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Being able to objectively characterize the intrinsic complexity of behavioral

patterns resulting from human or animal decisions is fundamental for

deconvolving cognition and designing autonomous artificial intelligence

systems. Yet complexity is difficult in practice, particularly when strings are

short. By numerically approximating algorithmic (Kolmogorov) complexity

(K), we establish an objective tool to characterize behavioral complexity.

Next, we approximate structural (Bennett’s Logical Depth) complexity (LD)

to assess the amount of computation required for generating a behavioral

string. We apply our toolbox to three landmark studies of animal behavior

of increasing sophistication and degree of environmental influence, including

studies of foraging communication by ants, flight patterns of fruit flies,

and tactical deception and competition (e.g., predator-prey) strategies. We

find that ants harness the environmental condition in their internal decision

process, modulating their behavioral complexity accordingly. Our analysis of

flight (fruit flies) invalidated the common hypothesis that animals navigating

in an environment devoid of stimuli adopt a random strategy. Fruit flies

exposed to a featureless environment deviated the most from Levy flight,

suggesting an algorithmic bias in their attempt to devise a useful (navigation)

strategy. Similarly, a logical depth analysis of rats revealed that the structural

complexity of the rat always ends up matching the structural complexity of

the competitor, with the rats’ behavior simulating algorithmic randomness.

Finally, we discuss how experiments on how humans perceive randomness

suggest the existence of an algorithmic bias in our reasoning and decision

processes, in line with our analysis of the animal experiments. This
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contrasts with the view of the mind as performing faulty computations when

presented with randomized items. In summary, our formal toolbox objectively

characterizes external constraints on putative models of the “internal” decision

process in humans and animals.

KEYWORDS

behavioral biases, ant behavior, behavioral sequences, communication complexity,
tradeoffs of complexity measures, Shannon Entropy

Introduction

To unravel the essence of the machinery enabling human
and animal decisions is fundamental not only for understanding
cognition but, by extension, when aiming to design advanced
autonomous artificial intelligence systems. Recent progress in
cognitive science suggests a Bayesian view of cognition as
constituting a predictive system (Fahlman et al., 1983; Rao and
Ballard, 1999; Friston and Stephan, 2007; Friston, 2010). Such a
view is succinctly captured in Shakespeare’s in Macbeth, when
Banquo asks the witches whether they can “. . .. . .. . . look into
the seeds of time, and say which grain will grow and which will
not.” At the core of this view is the notion that our cognitive
apparatus incorporates a model of the world, serving as a
basis for making decisions (Ha and Schmidhuber, 2018; Friston
et al., 2021). Thus, the Bayesian brain hypothesis suggests that
underlying our behavior there is an inherent cognitive structure
for making decisions based on predictions, which are derived in
turn from a real-world model.

Therefore in some sense, cognitive systems for decision
making in animals and humans hinge upon the capacity to
handle probabilities under a Bayesian model. Such probabilities
are thought to be central to the decision process. Here we
propose to reformulate the challenge of dealing with “internal”
probabilities using the concept of complexity, since we then
can objectively ask how random or non-random particular
instances of observable “external” behavior are. From such
a viewpoint, we can potentially discover strong objective
“external” regularizations constraining our models and analysis
of the “internal” decision process, Bayesian or not. Since the
emergence of the Bayesian predictive paradigm in cognitive
science referred to above, researchers have expressed the need
for a formal account of ‘complexity’ to, for example, enable
objective characterization of animal experiments (e.g., Rushen,
1991; Manor and Lipsitz, 2012). There has, however, been a
struggle to provide formal, normative, non-ad hoc, and universal
accounts of features in behavioral sequences that are more
advanced than probabilistic tools.

Previous work has introduced some measures of fractality
(spatial and temporal) and Shannon Entropy in applications
of relevance to human and animal welfare (Sabatini, 2000;

Costa et al., 2002; Manor and Lipsitz, 2012). Yet, little
has been numerically attempted toward a systematic animal
behavioral analysis using quantitative measures of algorithmic
content. Relying primarily upon heuristic analysis of animal
and human behavioral data, different ideas have been proposed
regarding the nature of decisions, behavior, probabilities, world
models, and cognition which are thought to jointly account for
behavioral data. For example, organisms exposed to a featureless
environment have been thought to resort to a behavioral strategy
close to a random walk, characterized by isotropic step lengths
and following a heavy-tailed Levy distribution. Yet, without a
proper formal analysis of “complexity,” we risk misinterpreting
behavioral data from animals and humans.

Here we build on earlier work (Gauvrit et al., 2014a,b,
2015, 2017a,b; Zenil, 2017, Zenil et al., 2020) to show how
algorithmic information theory provides measures for the high-
order characterization of processes produced by deterministic
choices (Zenil et al., 2018, 2019). Importantly, we target cases
where such processes display no statistical regularities or
rankings of ordered versus random-looking sequences in terms
of their information content. Our objective in responding to this
challenge is to use algorithmic information theory to develop a
quantitative toolbox for complexity, and to validate our tools
using well-known landmark studies of animal behavior. This
task entails developing tools that can handle limited amounts
of data in the behavioral sciences, i.e., estimating complexity
for short strings. One problem for a decision system is how to
build a prior under several partly competing constraints. For
example, how do we meet the criteria for neutrality, making a
minimal number of assumptions (Ockham’s razor), while also
taking into account all possible scenarios (Epicurus’ Principle
of Multiple Explanations) and moreover being sufficiently
informative beyond statistical uniformity (Gauvrit et al., 2015).

To this end, we introduce Kolmogorov complexity (K) as a
coherent formalism, which has been developed to incorporate
all these principles. Kolmogorov complexity quantifies
simplicity versus randomness and enables a distinction between
correlation and causation in data. Its Kolmogorov complexity
quantifies the complexity of an object by the length of its
shortest possible description. For example, low K means that
digits in a sequence can be deterministically generated— each
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bit is causally connected by a common generating source.
However, that a sequence has a large Shannon Entropy means
that its digits do not look statistically similar, not that they
are necessarily causally disconnected. Thus far, statistical
lossless compression algorithms have been used to approximate
Kolmogorov complexity. However, they are based on statistical
properties of sequences that are used to encode regularities, and
as such they are, in fact, Shannon Entropy rate estimators (Zenil,
2020). Here we use an alternative method to approximate K
based on Algorithmic Probability (Delahaye and Zenil, 2012;
Soler-Toscano et al., 2014). In contrast to lossless compression,
we can also deal with short sequences typically encountered in
the behavioral sciences.

In addition, we also target what is referred to as
the structural complexity, i.e., the amount of computation
performed by a human or animal in decision-making. Since such
a distinction between structural complexity and randomness
cannot be accomplished using Kolmogorov complexity, we
make use of the notion of Logical Depth (LD) (Bennett, 1988).
Importantly, our approximation technique for short sequences
also allow an estimation of LD based upon and motivated by
Logical Depth (Zenil et al., 2012c, 2020).

Materials and methods

The algorithmic information theory provides a formal
framework for verifying intuitive notions of complexity. For
example, the algorithmic probability of a sequence s is the
probability that a randomly chosen program running on a
Universal (prefix-free) Turing Machine will produce s and halt.
Since Turing Machines are conjectured to be able to perform
any algorithmically specified computation, this corresponds to
the probability that a random computation will produce s.
It therefore serves as a natural formal definition of a prior
distribution for Bayesian applications. Also, as we will see in the
next section, the algorithmic probability of a string s is negatively
linked to its (Kolmogorov–Chaitin) algorithmic complexity,
defined as the length of the shortest program that produces s
and then halts (Kolmogorov, 1965; Chaitin, 1969).

One important drawback of algorithmic complexity (which
we will denote by K) is that it is not computable. Or,
more precisely, K is lower-semi-computable, meaning that
it cannot be computed with absolute certainty but can be
arbitrarily approximated from above. Indeed, statistical lossless
compression algorithms have been used to approximate K.
However, new methods more deeply rooted in and motivated
by algorithmic information theory can potentially provide
alternative estimations of algorithmic probability (Delahaye and
Zenil, 2012), and thus K, of strings of any length, especially short
ones (c.f. next section), which has spurred a renewed interest
in exact and objective numerical approximations of behavioral
sequences. One feature that has been the basis of a criticism

of applications of K is that K assigns the greatest complexity
to random sequences. The notion of “sophistication” is useful
to broaden the analysis of behavioral sequences. It assesses
the structure of the sequence and assigns low complexity to
randomness, since the measure introduces computational time.
One such measure derives from Charles Bennett’s seminal
contribution, based on Kolmogorov complexity, and is referred
to as Logical Depth. Here we also use a measure based
upon or motivated by Logical Depth (Zenil et al., 2012c) to
quantify the complexity of behavioral sequences because it can
provide further insight into another important aspect of animal
behavior beyond randomness, namely, the “computational
effort” that an animal may invest in behaving in a particular
way.

Algorithmic probability

One long-standing and widely used method for assessing
Kolmogorov–Chaitin complexity is lossless compression,
epitomized by the Lempel–Ziv algorithm. This tool, together
with classical Shannon Entropy (Wang et al., 2014), has been
used recently in neuropsychology to investigate the complexity
of electroencephalogram data (EEG) or Functional Magnetic
Resonance Imaging (fMRI) data (Mullally and Maguire,
2014). The size of a compressed file indicates its algorithmic
complexity, and the size is, in fact, an upper bound of the true
algorithmic complexity. However, compression methods have a
basic flaw: they can only recognize statistical regularities, and are
therefore implementations of variations of entropic measures,
only assessing the rate of entropic convergence based on
repetitions of strings of fixed sliding-window size. If statistical
lossless compression algorithms work for approximating
Kolmogorov complexity, they do so because compression is
a sufficient test for non-randomness. Yet, statistical lossless
compression fails in the other direction, unable to tell whether
something is the result of or is produced by an algorithmic
process (such as the digits of the mathematical constant
π). That is, they cannot detect structure outside of simple
repetition.

Popular compression methods are also inappropriate for
short strings (of, say, less than a few hundred symbols).
For short strings, lossless compression algorithms often yield
files that are longer than the strings themselves, providing
very unstable results that are difficult, if not impossible, to
interpret (see Table 1). In cognitive and behavioral science,
however, researchers usually deal with short strings of a
few tens of symbols, for which compression methods are
useless. This is one of the reasons behavioral scientists have
long relied on tailor-made measures of complexity instead,
because the factors mentioned above limit the applicability of
lossless compression techniques for approximating complexity
in behavioral sequences.

Frontiers in Computational Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fncom.2022.956074
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/


fncom-16-956074 January 20, 2023 Time: 6:18 # 4

Zenil et al. 10.3389/fncom.2022.956074

TABLE 1 Movement and duration [as reported by Reznikova and Ryabko (2012)] of information transmission from F.

Ant behavioral sequence
(turn pattern)

Duration
(mean sec)

E(s) (bits) CTM(s)
(bits)

C(s) (bytes) Bzip2(s)
(bytes)

LD(s) (number
of instructions)

110 69 0.636 6 64 37 3

11 72 0 3 64 37 2

000 75 0 4 64 37 3

111 84 0 4 64 37 3

00000 78 0 4 64 39 5

000000 88 0 5 64 39 7

111111 90 0 5 64 39 7

1011 100 0.562 6 64 37 4

0110 120 0.693 7 64 38 4

101010 130 0.693 8 64 37 7

010101 135 0.693 8 64 37 7

00101 150 0.673 7 72 37 5

010001 180 0.636 8 72 38 7

101101 200 0.636 8 64 38 7

001000 220 0.45 7 72 37 7

Sanguinea scouts to foragers; 0 encodes a right turn, and 1 encodes a left turn in a binary maze. E(s) is the Shannon Entropy of s. In contrast, CTM(s), C(s), and Bzip2(s) are
all approximations of K(s), with CTM(s) the approximation of K(s) by Algorithmic Probability and C(s) and Bzip2(s) by lossless compression (Compress and BZip2). LD(s) is the
approximation of Logical Depth by CTM. The table is sorted by duration, and it is clear that neither Entropy nor lossless compression (E, C, and Bzip2) offers enough resolution to
separate the complexity of behavioral sequences into more than 2 groups because E counts the number of different symbols. Compression is a variation of Entropy rate but also fails at
compressing short strings. However, CTM and LD are highly correlated, showing an increase in complexity, as suggested by the authors of the original experiments.

The Coding theorem method (Delahaye and Zenil, 2012;
Soler-Toscano et al., 2013) has been specifically designed to
address this challenge. Thanks to this method, researchers have
defined “Algorithmic Complexity for Short Strings” (ACSS).
This is a concrete approximation of algorithmic complexity
(Gauvrit et al., 2015), usable with very short strings. ACSS
is available freely as an R-package (Gauvrit et al., 2015) and
through an online complexity calculator1.

The idea at the root of ACSS is the use of algorithmic
probability as a means to capture algorithmic complexity. The
algorithmic probability of a string s is defined as the probability
that a universal prefix-free reference Turing machine U will
produce s and halt. Formally (Levin, 1974),

m(s) = 6U(p) = s1/2−|p| (1)

The algorithmic complexity of a string s is defined as the
length of the shortest program p that, running on a reference
universal prefix-free Turing machine U, will produce s and then
halt. Formally (Kolmogorov, 1965; Chaitin, 1969),

K(s) = min{|p|, U(p) = s} (2)

K(s) and m(s) both depend on the choice of the Turing
machine U. Thus, the expression “the algorithmic complexity
of s” is, in itself, a shortcut. For long strings, this dependency

1 http://www.complexity-calculator.com

is relatively small. Indeed, the invariance theorem states that for
any two universal prefix-free Turing machines U and U’, there
exists a constant c independent of s such that (Solomonoff, 1964;
Kolmogorov, 1965; Chaitin, 1969).

|KU(s) − KU ′(s)| < c (3)

The constant c can be arbitrarily large. If one would like
to approximate the algorithmic complexity of short strings, the
choice of U is thus relevant.

To partially overcome this inconvenience, we can take
advantage of a formal link established between algorithmic
probability and algorithmic complexity. The algorithmic coding
theorem reads (Levin, 1974).

KU (s) = −log2(mU (s)) + O(1) (4)

This theorem can be used to approximate a KU (s) through
an estimation of mU (s), where KU and mU are approximations
of K and m obtained by using a “reference” universal Turing
machine U. Instead of choosing a particular “reference”
universal Turing machine and feeding it with programs,
Delahaye and Zenil (2007, 2012) used a huge sample of
Turing machines running on blank tapes. By doing so, they
built an experimental distribution approaching m(s) more
smoothly, averaging over many Turing machines. ACSS(s) was
then defined as –log2(m(s)) by the algorithmic Coding theorem
(Eq. 4). ACSS(s) approximates an average KU (s). To validate
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the method, researchers have studied how ACSS varies under
different conditions. It has been found that ACSS, as computed
with different samples of small Turing machines, remains stable
(Gauvrit et al., 2014). Also, several descriptions of Turing
machines did not alter ACSS (Zenil et al., 2012a). For example,
Zenil et al. (2012a) showed that ACSS remained relatively stable
when using cellular automata instead of Turing machines. On
a more practical level, ACSS is also validated by experimental
results. For instance, as we will see in the following sections,
ACSS is linked to human complexity perception. Moreover,
the transition between using ACSS and lossless compression
algorithms is smooth, with the two behaving similarly when the
scope of string lengths overlap.

Bennett’s logical depth

As noted in the Section “Introduction,” a measure of the
“sophistication” of a sequence can be arrived at by combining
the notions of algorithmic complexity and computational time.
According to the concept of Logical Depth (Bennett, 1988),
the complexity of a string is best defined by the time that an
unfolding process takes to reproduce the string from its shortest
description. The longer it takes, the more complex the string.
Hence, complex objects can be seen as “containing internal
evidence of a non-trivial causal history” (Bennett, 1988).

Unlike algorithmic complexity, which assigns a high
complexity to random and highly organized objects, placing
them at the same level, Bennett’s Logical Depth assigns a low
complexity to both random and trivial objects. It is thus more in
keeping with our intuitive sense of the complexity of physical
objects, because trivial and random objects are intuitively
easy to produce, lack a lengthy history, and unfold quickly.
Bennett’s main motivation was to provide a reasonable means
for measuring the physical complexity of real-world objects.
Bennett provides a careful development (Bennett, 1988) of the
notion of logical depth, taking into account the near-shortest
programs, not merely the shortest one, to arrive at a robust
measure. For finite strings, one of Bennett’s formal approaches
to the logical depth of a string is defined as follows:

Let s be a string and d a significance parameter. A string’s
depth at some significance d, is given by

LDd(s) = min{T(p) : (|p| − |p′| < d) and (U(p) = s)} (5)

where T(p) is the number of steps in the computation U(p) = s,
and | p′| is the length of the shortest program for s, [thus | p′|
is the Kolmogorov complexity K(s)]. In other words, LDd(s) is
the least time T required to compute s from a d-incompressible
program p on a Turing machine U, that is, a program that
cannot be compressed by more than a fixed (small) number of
bits d (Bennett, 1988). For algorithmic complexity, the choice
of a universal Turing machine is bounded by an additive

constant (as shown by the Invariance theorem described in the
previous section). In contrast, Logical Depth is bounded by a
multiplicative factor (Bennett, 1988). The simplicity of Bennett’s
first definition of Logical Depth (Bennett, 1988), independent
of size significance, makes it more suitable for applications
(Delahaye and Zenil, 2012), serving as a practical approximation
to this measure via the decompression times of compressed
strings. To this end, it uses lossless compression algorithms,
whose deviation from perfect compression is unknown (and
cannot generally be known due to uncomputability results),
to calculate size significance. This is because where LD is
concerned, it is more relevant to consider the shortest time vis-
à-vis a set of near-smallest programs rather than just a single,
perhaps unrepresentative, time required by the shortest program
alone. We will denote by LD(s) a measure approximating the
Logical Depth of a string s, with no recourse to the significance
parameter, and approximated by a powerful method, an
alternative to lossless compression, explained in the next section.

Numerical estimation of algorithmic
probability and K

We use the concept of algorithmic probability for the
calculation of K (and LD) by application of the algorithmic
Coding theorem. First, a sample of 2,836·109 random Turing
machines are selected from a reduced enumeration of all 5-
state 2-symbol Turing machines (Soler-Toscano et al., 2013),
using the standard Turing machine formalism of the ‘Busy
Beaver’ problem (Radó, 1962; Brady, 1983). The sample output
returns the string produced by the halting machines, their
runtimes, and the instructions used by each Turing machine.
All the necessary information to estimate both the algorithmic
probability measure and Logical Depth by finding the smallest
machine (for this Turing machine formalism) producing s
before halting is presented in Figure 1.

Block decomposition method

The Block Decomposition Method (Zenil et al., 2014) is
used to estimate an algorithmic probability of longer sequences
based on the concept of algorithmic probability, the calculation
of which is computationally infeasible, given the number of
Turing machines that it would be necessary to run in order to
have a statistically significant frequency value, and ultimately
impossible because of incomputability results. However, unlike
traditional statistical lossless compression algorithms used to
estimate K, the Block Decomposition Method (BDM) can deal
with short sequences and has been successfully applied to
human cognition before (Gauvrit et al., 2014b; Kempe et al.,
2015b), as well as to algebraic and topological characterizations
of graph theory and complex networks (Zenil et al., 2014), and
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FIGURE 1

Flow chart of the Coding Theorem Method (CTM) and its implementation Algorithmic Complexity for Short Strings (ACSS), available as a
package for the R programming language, shows how K and LD are approximated by way of an Algorithmic Probability-based measure upon
application of the algorithmic Coding theorem. The method consists in running an enumeration of Turing machines from smaller to larger (by
number of states) and determining whether the machine halts or not for a large set of small Turing machines for which either their halting time
can be decided (with the so-called Busy Beaver functions) or an educated theoretical and numerical guess made. The algorithm counts the
number of times a sequence is produced, which is a lower bound on its algorithmic probability, and then is transformed to an upper bound of
the sequence’s Kolmogorov complexity using the so-called algorithmic Coding theorem (Bottom Left). The same algorithm also finds the
shortest, fastest Turing machine that produces the same sequence, hence providing an estimation of its Logical Depth (Bottom Right). An
online tool that provides estimations of CTM, and soon will include BDM too, can be found at http://www.complexity-calculator.com.

offers an alternative to the use of statistical measures, including
popular compression algorithms such as LZW that are mostly
entropy estimators (Zenil, 2020).

The method consists in decomposing a long sequence into
shorter, optionally overlapping sub-sequences, the Kolmogorov
complexity of which can be estimated by running a large
set of random computer programs in order to estimate their
algorithmic probability. For example, the sequence “123123456”
can yield, with a 6-symbol window with a 3-symbol overlap, the
two subsequences “123123” and “123456,” i.e., what is known as
k-mers, in this case 6-mers, all substrings of length 6. BDM then
takes advantage of possible repetitions by applying the following
formula:

C(s) = 6p(log2(np) + K(p)) (6)

where the sum ranges over the different subsequences p, np is
the number of occurrences of each p, and K(p) is the complexity
of p as approximated by CTM implemented in ACSS. As the
formula shows, the Block decomposition method (BDM) takes
into account both the local complexity of the subsequence and

remote regularities by repetition of the same substring in the
original sequence.

The BDM is a greedy divide-and-conquer algorithm that
extends the power of the algorithmic Coding Theorem Method
(see Figure 1), which is computationally intractable in a sound
information-theoretical fashion, given classical information
theory. We know we can encode the complexity of an
object repeated n times with the complexity of the object
and only log2(n) bits for the number of repetitions, thus
helping to find tighter upper bounds to K. Unlike lossless
compression algorithms used to approximate K, CTM, with
BDM, constitutes a more deeply-rooted algorithmic approach
to K, rather than merely statistical ones (such as LZW and
cognates), which are more suitable for estimating Entropy rate
than algorithmic (Kolmogorov) complexity. This is because,
unlike statistical lossless compression (e.g., LZW), CTM can
find the computer programs that produce certain non-statistical
algorithmic patterns, such as subsequences of the decimal
expansion of the mathematical constant π, that will merely look
random to a popular statistical lossless compression algorithm.
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Application to animal behavioral data

To test the usefulness of algorithmic probability and logical
depth for capturing intuitive notions of behavioral complexity,
we applied these techniques to several experimental datasets
for which complexity arguments are either lacking or have
only been informally advanced. These datasets come from
studies of the foraging behavior of Formica ants in binary
mazes (e.g., Reznikova and Ryabko, 2012), and of the flight
behavior of Drosophila flies in virtual arenas (e.g., Maye et al.,
2007).

Ant foraging and the complexity of instructions
in binary mazes

In a series of experiments surveyed in Reznikova and
Ryabko (2012), red-blood ant scouts (Formica sanguinea)
and red wood ants (Formica rufa) were placed in a binary
maze with food (sugar syrup) at randomly selected endpoints.
Scout ants were allowed to return through the maze once
they had found the food to communicate instructions to a
foraging team from the colony; scout ants were claimed to
translate sensorimotor experiences into numerical or logical
prescriptions transmitted to conspecifics in the form of
sequences of branches (left or right) to follow to find the
food successfully. 335 scout ants and their foraging teams
took part in all the experiments with the binary tree mazes,
and each scout took part in 10 or more trials. 338 trials
were carried out using mazes with 2, 3, 4, 5, and 6 forks.
The scout ants were observed to take progressively longer to
communicate paths in deeper mazes (with more turns); that is,
they transmitted more information. Informal results suggested
that algorithmically simpler instructions of “right” and “left”
movements toward the food patches were communicated faster
and more effectively than more Kolmogorov complex (random-
looking) behavioral sequences, thus suggesting that when strings
are of the same length but transmitted at different rates,
ants are capable of compressing the simpler sequences, unlike
the more complex ones that are harder to compress or are
uncompressible. This was not formalized, however. When
conducting the ant experiment, the researchers also found
that almost all naive foragers were able to find food on their
own but that the time they spent was 10–15 times longer
than the time spent by those ants that entered the maze after
contact with a successful scout bearing information about the
location of the food (Ryabko and Reznikova, 2009). Ryabko
and Reznikova (2009), Reznikova and Ryabko, 2011, 2012,
and other researchers Li and Vitányi (2008) were not able
to numerically validate the relationship between complexity
and communication times suggested by the results of the
ant experiment. We applied our techniques for approximating
algorithmic probability and logical depth (Delahaye and Zenil,
2012; Soler-Toscano et al., 2013; Zenil et al., 2020) to these extant
data.

Low random behavior of fruit flies in
the absence of stimuli

Experiments with Drosophila examined the behavior of
tethered flies in a flight simulator consisting of a cylindrical
arena homogeneously illuminated from behind (Maye et al.,
2007). A fly’s tendency to perform left or right turns (yaw
torque) was measured continuously and fed into a computer.
The flies were divided into three groups: the ‘openloop’
group flew in a completely featureless white panorama (i.e.,
without feedback from the uniform environment–open loop).
In addition to the open-loop group, data from two control
groups were analyzed. These groups flew in an arena with either
a single stripe (‘onestripe’ group) or in a uniformly dashed
arena (‘uniform’ group). The ‘onestripe’ group’s environment
contained a single black stripe as a visual landmark (pattern)
that allowed for straight flight in closed-loop control since the
fly could translate its visual input into a yaw torque to control
the angular position of the stripe. The ‘uniform’ group flew in a
uniformly textured environment otherwise free of singularities.
This environment was closed-loop in the same sense as that
provided for the ‘onestripe’ group, since the fly could use its
yaw torque to control the angular position of the uniform
textured environment. Maye et al. (2007) concluded that in the
featureless environment, fly behavior was non-random, with
the distribution of yaw directions produced by flies in the
‘open-loop’ group significantly deviating from the null Poisson
distribution.

Animal behavior in environments of increasing
complexity

A virtual competitive setting was designed as described in
Tervo et al. (2014). Here, the algorithm played the role of a
virtual competitor (that can also be seen as a predator) against
a rat. The algorithm was programmed to predict which hole the
rat would choose against three increasingly complex predictive
competitors. The rat had to choose a hole that it thought would
not be chosen by the competitor in order to be rewarded. The
task is therefore a prediction task, where the more successful the
rat is at predicting the competitor’s behavior, the better it can
avoid it and be rewarded. The first competitor consisted of an
algorithm based on a binomial test able to react to significant
bias. For example, if a rat had a clear preference for choosing
either the left or right hole, Competitor 1 would correspondingly
predict the hole with statistical bias. Competitor 2 reacted to
any bias based on a binomial test. Competitor 3, however,
displayed a diverse range of features and therefore constituted
a greater challenge to the rat, because rats were rewarded with
food if their competitors did not predict their hole choice. Each
“environment” consisted of a long sequential list of trials for
every competitor against 12 fresh individuals (rats). Competitors
1 and 2 used conditional prevalence of the left and right
choices, given a particular history pattern of up to three prior
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steps, to inform their prediction. The optimal deterministic
strategy consisted thus in keeping track of every pattern up
to that length and ensuring that the conditional prevalence of
going left or right was 0.5 (Tervo et al., 2014). The authors
quantified how different the observed behavior was from this
optimal strategy by calculating the Kullback–Leibler divergence
from the optimal – a variation of Shannon Entropy – of the
observed distribution of conditional prevalences, given all small
sequences of lengths n = 1, 2, and 3. Their results, backed
by clinical results tracking the engagement of the anterior
cingulate cortex, an area of the brain related to decision-making,
showed that when rats are faced with competitors that they
cannot outsmart, they switch from strategic counter prediction
behavior to a stochastic mode.

Competitor 1 only looked for biases toward Left or Right.
For example, if the rat had chosen the Left hole with probability
0.6, then Competitor 1 would have predicted that the rat
would choose Left, which would have resulted in no reward
for the rat. The rat would then switch to more complicated
strategies, maximizing Left and Right probability near 0.5 but
following a deterministic bias in favor of itself. Thus, these
animals were eventually able to model aspects of the underlying
prediction algorithm and used that knowledge to anticipate the
opponent’s predictions. Virtual Competitor 1 did not display
the brain’s full capacity for generating behavioral variability, as
it represented no challenge to the animals. Competitor 2 used
the same prediction algorithm as Competitor 1, except that it
removed the requirement that the bias in favor of one side or
the other reach a predetermined threshold before competitive
pressure was applied [see details in Tervo et al. (2014)] and was
therefore slightly more challenging for the rats. Competitor 3,
however, used a more sophisticated machine-learning strategy
that learned to generate a strong prediction based on a set of
weak trends in the data [details are given in Friedman et al.
(2000)]. The rationale of the original experiment was that a
stronger competitor would detect some of the patterns that a
weaker competitor missed, leading to a correct prediction of
the choices made by the animal – and thus to withholding of
the reward. So, Competitor 2 looked for biases on moves up to
three times back, which maked it more complicated. Competitor
3 used a much more sophisticated learning algorithm. As
can be seen from the plots, the complexity of the reward
(prediction) is almost equal and, in some cases, greater than
the complexity of the animal choices, unlike the cases involving
Competitors 1 and 2, where the reward is not only greater but
diverges asymptotically from the rat’s complexity, indicating that
the rat found an optimal behavioral strategy tending toward
infinite reward vis-à-vis these competitors’ learning strategies.
The rat seemed to have a short learning period which it spent
matching the complexity of the competitor’s behavior before
finding out that the competitor was highly predictable. This
behavior allowed the rat to reduce its complexity and receive
increasing rewards for lower behavioral complexity by fooling

the competitor, e.g., with simple repetitions of LRR or RLL
where the competitor expected L and R, respectively, as the last
choice after LR and RL.

Results

Validation of numerical estimations of
K and LD by numerical correlation

Here, we compare different ways of estimating LD and
K by running a large set of enumerated standard Turing
machines of increasing size (Zenil et al., 2020). We computed
the correlation between approximations to K and LD utilizing
lossless compression and CTM for all 212 bit strings up to
length 12. To quantify the analysis, we use a non-linear
least-squares regression model. We used the computed data
and curve fitting of Compression and CTM estimations of
K against CTM estimations of LD. Here we find the best
fit using a quadratic function 14.76 + 0.0077x − 6.4·10−7x2.
We find that CTM displays lower LD values for low and
high K values. This demonstrates that only CTM conforms
to the theoretical expectation where both Kolmogorov simple
and Kolmogorov random strings are assigned lower Logical
Depth. In contrast, lossless compression, instantiated using
both Compress and BZip2 algorithms, displayed a trivial
correlation with LD. This demonstrates that approximating
K by traditional lossless compression algorithms, such as
LZW and cognates, does not conform to the theoretical
expectation of low LD for the lowest and highest K values.
Moreover, nor can they be usefully applied to short behavioral
sequences (Delahaye and Zenil, 2012; Soler-Toscano et al.,
2014), such as the ones from a well-known behavioral
experiment with ants (Table 1) and in more recent studies
of the behavior of fruit flies and rats. This is because
random sequences, like trivial ones, do not result from
a sophisticated computation of their shortest descriptions.
Indeed, if a sequence is random, its shortest description is of
about the same length as the sequence itself, and therefore the
decompression instructions are very short or non-existent. And
if a sequence is trivially compressible, then the instructions for
decompressing it may also be expected to be very simple. Right
between these extremes, we find high sophistication or logical
depth.

K and LD estimations of animal
behavioral sequences

Here we demonstrate, in three different case-studies, that
applying the algorithmic Coding theorem and numerical
estimations based upon or motivated by Algorithmic Probability
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and Logical Depth, provides objective quantification of animal
behavioral sequences (Zenil et al., 2020).

Ants’ communication times follow complexity
of foraging instructions

Interestingly, the order in which Reznikova and Ryabko
(2012) informally sorted ants’ behavioral sequences, it turns out,
corresponds to an order of increasing Kolmogorov complexity,
as approximated by our methods motivated by and based upon
algorithmic probability (Zenil et al., 2020). Table 1 shows the
main results, comparing sequence complexity and scout-forager
communication times.

The (Pearson) correlations found among the values reported
in Table 1 and plotted in Figure 2 are as shown in Table 2.

More precisely, ant communication is correlated to the
complexity of the instructions, i.e., instructions that take
less time to communicate have low Kolmogorov complexity,
while less efficiently communicated instructions have higher
K and higher LD.

Fruit flies’ display non-random behavior in
environments with little or no input stimuli

In the Drosophila experiments (Maye et al., 2007), yaw
torque binary (right or left directions) behavioral sequences for
tethered flies in a virtual reality flight arena were recorded in
three environments for up to 30 min (see section “Materials and
methods”).

As shown in Figure 3, the series of fruit fly torque spikes
for the three groups of fruit flies had different Kolmogorov
complexities, with the open-loop group being the furthest
removed from algorithmic randomness and high in logical
depth, suggesting an algorithmic source. This strengthens the
authors’ (Maye et al., 2007) conclusion that the open-loop
group had the largest distance to randomness. It suggests
that fly brains are more than just input/output systems and
that the uniform group came closest to a characteristic Levy
flight. This observation amounts to a falsification of the
alternative hypothesis that flies behave randomly in the absence
of stimuli, as their neurons would only fire erratically, displaying
no pattern. Here, however, the results suggest that in the
absence of stimuli, the flies are even more challenged to find
different flight strategies, perhaps seeking stimuli that would
provide feedback on their whereabouts. Moreover, as shown
in Figure 3, by measuring the subtle differences in complexity
along the various sequences, the variance provides another
dimension for analysis – of how different flies reacted to the
same environment. As shown by Zenil et al. (2012b), if the
environment is predictable, the cost of information processing
is low. Still, this result also suggests that if the environment is
not predictable, the cost of information processing quantified
by logical depth is low if the stochastic behavior strategy is
adopted, providing an evolutionary advantage (Zenil et al.,
2012b). This strengthens their conclusion that environmental

complexity drives the organism’s biological and cognitive
complexity.

Rats switching to random behavior in
environments of increasing complexity

To the experimental data of Tervo et al. (2014) (binary
behavioral sequences representing L for Left and R for right
depending on the choice of the animal and the prediction of
a virtual competitor), we applied lossless compression, BDM
and BDM LD. BDM and compression showed the expected
complexity for each set environment (see Figures 4, 5). The first
one (Competitor 1) displays the lowest randomness for both the
animal and the competitor/reward sequences [the competitor’s
behavior is a Boolean function of the reward sequence given by
(choice and reward) or (∼choice and ∼reward)]. The reward
sequence encodes whether or not the competitor predicted the
animal’s choice and whether it was given a droplet – when
avoiding the competitor’s choice – or not. The goal of the rats
is to outsmart the competitor’s behavior. Yet, that does not
necessarily mean an increase in a rat’s behavioral Kolmogorov
complexity (randomness), because it can fool the competitor
with a simple strategy, as is the case for Competitors 1 and
2, and by switching to random-looking behavior in the case
of Competitor 3. This variation of animal complexity over
time, going from high to lower complexity, can be observed
in Figure 4 and in Table 3, where a ranking of learning
capabilities per rat for every environment is reported. In the
environment with Competitor 1, a simple 3-tuple behavioral
strategy outsmarts the competitor’s behavior with a strategy of
low complexity by keeping the frequency of R and L choices at
about 0.5 but following elementary patterns that the competitor
does not follow (the alternation of LLR and RRL or RLL and
LRR). On the other hand, logical depth shows that the structural
complexity of the animal always ends up matching the structural
complexity of the competitor and is never more or less than
is required to outsmart it. From BDM and compression, it
is also clear that the 3rd environment is of lower structural
complexity. It’s consistent with the conclusion of the clinical
experiment that rats switched to stochastic behavior when they
could not outsmart the competitor, even though the mean is
very similar when BDM and Compress are of lower complexity.
This is not a surprise because the behavior of the competitor
is not algorithmically random; it only appears random to the
rat, which in turn tries to behave randomly. But it does so
not with greater complexity than the competitor but only by
matching the complexity of the competitor. After all, it is
unlikely that the rat is behaving in an algorithmically random
fashion, but rather simulating random behavior. Importantly,
the difference is that it is performing some computation tracking
its immediate history so as not to repeat movements, given that
probabilistically, statistical randomness would allow a long list
of L or R, which is not optimal. Hence it has to go beyond
probabilities and truly try to simulate algorithmic randomness,
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FIGURE 2

Log correlation between normalized (by a common constant) complexity measures and ant communication time. Kolmogorov complexity
(employing an Algorithmic Probability based CTM measure) and Logical Depth (also measured by BDM) display the greatest correlation, with
longer times for more complex K and LD. Shannon Entropy and lossless compression display no sensitivity to differences in the sequence.
Compress behaves like Entropy.

thus increasing the required computation to reproduce the
desired random-looking behavior and, therefore, its logical
depth.

Figures 4, 5 show that these results suggest that the rats
either switch to random behavior on purpose or continue in
the random mode they started as a testing strategy to gauge
the competitor’s capabilities. However, as shown by the clinical
experiments, the rats seem to eventually suspend brain activity,
seemingly after finding that they cannot devise an effective
strategy (Tervo et al., 2014). But the results here build upon
the previously reported conclusions that the rats seem to start
with a high (random) complexity strategy in the first trials
before settling on a single specific strategy if any. As shown
in Figures 4, 5, against Competitor 1, rats quickly decide on
an optimal strategy of low complexity that keeps rewarding
them, thanks to the poor predictive capabilities of the virtual
competitor. But as Figure 4 shows a representative case (and
not a special one for Competitors 2 and 3), we see that animals

TABLE 2 CTM and Logical Depth found the best correlation—with
high significance—between duration and Kolmogorov complexity
(Figure 2).

Index Correlation P-value

Entropy 0.616 0.014

Compress (LZ) 0.61 0.014

Bzip2 0 1

CTM 0.82 0.00017

LD 0.75 0.0013

This formalizes and provides a theoretical justification of the previous results, which were
solely based upon visual inspection and intuition.

make the transition later (Competitor 2) or never make it
(Competitor 3).

The Spearman ranking tests among BDM and BDM LD in
the three environments suggest, however, that intelligence can
only be defined by task or environment in this experiment and
for this set of animals. This is because no significant correlation
was found in the ranking for different competitor experiments
after a Kolmogorov–Smirnov test to determine the separation
between animal and competitor behavioral complexity. There
are two ways of outsmarting the virtual competitors that
are confounded in the complexity curve. Either the animal
learns fast and maximizes gain (keeps the competitor’s behavior
complex), or minimizes effort (reflected in the decrease in its
complexity). Hence the curves diverge.

Figure 6 shows how the structural complexity of the
animal’s behavior matches that of the competitor, as suggested
in Zenil et al. (2012b) (this seems to indicate, however, that the
match is with Logical Depth complexity and not Kolmogorov
complexity). That estimation based upon or motivated by
Logical Depth, a measure of sophistication, is greater in the
second experiment means that indeed both the algorithm and
the animal behavior require more computational resources than
in the 1st and 3rd experiments, where there is less consideration
given to behavioral history, as the original paper reporting the
clinical experiment claims. This also agrees with what we found
by applying both lossless and BDM compression (Figure 4).

It is also interesting to look at the asymptotic behavior
of both the animal and the competitor (see Figure 5), as it
indicates a period of training before the rats start overtaking
the competitor with an optimally rewarding strategy. Indeed,
for the experiment with Competitor 1, the training period is
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FIGURE 3

(Top Left) Raw yaw torque series of the three fruit fly groups (about 38,000 data points from a 30-min recorded flying period). (Right Top) Box
plot of the series Kolmogorov complexity as measured by CTM over all flies in the three groups (6, 18, and 13). Each replicate was given a
different color. (Right) In agreement with the results of Maye et al. (2007) the median complexity of the open-loop group is the most removed
from (algorithmic) randomness. The values were normalized by maximum K complexity according to CTM (as compared to the substrings of
greatest complexity as calculated from CTM). (Bottom Left) Box plot of the series’ Logical Depth complexity as measured by CTM over all flies
in the three groups. The results suggest that the open-loop group has the highest significant median structural complexity (Logical Depth),
hence suggesting greater causal history or calculation and a greater remove from randomness. In contrast, the other two groups are closer to
pseudo-randomly generated sequences using a log uniform PNRG. This supports the original authors’ findings but adds that uniform stimuli
seem to have a lower effect than no stimulus, and that the absence of stimuli also leads to different behavior, perhaps as a strategy to elicit
environmental feedback. In both plots, all values were normalized by maximum LD complexity to have them between 0 and 1. In both box plots,
the trivial sequences consist of 1 s, and therefore are maximally removed from randomness for Kolmogorov complexity (but are closer to
randomness in the LD plot).

very short; on average between 100 and 300 trials are needed
before the curves start to diverge, indicating that the animal has
outsmarted the competitor. This can be advanced as a potential
objective measure for animal intelligence, and one can see that
subjects 3 and 6, for example, are among the fastest learners,
the quickest at finding a good strategy, while subjects 11 and
12 are slow, a ranking based on a Kolmogorov–Smirnov test
provided in Table 3. Against Competitor 2 (see Figure 4), the rat
has a training period where it matches the virtual competitor’s
behavior before outsmarting it. The gap indicates that there
is a reward even in the face of lower animal complexity,
which means it has cracked the competitor’s behavioral code.
Against Competitor 3 (see Figure 4), however, the animal is
truly challenged and chooses to behave randomly, to which the
learning algorithm reacts accordingly. Thus, the two match in
manifesting high Kolmogorov complexity as compared to the
previous cases.

For Competitor 2, the estimation motivated by Logical
Depth increases because both the animal and the virtual

competitor are engaged in a computation that requires slightly
more computing power and time than when the animal is
pitted against Competitor 1. However, for Competitor 3, the
Logical Depth decreases, again as an indication of either greater
simplicity or randomness, which in this case, agrees with the
experiment. And taking into consideration the result with BDM,
it is randomness that is introduced in the animal’s choice
of behavior against Competitor 3, which is in full agreement
with the results reported in the independent study (Tervo
et al., 2014) and in accordance with the clinical experiments
measuring cortical feedback to quantify brain activity during the
performance of the tasks.

Discussion and conclusion

To recap, we first demonstrated the validity of our numerical
approximation of algorithmic and structural complexity. These
techniques are broadly useful as they provide the community
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FIGURE 4

(Top) The same rat number 6 in the three different environments with different virtual competitors. With Competitor 1 this particular rat shows
two kinds of “phase transitions”, leading to a decrease in its behavioral complexity. The standard strategy appears to be to start off by displaying
random behavior to test the competitor’s prediction capabilities, switching between different patterns up to a point where the rat settles on a
successful strategy that allows it to simply repeat the same behavior and yet receive the maximum reward after fooling the competitor. This
phase comes later for Competitor 2 (Bottom Left), given that this new virtual competitor is slightly more sophisticated. For Competitor 3
(Bottom Right), the rat is unable to outsmart it because it implements a more sophisticated predictive algorithm. The rat either cannot settle on
a single strategy and keeps performing a random search or decides to switch to or remain in a particular mode after finding itself outsmarted by
the virtual competitor.

with an objective tool to characterize “complexity” in behavioral
experiments. Furthermore, the notion of structural complexity
lets us glimpse the amount of computation that, generically, a
system requires to perform a particular decision leading to a
behavioral sequence.

Next, we assessed the applicability and the insights
the notions of algorithmic and structural complexity could
bring to well-known studies of animal behavior involving
ants, fruit flies, and rats. Importantly, these studies tax the
animal to different degrees when it comes to environmental
influence. One shared insight suggested by these studies,
in light of our analysis, is that animals have some as yet
unknown, mechanism(s) with which to perceive and cope
appropriately with different degrees of complexity in their
environment. In addition, beyond coping, it appears they
can harness and utilize the environment in their internal
decision process and in how they generate sequences of
behavior. For example, the less efficiently communicated

instructions to ants have higher complexity, yielding longer
communication time, resulting in more complex behavioral
sequences. Here the K and LD metric provides a formal
justification of the heuristic analysis performed by Reznikova
and Ryabko (2012) in the original study. Hence, behavioral
complexity matches environmental complexity. Furthermore,
one common idea in the literature (e.g., Auger-Méthé et al.,
2016) has been that animals navigating in an environment
devoid of structural stimuli will adopt a random strategy.
Our re-analysis, with formal complexity measures, of the
fruit fly study suggests that flies are even more challenged
to find different navigation strategies. The uniform group,
having a uniform striped environment, was closed to an
isotropic navigation strategy, closest to randomness or what
is commonly referred to as Levy flight. In contrast, the
group with a featureless environment was the most non-
random group, high in logical depth, suggesting an algorithmic
source for their decision process. Notably, this derived result
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FIGURE 5

Complexity (BDM) plots for all 12 individuals (rats) against Competitor 1. For Competitors 2 and 3, the most salient feature is that against
Competitor 1 the rats show a quick decrease in complexity that allows them to keep the maximal reward (in all three cases. The rats were close
to the maximal possible reward except for Competitor 3, where they continued to act randomly, either as a strategy or because they remained
in the exploratory transition that is displayed at the beginning of every experiment). Color legends and axis labels are the same as in Figure 4.

aligns with the authors’ (Maye et al., 2007) suggestion
that the open-loop group appeared to be at the greatest
remove from e randomness. Thus, in this case, a “simple”

TABLE 3 A Kolmogorov–Smirnov comparison of the animal’s choice
and the competitor’s complexity curves may provide a ranking of
intelligence in a given environment, with the smallest values where
the curves are at the greatest remove from each other and therefore
signifying the fastest the animal has potentially settled on a
successful strategy.

Animal number Kolmogorov–Smirnov
statistic

3 4.88022× 10−60

6 1.083× 10−17

4 1.6514× 10−12

9 1.3695× 10−10

2 2.74921× 10−10

1 7.5875× 10−9

10 0.00045

8 0.001

5 0.003

7 0.012

11 0.223

12 0.55

No significant correlation was found among the different environments. Some animals
consistently come out on top or at the bottom, which could be interpreted to mean that
animals performed differently in different environments.

environment drives the animal toward an algorithmic bias in
their attempt to devise a useful (navigation) strategy. Lastly,
our analysis of the rats suggested a behavioral switch toward
randomness in the face of environments with increasing
complexity. Here, several interesting competitive situations
were investigated. For example, our logical depth analysis
revealed that the structural complexity of the rat always ends
up matching the structural complexity of the competitor. In
contrast, if the rat could not outsmart the competitor, it
switched to random behavior. Here the rat has to try to
simulate algorithmic randomness to reproduce a random-
looking behavior. In the context of learning, deciding, and
predicting, complexity measures captured subtle differences
hinting at the mapping between an animal’s environment,
its sensory inputs, and its reactions. In all cases, we have
seen animals react or adjust to the different scenarios,
from communicating faster instructions to locate food to
implementing deterministic and stochastic strategies against
unknown environments and competitors. We have seen that
animals can switch between a wide range of complex strategies,
from behaving randomly against a competitor they cannot
outsmart to behaving in a very structured fashion even in the
absence of external stimuli, validating the results of Tervo et al.
(2014).

In summary, we have shown that animal behavioral
experiments can be analyzed with novel and powerful tools
drawn, based upon, or motivated by (algorithmic) information
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FIGURE 6

(Top) Box plots showing the results of three algorithmic information-theoretic complexity measures applied to the behavioral sequences for
both animals and competitors (comp) in all three environments of increasing complexity (more powerful virtual competitor predictive
capabilities). For BDM (Top), for Competitor 1, the complexity of both the animal and the competitor is low. Still, the gap between medians is
extensive, meaning that the animal quickly outsmarted the competitor. For Competitor 2, however, not only is an increase in Kolmogorov
complexity shown, but the median gap between the animal’s behavioral complexity and the competitor’s is smaller. Furthermore, the variance is
greater, meaning that the animal explored more strategies of different complexity, and finally for Competitor 3 the medians match at higher
Kolmogorov complexity (random-looking behavior). (Bottom) Compress (implementing the Deflate lossless compression algorithm) confirmed
the BDM results but showed less fine granularity than BDM allowed, likely due to the fact that lossless compression finds it difficult to detect
small patterns that both the animals and these simple competitors rely so much upon. BDM LD confirmed the nature of the strategy against
Competitor 3, where there is a decrease in structural complexity as compared to the interaction with Competitor 2, hence suggesting that the
animal remained in a stochastic mode of low Logical Depth but high Kolmogorov complexity.

theory. Correlations in complexity can be established that are
in agreement with and that elaborate on the conclusions of
behavioral science researchers. We also report that a stronger
correlation was consistently found between the behavioral
sequences considered and their Kolmogorov complexity and
Logical Depth than between these sequences and their
Shannon Entropy. To the authors’ knowledge, this is the first
application of these tools to the field of animal behavior and
behavioral sequences.

Finally, we now turn to how these new results may
translate to the understanding and analysis of human decision
systems. Here we narrow the discussion on how to reinterpret
experiments of how humans perceive randomness. Earlier
pioneering studies by Kahneman et al. (1982) investigated
how people reason and make decisions when confronted with

uncertain and noisy information sources. Humans tend to
report that a sequence of heads or tails, “HTTHTHHHTT,”
is more likely to appear than the series “HHHHHTTTTT”
when a coin is tossed. However, the probability of each
string is 1/210, exactly the same, as indeed it is for all
strings of the same length. In the “heuristics and bias”
approach advocated and pioneered by Kahneman et al. (1982),
these systematic errors were interpreted as biases inherent to
human psychology or as the result of faulty heuristics. For
instance, it was conjectured that people tended to say that
“HHHHHTTTTT” was less random than “HTTHTHHHTT”
because a so-called representativeness heuristic influenced
them, according to which a string is more random the
better it conforms to prototypical examples of random
strings.
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Given these purportedly faulty heuristics, human reasoning
was interpreted as suggesting that humans had minds similar
to a faulty computer. Considering recent work (Tervo et al.,
2014), these behavioral biases can be accounted for by powerful
complexity measures that point toward an algorithmic basis
for behavior. This suggestion accords with the results reported
from animal studies (Maye et al., 2007; Ryabko and Reznikova,
2009). In Zenil et al. (2012b) it was shown – albeit in an
oversimplified setting – how animals would need to cope
with environments of different complexity in order to survive
and how this would require – and possibly explain – the
evolution of information storage and the process of learning.
In many ways, animal behavior (notably, human behavior)
suggests that the brain often acts as a compression device.
For instance, despite our very limited memory, we can retain
long strings if they have low algorithmic complexity (Gauvrit
et al., 2014). For the most part, cognitive and behavioral
science deals with small sequences, often barely exceeding
a few tens of values. For such short sequences, estimating
the algorithmic complexity is a challenge. Indeed, prior to
recent developments, the behavioral sciences relied largely
on a subjective and intuitive account of complexity. While
irreducibility is a pervasive challenge for the application
of computation in data analysis (Zenil et al., 2012c), the
Coding Theorem method allows some experimental explorations
based upon algorithmic complexity even on very short strings
(Soler-Toscano et al., 2014) and objects in the context of
an evolutionary process using the same tools (Hernández-
Orozco et al., 2018). We suggest that these results align with
our analysis of the animal experiments, that experiments on
how humans perceive randomness suggests the existence of
an algorithmic bias in our reasoning and decision processes.
This contrasts with the view of the mind as performing
faulty computations or random Levy flight computations when
presented with items with some degree of randomness. It
suggests that the brain has an algorithmic component. The “new
paradigm” in cognitive science suggests that the human (and
animal) mind is not a faulty machine but a probabilistic one,
which estimates and constantly revises probabilities of events
in the world, taking into account previous information and
computing possible models of the future (Fahlman et al., 1983;
Rao and Ballard, 1999; Friston and Stephan, 2007; Friston,
2010).

While the construction of an internal mental model that
effectively discerns the workings of a competitor could generate
a successful counter-predictive strategy, apparently random
behavior might be favored in situations in which the prediction
of one’s actions by a competitor or predator has adverse
consequences (Nash, 1950; Maynard Smith and Harper, 1988).
Notice how two of the experiments we considered in this
paper, the rat experiment and that involving fruit flies, also
relate to new developments in Integrated Information Theory

(IIT), having to do with an approach to consciousness that
proceeds via a mathematical formulation (Tononi, 2008).
According to this theory, consciousness necessarily entails
an internal experience. Here one indication of such an
experience is the internal computation necessary to filter out
or adopt non-random strategies in the absence of stimuli.
Our results seem to support this view and provide further
evidence of this hypothesis in line with IIT. Another is how
the apparent randomness of a rat’s behavior may actually
result in the rat engaging in a sophisticated computation,
even while ignoring sensory input from the competitor or
predator, as suggested in the clinical experiments. High
Logical Depth indicates a causal history that requires more
than simple feedforward calculations connecting sensors to
actions. All this is also along the lines of more recent results
where special predicting neurons, as distinct from mirror
neurons, were found in monkeys. These neurons specialized
in predicting an opponent’s actions (Haroush and Williams,
2015).

In summary, the perspective brought to bear by our
formal characterization of complexity in the animal and
human domain may, in turn, find application in designing
cognitive strategies and measures in robotics and artificial
intelligence (Zenil et al., 2015). The approach introduced
here, based on algorithmic complexity measures, may help
interpret data with tools complementary to the classical
ones drawn from traditional statistics. For an animal to
exploit the environmental deviation from equilibrium, animals
must go beyond probabilities, i.e., beyond merely calculating
the frequency of moves and beyond trivial entanglement
with the environment. Animals clearly distinguish between
environments of different complexity, reacting accordingly.
The tools introduced here could contribute to modeling
animal behavior, discovering fundamental mechanisms, and
also to the computational modeling of disease (Tegnér et al.,
2009).

Author summary

Behavioral sequences consist of a finite number of actions or
decisions combined in various spatial and temporal patterns that
can be analyzed using mathematical tools. Understanding the
mechanisms underlying complex human and animal behavior
is key to understanding biological and cognitive causality. In
the past, mathematical tools for studying behavioral sequences
were largely drawn from classical probability theory and
traditional information theory. Our work here represents an
advance in introducing powerful mathematical tools drawn
from complexity science and information theory to study
and quantify behavioral sequences’ randomness, simplicity,
and structure. In addition, the tools and concepts introduced
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here offer new and alternative means for behavioral analysis,
interpretation, and hypothesis testing.
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