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Let G = (V(G),E(G)) be a graph with no loops, numerous edges, and only one

component, which is made up of the vertex set V(G) and the edge set E(G). The

distance d(u, v) between two vertices u, v that belong to the vertex set of H is

the shortest path between them. A k-ordered partition of vertices is defined

as β = {β1,β2, . . . ,βk}. If all distances d(v,βk) are finite for all vertices v ∈ V,

then the k-tuple (d(v,β1),d(v,β2), . . . ,d(v,βk)) represents vertex v in terms of

β, and is represented by r(v|β). If every vertex has a di�erent presentation, the

k-partition β is a resolving partition. The partition dimension of G, indicated by

pd(G), is the minimal k for which there is a resolving k-partition of V(G). The

partition dimension of Toeplitz graphs formed by two and three generators is

constant, as shown in the following paper. The resolving set allows obtaining

a unique representation for computer structures. In particular, they are used

in pharmaceutical research for discovering patterns common to a variety of

drugs. The above definitions are based on the hypothesis of chemical graph

theory and it is a customary depiction of chemical compounds in form of

graph structures, where the node and edge represent the atom and bond types,

respectively.

KEYWORDS

Toeplitz graph, resolving sets, constant partition dimension, bounds on partition

dimension, partition resolving set

1. Introduction

Mathematics plays a key role in social science such as computer science, physics,

and chemistry. If L = {l1, l2, . . . , lk} is a graph’s ordered set of vertices and

v ∈ G, then the k-tuple r(v|L) = (r(v, l1), r(v, l2), . . . , r(v, lk)). The notation

r is the representation of v with regard to L, and the symbol L is said to

be a resolving set if the different vertices of G have different representations

regard to L. H’s metric dimension, indicated by dim(H), is the minimal number

of vertices in the resolving set. The task of computing a graph’s locating set

is a Non-deterministic Polynomial time problem or NP-hard (Lewis et al., 1983).
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FIGURE 1

The corresponding Toeplitz graph and the adjacency matrix T

T5〈1, 3, 4〉.

These ideas have been mentioned in the literature (Chvatal,

1983; Slater, 1988; Khuller et al., 1996; Chartrand et al., 2000a,

2003; Buczkowski et al., 2003; Caceres et al., 2007).

Another form of dimension is partition dimension, which

is similar to the metric dimension (Chartrand et al., 2000b)

as follows: The k-ordered partition is designed as β =

{β1, . . . ,βk} and r(v|β) = {d(v,β1), d(v,β2), . . . , d(v,βk)} are

named as k-tuple representations. If each v in V(G) has a

unique representation with regard to β , then the resolving

partition of the vertex set is termed β , and the least value of the

resolving partition set of V(G) is called the partition dimension

of G and is indicated as pd(G) (Chartrand et al., 2000b). The

metric dimension problem’s computational complexity and NP-

hardness were studied in Lewis et al. (1983). Because computing

the pd is a more advanced variant of computing the metric

dimension, it is likewise an NP-complete task. For simple

graphs, there is a well-known inequality between dim, and pd

(Chartrand et al., 2000b).

pd(G) ≤ dim(G)+ 1. (1)

A n × n matrix A = axy is a Toeplitz matrix if axy =

ax+1,y+1 for each x, y = 1, 2, ..., n − 1. A loopless and having

no multi-edges graph termed as Tn is Toeplitz graph if the

matrix is the symmetric Toeplitz matrix. The Topelitz graph

Tn〈t1, t2, t3, . . . , tp〉, where 0 < t1 < t2 < . . . tp < n with

V(H) = {1, 2, 3, . . . , n} has E(H) = {(x, y), 1 ≤ x ≤ y ≤ n},

iff y − 1 = tq for some q, 1 ≤ q ≤ p (Liu et al., 2019). Let

n = 5, k = 2, t1 = 1, t2 = 3, and t3 = 4. Figure 1 highlight

the adjacency matrix T and its corresponding Toeplitz graphs

T5〈1, 3, 4〉.

Toeplitz matrices play a major role in physical data-

processing and in determining the discrete form of an integral

and differential equations are considered as applications.

Furthermore, matrices also contributed in process of stationary,

the theories of polynomials of orthogonals andmoment problem

(Heinig and Rost, 1984) for more details reader can see (Ku and

Kuo, 1992; Hua et al., 2010).

The researchers in Harary and Melter (1976) founded the

concept of resolvability in graphs. Chartrand et al. (2000b) first

time introduced the concept of pd. Javaid and Shokat (2008)

discussed the pd of wheel graphs. Yero and Velázquez (2010)

computed the pd of the cartesian product of graphs. Fehr et al.

(2006) disproved a conjecture regarding the pd of products of

graphs. The upper bound for the pd of the parallel composition

of any graph was studied by Mohan et al. (2019). They also

came up with an exact solution for the parallel composition

of pathways of various lengths. Some updated references are

(Ahmad et al., 2021; Ali et al., 2021; Azeem et al., 2021, 2022;

Shanmukha et al., 2022a,b,c; Usha et al., 2022).

Resolvability of the graph has application in many fields

of science such as in chemistry for representing chemical

compounds (Browsable, 1998), Djokovic-Winkler relation

(Caceres et al., 2007), strategies for the mastermind game

(Chvatal, 1983), pattern recognition and image processing,

hierarchical data structures (Melter and Tomescu, 1984), and

robots navigation in networks (Khuller et al., 1994). For a

better understanding of this topic, some very detailed articles

are (Chartrand et al., 2000b; Saenpholphat and Zhang, 2002;

Javaid et al., 2012; Velazquez et al., 2012; Velázquez et al., 2014;

Yero et al., 2014; Siddiqui and Imran, 2015; Alatawi et al., 2022;

Alshehri et al., 2022; Khabyah et al., 2022; Koam et al., 2022,a,b;

Nadeem et al., 2022).

The theorems that follow are quite useful for calculating the

pd of graphs.

Theorem 1 (Chartrand et al., 2000b). “Let G be a connected

graph of order n ≥ 2. Then pd(G) = 2 if and only if G = Pn”.

Theorem 2 Chartrand et al. (2000b) “Let φ be a resolving

partition of ε(g) and ǫ1, ǫ2 ∈ ε(g). If d(ǫ1,w) = d(ǫ2,w) for all

vertices w ∈ ε(g)\(ǫ1, ǫ2), then ǫ1, ǫ2 belong to different classes

of φ.”

This study’s findings the pd of Toeplitz graph with two

generators 1 and t in Section 2 and Toeplitz graph partition

dimension with three generators 1, 2, and t in Section 3.

2. Partition dimension of Tn〈1, t〉

The coming section is containing the discussion on the pd of

the Toeplitz graph Tn〈1, t〉, for t ≥ 2 the pd of the graph is three.

Theorem 2.1. AToeplitz graph with n ≥ 4 is Tn〈1, 2〉.After that,

pd(Tn〈1, 2〉) = 3.

Proof. Let the Toeplitz graph with n ≥ 4 is Tn〈1, 2〉 Then we

will show that the Toeplitz graph with generators 1 and 2 consist

a resolving partition set, β = {β1,β2,β3} with three elements,

where β1 = {v1}, β2 = {vk}k≡0(mod 2), β3 = {vk}k≡1(mod 2).

Let β = {β1,β2,β3} resolve the vertices of graph Gwith V(G) =

β1 ∪ β2 ∪ β3.

When k = 1, 2, . . . , n. In terms of resolving partition set β , we
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have the following representations of vk.

r(vk|β) =







⌊

k

2

⌋

,
(−1)k+1 + 1

2
,











1 k = 1

(−1)k + 1

2
k ≥ 2







Because all of the representations of different vertices are distinct

pd(Tn〈1, 2〉) ≤ 3. (2)

Conversely: Now, we will show that pd(Tn〈1, 2〉) ≥ 3. Suppose

on contrary that pd(Tn〈1, 2〉) = 2. We know that pd(G) = 2, iff

G is a path graph by Theorem 1, it is not possible for Tn〈1, 2〉.

Thus,

pd(Tn〈1, 2〉) ≥ 3. (3)

Hence, from Inequalities (2) and (3), we have

pd(Tn〈1, 2〉) = 3.

Theorem 2.2. Let a Toeplitz graph Tn〈1, 3〉 with n ≥ 5. Then

pd(Tn〈1, 3〉) = 3.

Proof. Let a Toeplitz graph Tn〈1, 3〉 with n ≥ 5. We will

show that the Toeplitz graph with generators 〈1, 3〉 consist of

a resolving partition set, β = {β1,β2,β3} with three elements,

where β1 = {v1}, β2 = {v2, . . . , vt}, β3 = {vt+1, . . . , vn}. There

are two cases for β :

Case 1: If 1 ≤ k ≤ 3, then we can write the representation of vk
with respect to β as

r(vk|β) =
(

k− 1, q, 1
)

where q =
⌊

1
k

⌋

, this shows that all the representations are

different so β resolves the vertex set of graph Tn〈1, 3〉.

Case 2: If 4 ≤ k ≤ n, then we can write the representation of vk
with respect to β a

r(vk|β) =
(

q+ j, q, 0
)

where q =
⌈

k−3
3

⌉

and k− 1 ≡ j(mod 3), this shows that all the

representations are different, thus,

pd(Tn〈1, 3〉) ≤ 3. (4)

Conversely: We will prove that pd(Tn〈1, 3〉) ≥ 3. On contrary

suppose that pd(Tn〈1, 3〉) = 2. Theorem 1 demonstrates that

pd(G) = 2, iff G is a path graph, then it is not possible for

Tn〈1, 3〉. Thus,

pd(Tn〈1, 3〉) ≥ 3. (5)

Hence, from Inequalities (4) and (5), we have

pd(Tn〈1, 3〉) = 3.

Theorem 2.3. Let a Toeplitz graph with notation Tn〈1, t〉 with

even generator t ≥ 4, n ≥ t + 2. Then pd(Tn〈1, t〉) = 3.

Proof. Let a Toeplitz graph with notation Tn〈1, t〉 with

even generator t ≥ 4, n ≥ t + 2. The Toeplitz graph with

generators 〈1, t〉 consisting of a resolving partition set will be

demonstrated. β = {β1,β2,β3}, where β1 = {v1}, β2 = {v t+2
2
},

β3 = {∀vk|vk /∈ β1,β2}. There are three cases with respect to vk,

which are the following;

Case 1: When k ≡ 2, 3, . . . , t2 (mod t). We have the following

representation of vk with regard to resolving partition set β ;

r(vk|β) =

(

k− ρt + ρ − 1,
(2ρ + 1)t + 2(ρ − k+ 1)

2
, 0

)

where ρ =
⌊

k
t

⌋

.

Case 2: When k ≡ t+2
2 (modt). We have the following

representation of vk with respect to resolving partition set β ;

r(vk|β) =

(

k− ρt + ρ − 1,
2(ρ + k− 1)− (2ρ + 1)t

2
, z

)

where ρ =
⌊

k
t

⌋

, z = 1 when k = t+2
2 and otherwise z = 0.

Case 3: When k ≡ 0, 1, t+4
2 , t+6

2 , . . . , t − 1(mod t). We

have the following representation of vk with respect to resolving

partition set β ;

r(vk|β) =

(

ρt − k+ ρ + 1,
2(ρ + k− 2)− (2ρ − 1)t

2
, z

)

where ρ =
⌊

2k+t
2t

⌋

, z = 1 when k = 1 and otherwise z = 0.

It is clear that no two vertices have the same representation,

implying that there are not any two vertices with the same

representation.

pd(Tn〈1, t〉) ≤ 3. (6)

On contrary, we shall now demonstrate that pd(Tn〈1, t〉) ≥

3. Suppose on the contrary that pd(Tn〈1, t〉) = 2. We know

that by Theorem 1, it is not possible for even t of graph

Tn〈1, t〉. Thus,

pd(Tn〈1, t〉) ≥ 3. (7)

Hence, from Inequalities (6) and (7), we have

pd(Tn〈1, t〉) = 3.

Theorem 2.4. Let a Toeplitz graph Tn〈1, t〉 with odd t ≥ 5,

n ≥ t + 2. Then pd(Tn〈1, t〉) = 3.
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Proof. Let a Toeplitz graph Tn〈1, t〉 with odd t ≥ 5, n ≥ t + 2.

We will show that the Toeplitz graph with generators 1 and

t, consists of a resolving partition set, β = {β1,β2,β3} with

three elements, where β1 = {v1, v2, vt+1}, β2 = {v t+1
2
, v t+3

2
},

β3 =
{

∀vk|vk /∈ {β1,β2}
}

.

There are two cases for β1

r(vk|β1)

=

{

k− 2+ q1(1− t), k ≡ 2, . . . , t+1
2 + 1(mod t)

t + 1− k+ (t + 1)
(

q2 − s
)

+ s, k ≡ 0, 1, t+1
2 + 2, ..., t − 1(mod t)

where q1 =
⌊

k
t

⌋

, q2 =
⌊

k
t+2

⌋

, and s =
⌊

1
k

⌋

.

There are two cases for β2

r(vk|β2)

=

{

t + 1− k+ (t + 1)q1 − s, k ≡ 2, 3, . . . , t+1
2 (mod t)

k− 1−
(

t+1
2

)

+ q2(1− t)+ st, k ≡ 0, 1, t+1
2 + 1, . . . , t − 1(mod t)

where q1 =
⌊

k
t

⌋

and s = t+1
2 . where q2 = ⌊ k

t+2 ⌋ and s = ⌊ 1
k
⌋.

For β3, we have the following values

r(vk|β2) =















2 fork = 1

1 fork = t+1
2 , t+3

2 , t + 1

0 otherwise

From all these cases of β1, β2, and β3

r(vk|β) =
(

r(vk|β1), r(vk|β2), r(vk|β3)
)

We conclude that all representations are unique, and no two

vertices have identical representations.

pd(Tn〈1, t〉) ≤ 3 (8)

In contrary, we shall now demonstrate that pd(Tn〈1, t〉) ≥ 3.

Suppose on the contrary that pd(Tn〈1, t〉) = 2. We know that by

Theorem 1, it is not possible for odd t of graph Tn〈1, t〉. So

pd(Tn〈1, t〉) ≥ 3 (9)

Hence, from Inequalities (8) and (9), we can say that

pd(Tn〈1, t〉) = 3

3. Partition dimension of Tn〈1, 2, t〉

In this section, we are going to discuss the partition

dimension of Tn〈1, 2, t〉. If t = 3, 4, 5, and t = 2i, i ≥ 3

, n ≥ t + 2 then partition dimension is 4.

Theorem 3.1. Let Tn〈1, 2, t〉 be a Toeplitz graph. Then

pd(Tn〈1, 2, t〉) = 4.

Proof. We split our theorem into three cases.

Case A: When t = 3, 4, 5.

Let Tn〈1, 2, t〉 be a Toeplitz graph with t = 3, 4, 5, n ≥ t + 2,

then we will show that vertices of the Toeplitz graph

with three generators consist of a resolving partition

set, β = {β1,β2,β3,β4} where β1 = {v1}, β2 = {v2},

β3 = {v3, . . . , vt}, and β4 = {vt+1, . . . , vn}. Then there are the

three cases that follow:

Case 1: If k ≡ 1(mod t), then we can write the unique

position of vk regarding β as;

r(vk|β) =

(

q− k+ 1, q− k+ 2−

⌊

3

t

⌋

s, q− k+ 2− s,w

)

where q = (t + 1)
⌊

k
t

⌋

, s =
⌈

k−1
k

⌉

, and w =
⌊

t
k+t−1

⌋

. This

shows that all the representations are different so β resolves the

vertices of Tn〈1, 2, t〉

Case 2: If k ≡ 2, 3(mod t), we can write the representations of vk
regarding β as;

r(vk|β) =

(

q+ 1, k− 2+ (1− t)q, q+

⌊

2

k

⌋

, s

)

where q =
⌊

k−1
t

⌋

and s =
⌊

t
k+t−3

⌋

. This indicates that all

the representations are different so β resolves the vertices of

Tn〈1, 2, t〉.

Case 3: If k ≡ 4, 5(mod t), we can write the representations of vk
with respect to β as

r(vk|β) =

(

q+ 2,

⌊

k

t

⌋

+

⌊

t

5

⌋

, q,

⌊

t

k

⌋)

where q =
⌊

k−1
t

⌋

. This shows that all the representations

are different so β resolve the vertices. From all three cases, we

conclude that

pd(Tn〈1, 2, t〉) ≤ 4 (10)

Case B: When t = 6, 8.

Let β = {β1,β2,β3,β4} be a resolving partition set. Where

β1 = {v1}, β2 = {v2, vt}, β3 = {v3, . . . , vt−2}, and β4 =

{vt−1, vt+1, . . . , vn}. We have different cases on vk, which are

following;

There are two cases for β1;

r(vk|β1)

=







⌊

k
2

⌋

−
(

t−2
2

)

⌊

k
t

⌋

− z1, k ≡ 1, 2, 3, 4, 5(mod t)

(

t−2
2 + 6− k

)

+ (t + 1)
⌊

k−1
t

⌋

+ z, k ≡ 0, 6, 7, . . . , t − 1(mod t)
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where z1 = 1 when k = even, z = 1 when k ≡ 0(mod 8) and

otherwise both are 0.

There are three cases for β2;

r(vk|β2)

=























⌊

k
2

⌋

− 1−
(

t−2
2

)

⌊

k
t

⌋

+ z1, k ≡ 2, 3, 4(mod t)

(

t−4
2 + 6− k

)

−
⌊

k
2

⌋

+
(

t+2
2

)

⌊

k
t

⌋

+ z, k ≡ 5, . . . , t − 1(mod t)
⌊

k−1
t

⌋

, k ≡ 0, 1(mod t)

where z = 0 when 5 ≤ k ≤ t − 1 and otherwise z = 2, and z1

has defined in β1.

There are three cases for β3;

r(vk|β3) =























⌊

k+1
2

⌋

−
(

t−2
2

) ⌊

k
t

⌋

, k ≡ 1, 2(mod t)
⌊

k
t

⌋

, k ≡ 3, . . . , t − 2(mod t)
⌊

k+1
t

⌋

, k ≡ 0, t − 1(mod t)

There is the only case for β4;

r(vk|β4) =







1 k = 1, . . . t − 4

0 otherwise

It is clear that no two vertices have the same representation,

implying that there are no two vertices with the same

representation.

pd(Tn〈1, 2, t〉) ≤ 4. (11)

Case C: When t = 2i, i ≥ 5.

Let β = {β1,β2,β3,β4} be a resolving partition set. Where

β1 = {v2}, β2 = {v6}, β3 = {va}, and β4 = {∀vk|vk /∈

β1,β2,β3}. where a = 2
⌈

t+6
4

⌉

.

The following is a representation of all vertices vk with regard to

the resolving partition set β .

There are two cases for β1;

r(vk|β1)

=







⌊

k−1
2

⌋

−
(

t−2
2

)

⌊

k
2

⌋

, k ≡ 3, 4, . . . , t − 3(mod t)

3−
⌊
∣

∣

∣

k−t+2
2

∣

∣

∣

⌋

+
(

t+2
2

)

⌊

k
t+3

⌋

+
⌊

1
k

⌋

, k ≡ 0, 1, 2, t − 2, t − 1(mod t)

There are four cases for β2;

r(vk|β2) =











































⌊

3
k

⌋

−
(

t−2
2

)

⌊

k
t+1

⌋

+

⌊

k− t
2

2

⌋

, k ≡ 0, 1(mod t) t = 10, 12

⌊

3
k

⌋

+
⌊

5(k−1)
t

⌋

− 4
⌊

k
t+1

⌋

, k ≡ 0, 1(mod t), t ≥ 14

2−
⌊

k−2
2

⌋

+
(

t+2
2

)

⌊

k
t

⌋

, k ≡ 2, 3, . . . , 6(mod t)
⌊

k−5
2

⌋

−
(

t−2
2

)

⌊

k
t

⌋

, k ≡ 7, 8, . . . , t − 1(mod t)

There are four cases for β3;

r(vk|β3) =











































⌈

t
4

⌉

, k = 1, 2
⌈

t+2
4

⌉

− k+ 3, k = 3, 4
⌊

k−2a
2

⌋

−
(

t−2
2

)

⌊

k−5
t

⌋

+ z1, k ≡ 0, . . . , 4, 2a, 2a+ 1, . . . ,

t − 1(mod t), k ≥ 2a

t−6
2 −

⌊

k−5
2

⌋

+
(

t+2
2

)

⌊

k
t

⌋

− z2, k ≡ 5, . . . , t − 3(mod t)

where z1 = 0 when k = even, otherwise 1 and z2 = 1 when

k = odd, otherwise 0.

There is the only case for β4;

r(vk|β4) =







1, k = 2, 6, a

0, otherwise

It is clear that no two vertices have the same representation,

implying that there does not exist two vertices with the same

representation.

pd(Tn〈1, 2, t〉) ≤ 4. (12)

Converse A, B, and C:

We will show that pd(Tn〈1, 2, t〉) ≥ 4. On contrary, suppose

that pd(Tn〈1, 2, t〉) = 3.

Different cases on behalf of our assumption that

pd(Tn〈1, 2, t〉) is 3. If βn = {β1,β2,β3}, where βn

consists of sets of different resolving partition set that

are following:

Case 1: β1 = {v1, v2}, β2 = {v3, v4}, β3 = {vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(v3|β
n) = r(v4|β

n) = (1, 0, 1).

Case 2: β1 = {v1, v3}, β2 = {v2, v4}, β3 = {vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(v2|β
n) = r(v4|β

n) = (1, 0, 1).

Case 3: β1 = {v1, v2, v3}, β2 = {v4}, β3 = {vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(v2|β
n) = r(v3|β

n) = (0, 1, 1).

Case 4: β1 = {v1, v2}, β2 = {v3}, β3 = {vi}
i=n
i=4 ,then

we have the following different vertices with same

representation; r(v1|β
n) = r(v2|β

n) = (0, 1, 1).

Case 5: β1 = {v1}, β2 = {v2, v3}, β3 = {vi}
i=n
i=4 ,

then we have the following different vertices with same

representation; r(vt+2|β
n) = r(vt+3|β

n) = (2, 1, 0).

Case 6: β1 = {v1, v2, v4}, β2 = {v3}, β3 = {vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(v2|β
n) = r(v4|β

n) = (0, 1, 1).

Case 7: β1 = {v1, v3, v4}, β2 = {v2}, β3 = {vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(vt+3|β
n) = r(vt+3|β

n) = (1, 2, 0).

Frontiers inComputationalNeuroscience 05 frontiersin.org

https://doi.org/10.3389/fncom.2022.959105
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Luo et al. 10.3389/fncom.2022.959105

FIGURE 2

Toeplitz graph T8〈1, 2, 3〉 with partition dimension 4.

Case 8: β1 = {v1}, β2 = {v2, v4}, β3 = {v3, vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(v3|β
n) = r(v6|β

n) = (1, 1, 0).

Case 9: β1 = {v1}, β2 = {v2, v3, v4}, β3 = {vi}
i=n
i=5 ,

then we have the following different vertices with same

representation; r(v2|β
n) = r(v3|β

n) = (1, 0, 1).

Case 10: β1 = {v1}, β2 = {v2, v3, v5}, β3 =

{v3, vi}
i=n
i=5 , then we have the following different vertices

with same representation; r(vt+3|β
n) = r(v2t+1|β

n) =
(

2,
⌊

t+1
3

⌋

, 0
)

.

Case 11: β1 = {v1, v5}, β2 = {v2, v4}, β3 = {v3, vi}
i=n
i=6 ,

then we have the following different vertices with same

representation; r(v1|β
n) = r(v5|β

n) = (0, 1, 1).

Case 12: β1 = {v1, v4}, β2 = {v3, v5}, β3 = {v2, vi}
i=n
i=6 ,

then we have the following different vertices with same

representation; r(v1|β
n) = r(v4|β

n) = (0, 1, 1).

Case 13: β1 = {v1, v4}, β2 = {v2, v5}, β3 = {v3, vi}
i=n
i=6 ,

then we have the following different vertices with same

representation; r(v2|β
n) = r(v4|β

n) = (1, 0, 1).

Case 14: β1 ≡ 1(mod 3), β2 ≡ 2(mod 3), β3 ≡ 0(mod 3),

then we have the following different vertices with same

representation; r(v1|β
n) = r(v4|β

n) = r(v7|β
n) =

(0, 1, 1).

According to the above cases, we can easily conclude that

our supposition is wrong, and we can not resolve the vertices of

Tn〈1, 2, t〉 into three resolving partition sets. Thus,

pd(Tn〈1, 2, t〉) ≥ 4 (13)

Hence, from Inequalities (1-3) and (13), we can say that

pd(Tn〈1, 2, t〉) = 4

4. Conclusion and open problems

In this study, we looked at different families of Toeplitz

graphs and established that the partition dimension of each

family is the constant, if the Toeplitz graph consists of two

generators, then pd(Tn〈1, t〉)=3, where t ≥ 2 and if Toeplitz

graph consists of three generators, pd(Tn(〈1, 2, t〉)) = 4, where

t = 3, 5 and t = 2i and i ≥ 2.

In this paper, inequality (1) also satisfied the metric dimension

results (Liu et al., 2019) with our results for partition

dimension (Figure 2).

Open Problem 1. The partition dimension of the Toeplitz graph

with two generators k ≥ 2, s ≥ 3 and gcd(k, s) = 1, is constant,

bounded or unbounded?

Open Problem 2. The partition dimension of the Toeplitz graph

with three generators k ≥ 2, s ≥ 3, t ≥ 4 and gcd(k, s, t) = 1, is

constant, bounded or unbounded?

Open Problem 3. If the generators of the Toeplitz graph are

increasing then the partition dimension either increasing or

decreasing ?
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