

curves appear linear except for some small deviations at the

lowest value of a = 0.125 nm. The data is in agreement with

the Stokes-Einstein equation D = kT/(6πηa) (indicated by the

dashed line) within the standard deviation (Edward, 1970).

4.2. Brush configuration vs. spacing d

Figure 4 shows system configurations for spacings of

d = 3σ , d = 10σ and d = 50σ . For the smallest values of

d, such as d = 3σ in Figure 4A, the chains are far straighter

than for larger spacings such as d = 10σ and d = 50σ .

Table 1 shows the potential energy of the neutral diffusing

particle and reveals that at small d, the particle experiences both

stronger and more frequent interactions with other beads in

the system. Also included in Table 1 is the average potential

energy of the chain beads. The chain beads experience similarly

increased Debye and Lennard-Jones interactions at small d,

forcing them into straighter configurations in order to lower the

energy. For d < 2σ , visualization of the trajectories revealed

an initial period of random motion until the diffusing particle

starts moving back and forth within a small volume in the

brush. A video of a trajectory for d = 1.5σ is provided in

Supplementary Video S1. Keeping in mind that the Lennard-

Jones interaction has a minimum at 21/6σLJ and that σLJ = σ

for both particle and beads in these simulations, the particle

will experience significant forces frommultiple chains propelling

it forwards until it happens to encounter a cavity within the

brush. If the particle velocity is sufficiently small or the cavity

is sufficiently large, the particle will not be able to move forward,

but will be trapped inside the cavity. At longer time scales, the

particle would typically have been able to escape this volume,

displaying a reduced but non-zero diffusion constant in the

long-time diffusion regime (Cai et al., 2011). Such a diffusion

regime was not reached for our simulations.
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FIGURE 11

Electrical properties of the brush as a function of d. (A) Electrical conductivity σe(d) through the brush. (B) Resistance R vs. d for di�erent cell

radii rneuron assuming a brush height of h = 500 nm. Standard deviations are indicated by shaded regions.

As d increases and beads on different chains get farther apart,

the magnitude of the interactions between beads on different

chains decreases, as seen in Table 1, and the chains take on a

more curled configuration, as seen for d = 10σ in Figure 4B. As

d is increased further, interchain interactions will rarely occur.

The system is then said to be in the mushroom configuration,

which is typically distinguished from the brush configuration

(Kim et al., 2015).

In summary, the system is shown to enter three regimes:

The extremely dense brush for d < 2σ , in which neutral

particles get trapped at our time scales, the mushroom regime

for large d, in which chains are far apart and we expect

diffusion to be similar to bulk diffusion, and the brush regime

for intermediate values of d. Simulations for large values of d

have been performed in order to verify that the system tends

to bulk behavior in the limit of large d. Intermediate d-values

are of primary interest, as they yield systems similar to that

of perineuronal nets. We therefore select d = 2σ as the

lower limit for d, ensuring that we study a range of d-values

for which the particle is sufficiently mobile in most of the

simulations. The aptness of this limit can be seen by comparing

the mean square displacement in Supplementary Figures S3,

S4.

Tethered polymers are in the brush configuration for

d < 2Rg (Kim et al., 2015), where Rg is the radius of gyration,

which for a polymer chain is defined as Kamerlin (2017):

Rg =

√

√

√

√

1

N

N
∑

i=1

(ri − r̄)2, (11)

where N is the number of monomers in a chain, ri is the

position of the ith monomer and r̄ is the center of mass. Figure 5

shows 〈Rg〉 vs. d for the dynamic brush plotted in the form of

a phase diagram, where the brush and mushroom regimes are

indicated by the background color. We found 〈Rg〉 by averaging

Rg in Equation (11) over all chains and realizations for the last

time frame of each simulation. Based on Figure 5 we find that

the system is in the brush configuration for d ∈ [2σ , 25σ ],

whereas for larger values of d the system is in the mushroom

configuration. Here, we have focused on the brush regime which

is most similar to PNN structure, and have primarily analyzed

systems with d < 25σ .

To compare the brush configuration to theoretical

predictions, the average height of the brush Lz was found for

each d by extracting the maximal z-coordinate of the chain

beads at the last time frame and averaging over all realizations.

The brush height as calculated by mean field theory scales

with brush spacing as Lz = Ad−2/3 (Attili et al., 2012), where

A is a constant that does not depend on d. The data points

were fit to theory using the Levenberg-Marquardt algorithm as

Frontiers inComputationalNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fncom.2022.967735
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Hanssen and Malthe-Sørenssen 10.3389/fncom.2022.967735

implemented in SCIPY’s optimize.curve_fit function (Virtanen

et al., 2020). The height of the brush agreed fairly well

with the theory, as shown in Supplementary Figure S5 and

Supplementary Table S1, where fits to theory are included as

dashed lines. The height of the brush without bending potential

energy showed the best agreement with the theory, while the

systems with bending stiffness also displayed an acceptable

agreement. The system types are as defined in Section 3.1.

4.3. Di�usion constant D vs. grid
spacing d

4.3.1. Dynamic brush

Figure 6A shows D(d)/Dbulk for the dynamic and the static

brush. This ratio converges to unity when the lattice spacing

d increases, which is as expected since the system effectively

approaches bulk as d becomes large. The decreasing values of

D as d becomes smaller are due to brush interactions, which

become more dominant as the density of the brush increases.

At d < 2σ frequent entrapment yields an effective diffusion

constant which is close to zero.

Figure 6B shows the data in Figure 6A for up to d = 10σ ,

with the additional systems of totally straight chains and chains

without a bending term included in the plot. The curves indicate

that D‖ < D⊥ from d = 2σ and up to about d = 10σ . As

seen by Figure 4A, the chains fall into straighter conformations

when the spacing is small. This is, as can be seen from Table 1,

due to increased forces between the beads composing the chains.

The pore space between the chains then take on a shape similar

to channels oriented in the z-direction, opening for more rapid

motion in the perpendicular direction. However, the proximity

of the brush will still lead to collisions, lowering D⊥ compared

to bulk. For motion parallel to the substrate, there are no such

open channels, leading to a larger reduction of D‖ compared to

D⊥. In summary, we expectD‖ < D⊥ for smaller values of d due

to the anisotropic geometry of the system. Looking at Figure 4B,

the chains appear to generate a more disordered structure for

d = 10σ , and do not display similarly visible channels as they

do for d = 3σ in Figure 4A. Inspecting Figure 6B further, we

see that the difference between D⊥ and D‖ is larger for small d,

where the channel-like formations are more prominent.

4.3.2. Static brush

Figure 6 also shows D(d)/Dbulk for the static brush. As for

the dynamic brush, D‖ < D⊥ for small values of d, and both

D⊥ and D‖ converge to unity as d → ∞. Figure 6B shows

that D⊥,stat. < D⊥,dyn. for smaller d, although D⊥ of the two

system types agree within the standard deviation. This miniscule

increase in the diffusion constant may be due to the flexibility

of the dynamics chains, allowing the chains to sway due to the

motion of the diffusing particle. This small difference in the

diffusion constants of the static and dynamic brushes indicate

that the dynamic flexibility of the chains do not play a major

role in governing diffusion of free particles within the brush. The

systems have similar geometry, as the chains have been made

immobile only after equilibration. We therefore conclude that

the geometry and not the dynamics of the brushes determines

the diffusion coefficients.

4.3.3. Other system types

Also included in Figure 6B are the diffusion constants of a

free particle in a system where the bending potential energy (as

defined by Equation (3)) is removed, and a system where the

chains are straight and immobile. Due to the chain straightness

in the latter system, we expect the channels to be more

pronounced and that motion in the perpendicular direction will

be less restricted. We therefore expect D⊥,straight to be larger

than D⊥ for any of the other systems, as demonstrated by

Figure 6B. For simulations where the bending stiffness term is

removed, the chains curl up more, yielding a slightly lower D⊥,

as seen from the coral curve (marked by X’s) in Figure 6B.

In the z-direction the geometry varies from clearly defined

channels for the straight chains to mildly obstructed channels

for the static and dynamic chains. In the direction parallel to

the wall, along the xy-plane, there are few clear channels, but

rather a forest of obstacles. Like the dynamic system, neither

the static system nor the system without bending interactions

exhibit ordered obstacles in the xy-plane. Although the straight

system is more ordered than the other systems, it still exhibits

the forest-like geometry in the xy-plane that all the system types

display. We therefore expect that every system type possess

similar values of D‖/Dbulk. Figure 6B reveals that the D‖/Dbulk

curves of the various system types all agree well within their

standard deviations, unlike the curves of D⊥/Dbulk.

4.4. E�ective di�usion behavior

4.4.1. Models for e�ective di�usion behavior

Many theoretical and experimental efforts strive to connect

the diffusion constant to the porosity φ (Shen and Chen, 2007),

that is, the fraction of space not occupied by solidmaterial. In the

simulated systems, the chain beads constitute the solid material,

while the porosity is effectively the solvent volume fraction.

The porosity of our system can most easily be estimated

through the total volume of the beads, Vbeads, and the volume

of the system, Vsystem. Using the volume of a sphere, Vbeads =

NchainsNbead · 4
3πa3

f
, where Nchains is the number of chains,

Nbead is the number of beads per chain and af is the radius of

the beads. Vsystem = Nchainsd
2Lz was then found, where Lz is

the average height of the chains. The porosity φ of the brush is

Frontiers inComputationalNeuroscience 11 frontiersin.org

https://doi.org/10.3389/fncom.2022.967735
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Hanssen and Malthe-Sørenssen 10.3389/fncom.2022.967735

hence

φ = 1−

4
3πa3

f
Nbead

d2Lz
, (12)

However, since there are many porous systems with the same

porosity, but with very different geometries, we expect the

diffusion constant to depend on further properties of the porous

system geometry. In our simulations, this is evident from

comparing D⊥/Dbulk of the different system types, as seen in

Supplementary Figure S6, where the system of straight chains

displays a higher diffusion constant than the others for a wide

range of φ’s.

One property that affects the diffusion is the tortuosity τ , a

measure of the degree to which diffusing particles are prevented

to move in straight lines due to obstacles posed by the porous

media. We may define τ as the path length 1l traversed by the

diffusing particle divided by the corresponding linear distance

1x (Shen and Chen, 2007).

τ =
1l

1x
. (13)

Using this definition, τ yields a correction to the bulk diffusion

constant Dbulk that reads

Deff =
Dbulk

τ2
, (14)

where Deff is the effective diffusion constant in the porous

medium. Shen and Chen (2007) list τ2 as a function of φ for

several previous studies.

Having obtained the porosity φ, the diffusion constant D(d)

can be compared to theory in order to characterize diffusion.

Due to the anisotropic nature of the system, D⊥ and D‖ might

be best described by different diffusion models. These models

can subsequently be used to offer an approximation of D⊥ and

D‖ for values of d that have not been simulated, but are within

the range of interest. Furthermore, we can generalize from one

bead size to another by using the parameters obtained in the

fit in combination with Equation (12). Ultimately, this might

prove useful in obtaining other net quantities from D, such as

the capacitance.

The hyperbola of revolution listed in Shen and Chen

is a system whose pore space comprises several consecutive

hyperbolas (Petersen, 1958). Its tortuosity τ is defined through

τ2 = 2− φ. (15)

Another expression for τ reads

τ2 = (3− φ)/2. (16)

This relation holds for various systems, such as for a dilute

system of spheres (Akanni et al., 1987), spheres of various sizes

that are allowed to overlap (Akanni et al., 1987) and randomly

packed spheres of different radii (Neale and Nader, 1973). These

systems are dubbed “ordered packings” by Shen and Chen

(2007).

A tortuosity model frequently applied to heterogeneous

catalysts was developed by Beeckman (1990), Yang et al. (2014),

and Ghanbarian et al. (2013), where

τ2 = φ/
[

1− (1− φ)1/3
]

. (17)

The cation-exchange resin membrane consists of cross-linked

polymers with uniformly distributed negative charges (Mackie

and Meares, 1955). Its tortuosity was derived by Mackie and

Meares (1955) using a random walk lattice model. A site in the

model can either be occupied by polymer, solution or the walker.

The walker is forced to move around polymer sites (Mackie

and Meares, 1955), which it will encounter with a probability

of pfirst = φp = 1 − φ, where φp is the polymer fraction.

Upon encountering a polymer site, there is a set probability pnext

that the next site in the walk will also contain a polymer. This

probability is chosen to reflect the properties of space in the

cross-linked polymer and is found to be pnext = 1
2 (2 − φ) by

Mackie and Meares (1955). The probability that the walker will

have to move two extra steps to get past the polymer is then

p1 = (1 − φ)
[

1
2 (2− φ)

]

, the probability of three extra steps

is p2 = (1 − φ)
[

1
2 (2− φ)

]2
and so on. The total length 1l the

walker will have to move is related to the path length in bulk 1x

through Mackie and Meares (1955):

τ =
1l

1x
= 1+ (1− φ)

∞
∑

n=0

[

1

2
(2− φ)

]n

, (18)

where n is an index running over all the possible times the walker

can hit polymer elements consecutively. Per definition, the pore

fraction φ cannot exceed one, and for φ = 0 the system would

only consist of polymer. Hence 0 < φ < 1, which means

that 1
2 (2 − φ) < 1 and that the geometric sum in Equation

(18) converges. Performing the sum and adding the first term

in Equation (18) yield (Mackie and Meares, 1955):

τ =
2− φ

φ
. (19)

Combining Equations (14) and (12) with Equations (15)–(17)

and (19) allows for a comparison between data and theories.

4.4.2. Modified model for e�ective di�usion
behavior

The probability pnext in Mackie and Meares was tailored to

the cation-exchange resin membrane. However, the probability

pnext can be modified to better capture the geometry of other

systems such as the PNN system we study.

Keeping the probabilities pfirst and pnext general for the sake

of brevity, the probability that the walker will have to move
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two extra steps to get past the polymer is p1 = pfirstpnext, the

probability of three extra steps is p2 = pfirstp
2
next and so on. We

thereby arrive at a more generalized option for Equation (18).

τ = 1+ pfirst

∞
∑

n=0

pnnext, (20)

where n is an index running over all the possible times the walker

can hit the polymer consecutively. As pnext is a probability and

pnext = 0 corresponds to bulk behavior, 0 < pnext < 1.

Performing a geometric sum on the last term in Equation (20)

yields:

τ = 1+
pfirst

1− pnext
, (21)

which offers a generalization to Equation (19).

Several different probabilities pnext were tested against the

diffusion coefficients the polymer brush, and the best pnext was

selected as a custom model. It was derived by assuming that if

the walker hits a polymer section, it has a probability of pnext =

k+(k−1)(1−φ) of not being able tomake the next move because

a neighboring site is occupied. Here, k is a tunable parameter.

Since the solid is solely made up of polymer, the polymer fraction

1 − φ should equal the probability to first hit an obstacle, pfirst.

The relation pfirst = 1 − φ from Mackie and Meares (1955)

should therefore hold for all systems and is kept as is. Insertion

of pfirst and pnext into Equation (21) yields an expression of the

tortuosity:

τ2 =

[

1+
1− φ

1− k− (k− 1)(1− φ)

]2

. (22)

This model will be referred to as the custom model. Combining

Equations (14) and (12) with Equation (22) allows for a

comparison between data and model.

4.4.3. Power law model

Judging by the shape of the curves in Figure 6, we may

approximate D/Dbulk as a power law:

D

Dbulk
= 1− d−nc , (23)

where n and c are tunable parameters for this model.

4.4.4. Comparison with data

As none of the models listed in Shen and Chen (2007)

closely resemble the brush systems we study, the bead

size af was left as a free parameter for the curve fit

using the Levenberg-Marquardt algorithm through SCIPY’s

optimize.curve_fit function (Virtanen et al., 2020), as the

theoretical models were not tailored to the brush and some

discrepancy should be expected. The optimal parameter values

for each fit to the diffusion constant of a neutral particle in

the dynamic brush and the static brush from Figure 7 is given

in Table 2, together with the relative differences between the

parameters in the parallel and perpendicular directions. The

parameter k in the custommodel was found by the Trust Region

Reflective algorithm as implemented in SCIPY and n and c for

the power lawwas found by the Levenberg-Marquardt algorithm

as implemented in SCIPY. The results are listed in Table 3 for all

directions for the static and dynamic brush. The brush regime is

of interest for the fits since this configuration should correspond

to developed PNNs (Richter et al., 2018). Furthermore, the PNNs

are reported to be quite dense (Deepa et al., 2006). The range

d = 2 − 10σ was chosen to satisfy as closely as possible both

these criteria. Figure 7 shows D‖/Dbulk and D⊥/Dbulk for the

dynamic and static brushes together with fits. For readability

purposes, only three models are selected for plotting: The

hyperbola of revolution, which returns the same curves as the

ordered packings, the custom model and the power law model.

The complete set of fits including different custom models

are shown in Supplementary Figures S7–S10 and specified in

Supplementary Tables S2, S3. The cation-exchange resin model

proved a poor fit in all instances, while the heterogeneous

catalyst was slightly outperformed by the power law for D⊥,

while providing a poor fit for D‖.

Figure 7A reveals that the power law of Equation (23) offers

a poor fit to D‖/Dbulk for the dynamic brush. A better fit to

the data is provided by the hyperbola of revolution. The custom

model overall offers the best fit to the data, although it starts to

deviate slightly for larger values of d. This might be an artifact of

the data set, since there are relatively fewer data points for large

d compared to small d.

In Figure 7B D‖(d)/Dbulk for the static brush is plotted

together with fits to the different models. The best parameter

fits for the static brush are given in Table 2 along with the

relative differences between the results in the parallel and

perpendicular directions. The parameters af are consistently

larger for parallel motion, with the exception of the cation-

exchange resin membrane model. The custom model and the

power law provide fits of comparable quality, with both models

deviating from the data set for larger d’s and the custom model

providing a better fit at smaller d’s. Both fits mostly stay within

the standard deviation. The hyperbola of revolutionmore closely

aligns with the data set. Considering the unrealistically large

value of af for the hyperbola of revolution in Table 2, the custom

model proves the best model overall forD‖(d)/Dbulk in the static

brush.

As seen by comparing Figures 7A,C, D⊥/Dbulk for the

dynamic brush generally has larger uncertainties than D‖/Dbulk

for d ∈ [2σ , 10σ ]. The fitted parameters are therefore

more uncertain. Both the custom model and the hyperbola of

revolution perform poorly on this system, overestimating the

diffusion constant for larger d and slightly underestimating it

for smaller d. The power law more closely aligns with the data
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points, staying within a standard deviation while retaining a

similar curvature. Similar results are found forD⊥/Dbulk for the

static brush, as shown in Figure 7D.

It is worthwhile to note that the theoretical models

were originally developed for describing diffusion in three-

dimensional space. By comparing to two-dimensional diffusion

in the case of D‖ and one-dimensional diffusion in the case

of D⊥, the models lose some of their interpretive qualities.

Instead, they provide a heuristic mathematical framework. The

power law often takes on this role, as it is abundant in nature

(Gheorghiu and Coppens, 2004).

4.5. Relation between D⊥ and D‖

Both diffusion constants, D⊥ and D‖, approach Dbulk when

the spacing d becomes large. However, the way they approach

Dbulk can provide insights into the role of anisotropy in the

system. To address this, we plot the ratio D⊥/D‖ as a function

of spacing d in Figure 8. For an isotropic system, we would

expect the diffusion constants to depend on d, but the ratio to

be constant. Figure 8 shows that D⊥/D‖ approaches unity for

large d. The behavior ofD⊥/D‖ is well approximated by a power

law, D⊥/D‖ = Ad−l + 1, as illustrated by the plot of the fitted

function in Figure 8 and in the log-log plot insert.We performed

similar analysis for all systems (see Supplementary Figures S11–

S13) and the results are shown in Table 4. The range of spacings,

d, over which the systems display significant effects of anisotropy

is within the range relevant for PNNs (Deepa et al., 2006; Richter

et al., 2018). We therefore expect anisotropic effects in diffusion

to be important for PNNs.

4.6. Di�usion vs. particle size

Simulations were performed for a diffusing particle

of various radii a in the dynamic brush. The resulting

perpendicular diffusion constants were divided by D⊥ for

a = 0.5 nm to illustrate how diffusion is affected by particle size.

Scaling theories of diffusion in polymer liquids predict that

the diffusion constant scales with particle diameter σLJ as D ∝

1/σLJ when σLJ < ξ (Cai et al., 2011), where ξ is the correlation

length. ξ is defined the average distance from one chain bead to

the closest bead on another chain (Cai et al., 2011). We found ξ

by looping over all beads for the last time frame of the simulation

and finding the closest bead on another chain. The average

was taken over all beads and realizations. A plot of ξ vs. d is

presented in Supplementary Figure S14, revealing that σLJ < ξ

for the majority of spacings studied. D⊥/D⊥,a=0 nm is therefore

compared to σLJ,a=0 nm/σLJ = 1/2a.

Results showed an acceptable agreement with theory, as

shown in Figure 9A.D⊥ increases with decreasing a, as expected

from Equation (6). The exception is for particle diameters

close to d, i.e., when the brush is dense compared to particle

size. Inspection of trajectories reveals occasional extrusion of

the particle from the brush for such parameter combinations,

probably due to unfavorable initial conditions for these large

particles.

We applied (Equation 10) to find the corresponding

diffusion time through a brush of height h = 500 nm as a

function of spacing d, as shown in Figure 9B. The diffusion time

stays within 0.4 µs for a ≤ 0.5 nm.

4.7. Di�usion of charged particles

4.7.1. Di�usion constants

Ionic transport and the diffusion of molecules with more

complex surface charge distributions are important in PNNs.

We therefore address the diffusion of charged particles, which

may represent an ion or a charged molecule, through the brush

as a model for transport through PNNs. Figure 10A shows

D‖/Dbulk vs. d for diffusing particles with different charges.

We see that the diffusion constant is very small for positively

charged particles compared to negatively charged and neutral

particles due to electrostatic interactions. Positively charged

particles are therefore subject to an intermittent and slow

transport mechanism, jumping between trapping sites that are

close to the chain beads (see Supplementary Videos S2–S4) in

a process similar to cations binding to negatively charged sites

on GAG chains in the PNNs (Morawski et al., 2015). Negatively

charged diffusing particles experience repulsive electrostatic

forces from the chain beads, which effectively increases the

particle interaction size, and therefore restricts the available pore

space and lowers of the diffusion constant.

Figure 10B show that the behavior of D⊥/Dbulk for charged

particles is similar to that of D‖/Dbulk. The increased value

of D⊥ for small d (d < 3.5σ ) is likely an artifact from the

simulation procedure: If the initial position of the charged

particle had been outside of the brush, the repulsive electrostatic

forces would have most likely have prevented it from entering

the brush. Lower concentrations of anions compared to cations

have been observed in GAG-rich environments (Morawski et al.,

2015), so it seems reasonable that the brush should exclude

anions at sufficiently small d. Overall, the diffusion constants are

reduced by a factor of two when the charge was increased from

q = 0 to q = −e.

4.7.2. Conductivity, resistivity, and resistance

The conductivity can be computed from the diffusion

constant of ions in solution through

σe =
F2

RT

∑

x

Dxz
2
x [x] , (24)
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where σe is the electrical conductivity, F is Faraday’s constant,

R is the gas constant,Dx is the diffusion constant of ionic species

x, zx is the valency of the ion and [x] is its concentration (Qian

and Sejnowski, 1988). To find the conductivity σe, we used

concentrations from Raimondo et al. (2015), adding together

concentrations of ions of the same valency for use in Equation

(24).

Figure 11A shows the electrical conductivity σe as a function

of d across the brush. Here, we have excluded small values of d

since these systems are unrealistic for charged particles as argued

above.

The resistance R is connected to the resistivity ρe = 1/σe by

R =
ρel

A
(25)

where l is the length of the conducting material and A is its

cross-section. In cases where A varies along the length of the

conductor, the equation should be integrated in order to yield

correct results. PNNs wrap around the soma and proximal

dendrites of a neuron (van ’t Spijker and Kwok, 2017). Assuming

that PNNs take the form of a spherical shell of thickness h, the

resistance of the nets become:

R =
ρe

4π

(

h

r(r + h)

)

(26)

where r is the radius of the neuron. The resistance is inversely

proportional to the diffusion constant, as seen from Equation

(24), meaning that a lowered diffusion constant leads to an

increased resistance.

Figure 11B shows the resistance R vs. d for a brush with

height h = 500 nm for different cell radii rneuron (Quan

et al., 2013). We see that R decreases with increasing d, which

is expected because as the brush becomes sparser, the average

interactions between brush and particles decrease.

We found the effective resistance of the brush to be R ≃

1− 62 �. Input resistances of neurons are usually much higher,

on the order of magnitude of 100 M� (Jouhanneau et al., 2018).

With their small resistance, the brushes do not appear to pose a

significant barrier to current of negatively charged ions.

5. Discussion

We have used D‖/Dbulk and D⊥/Dbulk to characterize

diffusion inside a brush as model for transport in PNNs. The

values of D⊥/Dbulk in Figure 6 show that a charged brush limits

diffusion in the transverse direction as mentioned by van ’t

Spijker and Kwok (2017), an effect that increases with increased

density. Low values of D⊥ in dense brushes supports that

glycosaminoglycans block out molecules that may be potentially

harmful to the cell (Suttkus et al., 2014; Morawski et al., 2015).

Lateral diffusion, as illustrated by D‖/Dbulk in Figure 6, exhibit

a similar behavior.

Negatively charged free particles have a lower diffusion

constant than uncharged particles, highlightning the ability of

the net to act as a barrier to ions, as has been proposed by

others Morawski et al. (2015); van ’t Spijker and Kwok (2017).

The drastically lowered diffusion constants of positively charged

particles as shown in Figure 10 are to be expected as the positive

charges experience an attraction to the negatively charged nets

by electrostatic forces. However, this may only be a transient

effect until the negative charge has been neutralized by trapped

positively charged ions.

Equation (22) represented a good heuristic model for

diffusion in this system. It is based on the generalized version

of the Mackie and Meares (1955) model that we introduced

in Equation (21), which could prove a useful model for the

diffusion constant in a wide range of systems. The parameter

pnext can be estimated for a specific geometry, providing a

method to predict τ for given geometries.

The viscosity η in Equation (6) was assumed to be constant

and equal that of bulk. However, when the diameter of the

diffusing particle is larger than the correlation length ξ , an

effective viscosity arises in polymer liquids (Cai et al., 2011).

This viscosity is increased compared to bulk (Cai et al., 2011).

Effective viscosities have also arisen in polymer brushes (Doyle,

1998). In the present study, the particle diameter σLJ < ξ for all

d, and the same holds for all data points presented in Figure 9,

as seen by Supplementary Figure S14.

Representing the perineuronal net structure by a charged

planar brush is a strong simplification. As seen by Figure 1,

perineuronal nets consist of several components that vary in

shape and size, which are bound and cross-linked to form a

complicated structure for which the details are currently not

known. An important aspect of PNNs is the highly negative

charge density of the GAGs (Richter et al., 2018). Since we have

included a high charge density in our model, the diffusional

behavior should still capture key aspects of motion into and out

of the perineuronal nets.

Relatively small values of d were used in this study compared

to what should be realistic for PNNs. Real-life PNNs will

have side CSPGs attached, akin to side chains. The CSPGs

have a certain spatial extent, increasing the effective volume

of each HA chain in the nets. A model consisting of linear

chains correspondingly underestimates the volume fraction of

polymer inside the brush. Lowering d will therefore yield a

more accurate porosity, which is an important concept in

diffusion in porous media. Given that accurate measurements

of grafting densities and CSPG spacing on HA in PNNs are not

currently available, this approach seemed favorable over creating

a detailed, more realistic model with uncertain parameters. We

simulated systems with a wide range of spacings, but emphasis

was placed on the range d = 2 − 10 nm for which diffusion

was significantly different than in bulk. This range was chosen

as PNNs are hypothesized to restrict transport (Morawski et al.,

2015; van ’t Spijker and Kwok, 2017; Fawcett et al., 2019).
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Estimates of persistence lengths of each GAG vary

somewhat, with persistence lengths as short as 4 nm being

measured for HA (Bano et al., 2016). The persistence length

is governed by the relative size of the bending interaction

parameter Kbend in Equation (2). This force field term was

absent in the system type with no stiffness, meaning that it

should have a persistence length close to the length of the

bead, that is 1 nm. The stiffness of the chains did not affect

diffusion noticeably, as seen by comparing the diffusion constant

in systems with bending terms (dynamic) and without (no

stiffness) in Figure 6B. Hence, the exact value of lp does not

pertain significantly to the study of diffusion constants in these

brushes.

PV interneurons, around which PNNs frequently enwrap,

are well-known to have low input resistance (Ferguson and Gao,

2018; Jouhanneau et al., 2018). If the net resistance was large or

comparable to the membrane resistance, the total resistance of

PV interneurons would be large compared to other neurons, or

in the very least not significantly lower. The low resistance of our

simplified PNN model is hence in agreement with experimental

results, but may have corrections due to the simplifications

made.

The PNNs are reported to protect neurons against ions and

molecules of different sizes (van ’t Spijker and Kwok, 2017),

so particles smaller than the chain beads will sometimes be of

interest. The Lennard-Jones potential (Equation 1) is included

to account for steric interactions, and σLJ and hence rc,LJ should

therefore depend on particle size. A smaller particle will thus

be less influenced by the Lennard-Jones potential as it is within

the cutoff for a smaller amount of time. Furthermore, the mass

should be adjusted according to size, yielding a smaller particle

mass. Taking both radius and mass into account, the damping

term and the random term in Equation (6) will be lower. The

motion of the particle will therefore be faster, and the diffusion

constant in brush and in bulk will be a bit higher. This is in

agreement with Figures 3, 9.

The charged particle is sensitive to the Debye interaction,

which does not depend on particle size, only separation

distance. When decreasing the particle radius, the Lennard-

Jones interaction will be weakened compared to the Debye

interaction. Judging by Figure 10, the Debye interaction already

has a large effect on the diffusion constants for a = 0.5 nm,

so we expect further reductions in the ratio of the Lennard-

Jones interaction to the Debye interaction to have a limited effect

on particle diffusion. Smaller particles should therefore display

moderately reduced diffusion constants. A moderate decrease

in diffusion constant would lead to a moderately heightened

resistance, as seen by Equations (24) and (26).

The size of the Debye interaction depends on the charges

involved. CS in the brain tends to be singly sulfated and

consequently has twice the charge of HA (Logsdon et al., 2022).

One step in moving toward a more detailed model of PNNs

could therefore include higher charges on the chain beads,

as CSPGs are attached to HA. An increased bead charge will

increase the strength of the Debye interaction, as seen by

Equation (4). Similarly, the Debye strength was increased in

Section 4.7, where the charge of the particle was varied. As seen

from Figure 10, the diffusion constant did not depend strongly

on particle charge and hence the size of the Debye interaction,

though charged particles exhibited stronger diffusion constants

than neutral ones. These findings indicate that the exact strength

of the Debye interaction is not a strong determinant of diffusion.

However, the polymer chains will experience a stronger

interchain repulsion upon an increased bead charge, giving rise

to a somewhat more stretched conformation of the chains.

As seen in Figure 6, stretching of chains leads to an increase

in the diffusion coefficient perpendicular to the wall. For the

charged particle, this will decrease the resistance. Figure 6 and

Supplementary Figure S6 indicate that the specific geometry of

the system plays a relatively small role in diffusion. As the Debye

interaction decays quickly with separation, it is fair to assume

that the stretching of the chains should be rather moderate. We

therefore only expect a slight increase in the diffusion constant

and decrease in resistance when the bead charge is increased.

Another simplification made in the model is that only

one charged particle diffuses within the brush. The ionic

concentration in the brain is on the order of magnitude of

100 mM (Raimondo et al., 2015), meaning that ions present

in the fluid interact with each other. This interaction can

affect transport, most likely lowering the diffusion constant as

the particle is subject to forces from a lot of other particles,

effectively slowing it down (Sterratt et al., 2011). The resistance

would then be increased. Given the order of magnitude

difference between the brush resistance and the membrane

resistance of a neuron, we believe that neither of the additional

effects discussed should increase the PNN resistance to an extent

that it is comparable to the membrane resistance.

6. Conclusion

Diffusion was characterized for a freely diffusing particle in

a system of negatively charged polymers tethered to a substrate,

a simplified model of the perineuronal nets. The anisotropic

nature of the system yielded different diffusion constants in

directions parallel and perpendicular to the substrate for denser

brushes. Both diffusion constants displayed a clear reduction

compared to bulk, particularly for smaller brush spacings. This

finding supports the notion that PNNs restrict transport.

Isotropic diffusion was recovered in the limit of very

dilute brushes, where the system is close to bulk. In order to

characterize how the system approached bulk, the ratio of the

diffusion constants were fit to a decaying power law.

To study the effect of brush geometry and dynamics on

diffusion, several different system types were probed. Altering

the dynamics of the brush yielded only small differences in
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diffusion of the free particle, with the diffusion constants of

static brushes and dynamic brushes with and without a bending

term all agreeing within the standard deviation. The free particle

diffusion constant in a system of straight, fixed chains yielded a

higher diffusion constant in the perpendicular direction than for

the other systems, while the parallel diffusion constant remained

the same within the standard deviation. In summary, the exact

dynamics of the brush did not affect the diffusion constants

noticeably.

The behavior of each diffusion constant with increasing

spacing d was compared to existing theories for intermediate

values of d in a heuristic manner. The hyperbola of revolution

and ordered packings models provided the best fit of the

theoretical models considered to the diffusion constant as a

function of porosity. A modified version of the cation-exchange

resin model was implemented and displayed an acceptable

performance. A power law proved the best fit to D vs. d in the

perpendicular direction for both system types and was used to

estimate the diffusion time through a h = 500 nm brush.

Simulations were performed for different particle charges

and combined with theory to obtain electrical properties of the

brush. The resistance of the brush was found to be orders of

magnitude smaller than the resistance of a neuron membrane,

implying that the PNNs should not affect the resistance of a cell

to a large extent.
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