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Training infrared target detection and tracking models based on deep learning requires

a large number of infrared sequence images. The cost of acquisition real infrared target

sequence images is high, while conventional simulation methods lack authenticity. This

paper proposes a novel infrared data simulation method that combines real infrared

images and simulated 3D infrared targets. Firstly, it stitches real infrared images into

a panoramic image which is used as background. Then, the infrared characteristics

of 3D aircraft are simulated on the tail nozzle, skin, and tail flame, which are used as

targets. Finally, the background and targets are fused based on Unity3D, where the

aircraft trajectory and attitude can be edited freely to generate rich multi-target infrared

data. The experimental results show that the simulated image is not only visually similar

to the real infrared image but also consistent with the real infrared image in terms of the

performance of target detection algorithms. The method can provide training and testing

samples for deep learning models for infrared target detection and tracking.

Keywords: infrared image simulation, infrared target simulation, infrared radiation, deep learning, Unity3D

INTRODUCTION

With the rapid development of deep-learning technology, data-driven models and algorithms have
become a hot topic in infrared target detection and tracking (Dai et al., 2021; Hou et al., 2022).
Unlike conventional methods, data-driven methods require a large amount of infrared data for
model training and testing (Yi et al., 2019; Junhong et al., 2020).

However, the current infrared image datasets used for object detection and tracking are of poor
quality (Hui et al., 2020). The cost of measured data is high, and it is difficult to obtain infrared
images in various scenarios (Zhang et al., 2018). For example, the target type in real data is single,
and it is difficult to obtain infrared images of important types of aircraft. The authenticity of the
simulation data is insufficient (Xia et al., 2015). The battlefield in modern warfare involves a wide
range of complex environments. It is difficult for knowledge-based models to simulate a complex
infrared battlefield. These problems significantly limit research progress in infrared target detection
and tracking.

Currently, infrared target simulation can be performed using two approaches: methods based
on infrared characteristic modeling (Shuwei and Bo, 2018; Guanfeng et al., 2019; Yongjie et al.,
2020) and methods based on deep neural networks (Mirza and Osindero, 2014; Alec et al., 2016;
Junyan et al., 2017; Chenyang, 2019; Yi, 2020). The former is typically based on infrared radiation
theory. Physical models of various parts of an aircraft (such as engines, tail nozzles, tail flames,
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and casings) are established, atmospheric radiation is modeled,
and infrared simulation data under various conditions are
obtained. These methods start with a physical model and have
strong interpretability. If sufficient parameters are added, high-
fidelity infrared images can be produced (Yunjey et al., 2020).
With a large number of parameters and calculations, they
are suitable for simple target simulations. However, these are
unsuitable for real-environment simulations with complex types
of ground objects (Chenyang, 2019; Rani et al., 2022). Methods
based on deep learning, typically using a generative adversarial
network (GAN), learn the style of the infrared image from a
large number of real infrared images and then transfer visible
light images to infrared images (Alec et al., 2016; Junyan et al.,
2017; Chenyang, 2019; Yi, 2020). These methods do not require
complex physical modeling processes and are fast, but lack
authenticity and reliability (Shi et al., 2021; Bhalla et al., 2022).
More importantly, the method is based on deep learning and
cannot add infrared targets as needed, nor can it edit the flight
trajectory and attitude, which is exactly what the infrared target
dataset needs most.

Therefore, it is meaningful and valuable to study an infrared
data generation method that conforms to the real infrared
radiation characteristics, and can addmultiple types andmultiple
aircraft targets arbitrarily. This paper proposed a new method,
and its main contributions are as follows:

(1) A method combining the real infrared data of background
with the simulated infrared data of target is proposed, which
can easily generate multi-target infrared simulation data
with high authenticity. It uses the panorama of the real
infrared data mosaic as the background, rather than the
direct 3D infrared simulation of the ground objects. It can
avoid the complex problem of infrared modeling of ground
objects. Compared with the 3D infrared simulation of the
whole scene, it is much easier, and the generated data are
more authentic.

(2) The method is based on the Unity3D to fuse the target
model with the infrared scene. It can freely add the type and
number of aircrafts, edit the aircraft trajectory, and attitude.
So it can generate rich multi-target infrared simulation data.

(3) Starting from the infrared radiation characteristics, our
method simulates the physical characteristics of the key
parts of the 3D target (the tail nozzle, skin, and tail flame),
which can generate high authenticity infrared target data.

METHODS

Overall Framework
Figure 1 shows the overall framework of this study, divided
into three branches: infrared background stitching, infrared
radiation modeling, and flight trajectory editing. The infrared
radiation modeling branch first establishes a 3D model on
the basis of the size of the aircraft and then establishes an
infrared radiation model of the aircraft according to the infrared
radiation theory (such as the engine nozzle, skin, and tail flame).
The infrared background stitching branch performs panoramic
stitching based on real infrared dataset, and after uniform light

processing, a uniform infrared panoramic image is obtained. We
used the infrared panorama as background for the 3D scene.
The flight-trajectory editing branch provides trajectory-editing
tools. Users can call editing tools to create flight trajectories based
on the aircraft performance parameters. The trajectory included
the time, position, and attitude of each node. The observation
window can track and record targets in a field of view of a
specified size. Because multiple and various types of aircrafts can
be selected and various trajectories can be edited, a rich variety of
infrared simulation data can be obtained.

Infrared Target Modeling
As an infrared radiation source, the radiation characteristics of
different parts of an aircraft show evident differences owing to
different degrees of heat generation. The main components with
the strongest infrared radiation include the engine nozzle, aircraft
skin, and tail flame (Haixing et al., 1997). This study starts with
the basic theory of infrared radiation, grasps the main infrared
radiation characteristics of each component, and establishes its
infrared radiation intensity model.

Assuming that the infrared detector can perceive light of
wavelengths ranging from λ1 to λ2 (only mid-wave infrared is
considered in this study, that is, the wavelength range is 3–5µm),
according to the Planck’s law (Yu, 2012), the infrared radiation
intensity of a gray body can be expressed as:

Mλ1∼ λ2 =

∫ λ1

λ2

c1

λ5

1

ec2/λT − 1
dλ =

c1T
4

c42

∫ c1/λ1T

c2/λ2T

(c2/λT)3

ec2/λT − 1

d
( c2

λT

)

(1)

where T is the gray body surface temperature, c1 is the
first radiation constant, typically (3.741774 ± 0.0000022) ×

10−16W · m2, and c2 is the second radiation constant, typically
(1.4387869 ± 0.00000012) × 10−2m · K. Assuming x = c2/λT,
the above equation can be simplified as follows:

Mλ1−λ2 =
c1T

4

c42

∫ c1/λ2T

c2/λ2T

x3

ex − 1
dx (2)

Nozzle Radiation Model

When the fuel in an engine burns, it emits high-temperature
radiation, which is the main heat source when the aircraft is
flying (Chuanyu, 2013). As an extension of the engine outside
the fuselage, the tail nozzle also exhibits relatively strong infrared
radiation. The tail nozzle is a typical gray body, and the surface
emissivity is approximately in the range of 0.8–0.9. According
to Equation (2), the relationship between the infrared radiation
intensity of the tail nozzle IW and temperature TW is as follows:

IW =
εW

π

∫ λ2

λ1

c1

λ5

1

ec2/λTw − 1
dλ · SW · cos θW (3)

where εM is the radiation rate of the nozzle surface, which is
determined by the aircraft surface material. SM is the cross-
sectional area of the skin facing the probe. θM is the angle
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FIGURE 1 | Overall framework of this study.

between the orientation of the probe and the orientation of the
infrared radiation.

Aircraft Skin Radiation Model

Aircraft skin temperature is mainly affected by two factors: the
ambient temperature of the atmosphere and the temperature
generated by the friction between the aircraft and the atmosphere
during the high-speed motion. Because this study only considers
aircraft flying at medium and low altitudes, the linear relationship
between the atmospheric ambient temperature T0 and altitude
H satisfies T0=(288.2-0.0065 H) K, and T0=280 K for simplicity.
The temperature TM generated by friction and flight speed follow
the following functional relationship: TM = T0

(

1+ 0.16M2
)

,
whereM is the Mach number of the aircraft.

Furthermore, according to Equation (2), the functional
relationship between the aircraft skin radiation intensity IM and
temperature TM is as follows:

IM =
εM

π

∫ λ2

λ1

c1

λ5

1

ec1/2TM − 1
dλ · SM · cos θM (4)

where εM is the skin surface emissivity, which is determined by
the surface material of the aircraft skin. SM is the cross-sectional
area of the aircraft skin facing the probe, and θM is the angle
between the probe and infrared radiation orientation.

Tail Flame Radiation Model

The high-temperature flame and high-temperature gas injected
by the engine form the tail flame of the aircraft. We assume
that the gas temperature in the tail nozzle is TF, the tail flame

temperature is TP, and the gas pressures inside and outside the
tail nozzle are PP and PF, respectively; then, we have:

Tp = TF

(

Pp/PF
)(γ−1)/γ

(5)

where γ is the specific heat of the gas; its value for turbofan
aeroengines is 1.3. According to Equation (2), the functional
relationship between the radiation intensity IP of the tail nozzle
and temperature TP can be established as follows:

Ip =
εp

π

∫ 2

2

c1

λ5

1

eσ2/2Tp − 1
dλ · Sp · cos θp (6)

where ερ is the surface emissivity of the aircraft tail flame,
SP is the cross-sectional area of the aircraft tail flame facing
the probe, and θP is the angle between the probe and infrared
radiation orientation. To improve the intuitive effect, the tail
flame is typically simulated by particle flow. Based on the above-
infrared radiation model, a 3D target with infrared radiation
characteristics was obtained. The infrared radiation intensity of
an aircraft dynamically changes with the speed and attitude of
the target. Figure 2 shows the simulation effect of F-35 aircraft at
different attitudes. Figure 3 shows the simulation effect of Su-35
aircraft at different speeds.

Panoramic Stitching of Infrared Images
We expect the targets to fly in a wide infrared scene to obtain a
simulated image sequence of moving targets. However, the field
of view of infrared sensors is typically narrow. For example, the

field of view in the public infrared dataset (Hui et al., 2020)
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FIGURE 2 | Simulation effect of F-35 aircraft at different attitudes. The speed is Mach 1, and the background is a real infrared image. The coordinates are roll, yaw,

and pitch.

FIGURE 3 | Infrared characteristics of Su-35 aircraft at different speeds. The speed varies from 0.6 to 2.3Ma.
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FIGURE 4 | Panoramic stitching results of real infrared images.

FIGURE 5 | Fusion of simulation targets and real infrared scene.

(dataset used for infrared detection and tracking of dim-small
aircraft targets under a ground/air background, http://www.
csdata.org/p/387/) is only 1◦ × 1◦.

To obtain a continuous projection of the moving target in

a real infrared scene, it is necessary to stitch infrared images
of a narrow field of view into a panoramic image. In view

of the small texture and low contrast of infrared images, a

stitching and fusion method must be adopted specifically for
infrared images, as detailed in our previous paper (Zhijian et al.,
2021), which describes how to stitch a panoramic image from
infrared sequence images. Figure 4 shows only a part of the
stitching results.

Fusion of Simulated Targets and Real
Infrared Scene
This study realized the fusion of a static real infrared scene and
dynamic simulated targets based on the Unity3D engine. The
main steps were as follows: (1) Constructing a hemisphere with
the camera position as the center and the real farthest observation
distance as the radius. The panoramic image obtained by splicing
real infrared images was used as the epidermis to cover the
hemisphere to obtain a pseudo 3D scene, as shown in Figure 5.
(2) Based on the flight trajectory (information, such as the
position, attitude, and speed of the aircraft at each moment, is
set), the 3D infrared simulation target flies in a 3D space. (3)
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FIGURE 6 | Real infrared scene and simulated infrared scene.

Through human–computer interaction, the observation position
and viewing angle were dynamically adjusted to track and
observe the targets. (4) Each frame of the observation projects
the target onto the infrared background and obtains the target
infrared data with the real infrared background.With continuous
observation, dynamic simulation image sequences of the targets
can be obtained.

EXPERIMENT AND ANALYSIS

Dataset and Experiment Setting
The real infrared data used in this experiment comes from
the public infrared dataset (Hui et al., 2020) (dataset used
for infrared detection and tracking of dim-small aircraft
targets under a ground/air background, http://www.csdata.
org/p/387/). The dataset covers a variety of scenes such
as sky and ground, with a total of 22 data segments, 30
tracks, 16,177 images, and 16,944 targets. Each frame is a
gray image with a resolution of 256 × 256 pixels, BMP
format, 1◦ × 1◦ field of view. Each target corresponds to a
label position, and each data segment corresponds to a label
file. This data set is usually used in the basic research of
dim-small target detection, precision guidance, and infrared
target characteristics.

The hardware environment of this experiment is: Dual Core
CPU above 2.0 GHz and body memory above 4G. Software
environment: system software aboveWindows 7. The experiment
is based on the development of 2021.2.6f1 version of Unity3D.
The development language is c#, and the development platform
is visual studio 2017.

Subjective Analysis
We selected four scenes from real infrared data introduced
in (Hui et al., 2020): sky background, ground background,
mixed background, and sky multi-target, which are from data
1, data 7, data 3, and data 2, respectively, in the public dataset.
Correspondingly, we also intercepted the above four scenarios
from the simulation data, and the comparative results are shown
in Figure 6. Visually and intuitively, both the real and simulated
data have the following characteristics: (1) The images are gray
overall, which conforms to the characteristics of infrared images.
(2) The images have low contrast and relatively few textural
features. (3) The target appears as bright spots and diffuses into
the surroundings. Therefore, the simulated and real infrared data
are intuitively similar.

Objective Analysis
The purpose of this study was to provide simulation data for
the training and testing of infrared target detection and tracking
models. Therefore, determining whether the performance of
an algorithm on simulated data is consistent with that of the
algorithm on real data is the most effective evaluation method
(Deng et al., 2022). We used two algorithms (Zhijian et al.,
2021; Deng et al., 2022) employed in the 2nd Sky Cup National
Innovation and Creativity Competition in 2019 for testing. We
compared their performance both on real infrared data and
simulated data generated by our method.

In the experiment, the data shown in Figure 6 were used; the
real infrared data came from data 1, data 7, data 3, and data
2 in the public dataset (Hui et al., 2020). The simulation data
also included the sky background, ground background, mixed
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background, and multiple targets. The resolution was 256× 256.
The targets were all small, that is, <10 pixels.

As in (Zhijian et al., 2021; Deng et al., 2022), four indicators,
namely the accurate detection rate, correct detection rate, missed
detection rate, and false alarm rate, were used to evaluate the
performance of the algorithm. An accurate detection (Acc) is
when the detection result is within the 3 × 3 pixel range of the

TABLE 1 | Infrared target detection results on real and simulated data with

algorithm (Tianjun et al., 2019).

Sky Ground Mixed Multi-targets

Real Simu Real Simu Real Simu Real Simu

Acc (%) 100 99.5 91.5 84.7 94.7 90.2 99.0 98.4

Corr (%) 100 100 93.0 90.1 96.0 93.4 99.5 99.5

Miss (%) 0.0 0.0 4.0 9.9 4.0 6.6 0.5 0.5

FA (%) 0.0 0.0 1.8 3.0 1.2 0.5 0.0 0.0

TABLE 2 | Infrared target detection results on real and simulated data with

algorithm (Xianbu et al., 2019).

Sky Ground Mixed Multi-targets

Real Simu Real Simu Real Simu Real Simu

Acc (%) 100 99.2 92.7 88.3 65.0 70.0 98.7 92.4

Corr (%) 100 100 97.2 92.1 79.0 83.3 99.2 95.3

Miss (%) 0.0 0.0 2.8 17.9 21.0 16.7 0.8 4.7

FA (%) 0.0 0.0 1.5 2.3 0.0 1.3 0.0 0.0

ground truth. Correct detection (Corr) is when the detection
result is within the 9× 9 pixel range of the ground truth. Missing
detection (Miss) is when the detection result is outside the 9 ×

9 pixel range of the ground truth. A false alarm (FA) refers to a
detected non-real target. Tables 1, 2 present the detection results
without changing any parameters of the original algorithm.

As shown in Table 1, the algorithm reported in (Tianjun
et al., 2019) performed well on the above four types of scenes,
particularly in terms of the Acc and Corr indicators on sky
background and multi-target scenes, which reached more than
99%. The performance on the ground background and mixed
background is slightly worse; nevertheless, the accurate detection
rate is above 90%. On the simulation data, the algorithm also
performed well on sky background and multi-target scenes and
is similar to the detection results on real data. On the ground and
mixed backgrounds, the detection results of the simulated data
are slightly worse than those of the real data; nevertheless, the
maximum difference in the accurate detection rates is no more
than 7% (on the ground background, the difference between the
accurate detection rates of the real and simulated data was 6.8).

The performance of the simulation data generated by our
method and the real data in the algorithm (Tianjun et al., 2019)
is compared as shown in Figure 7. When it performs well on
the real dataset, the simulation data generated by our method
also perform well, such as in sky and multi-targets scenarios.
When its performance of real datasets is poor, the simulation data
generated by our method is also poor, such as in ground and
mixed scenarios. This consistency is both reflected in the ACC
and Corr indicators. Therefore, the simulation data generated by
our method are consistent with the real data on the performance
of algorithm (Tianjun et al., 2019).

FIGURE 7 | Performance of simulation data and real data on algorithm (Tianjun et al., 2019).
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FIGURE 8 | Performance of simulation data and real data on algorithm (Xianbu et al., 2019).

As shown in Table 2, the performance of the algorithm
(Xianbu et al., 2019) is similar to that of the algorithm (Tianjun
et al., 2019) on sky background, ground background, and multi-
target scenes; however, the Acc drops to 65% on the mixed
background. This may be related to the applicability of the
algorithm in different scenarios. Interestingly, the detection
results on the simulated data also drop to 70%. Both simulation
data and real data show the low performance of the algorithm
(Tianjun et al., 2019) in mixed scenarios. Regardless of the
scenario, themaximumdifference between the accurate detection
rates of the simulated and real data is still <7% (in a multi-target
scenario, the difference between the accurate detection rates of
the real and simulated data is 6.3).

Similarly, the performance of the simulation data generated
by our method and the real data in the algorithm (Xianbu et al.,
2019) is compared as shown in Figure 8. When it performs well
on real datasets, the simulation data generated by our method
performs also well, such as in sky, ground, and multi-targets
scenarios. When its performance on the real dataset is poor, the
simulation data generated by our method are also poor, such as
in the mixed scene. Therefore, the simulation data generated by
our method are consistent with the real data on the performance
of algorithm (Xianbu et al., 2019).

CONCLUSION AND FUTURE WORK

Training infrared target detection and tracking models based
on deep learning requires a large number of infrared sequence
images. The cost of acquisition real infrared target sequence
images is high, while conventional simulation methods lack
authenticity. This paper proposes a novel infrared data
simulation method that combines real infrared images and

simulated 3D infrared targets. Firstly, it stitches real infrared
images into a panoramic image which is used as background.
Then, the infrared characteristics of 3D aircraft are simulated on
the tail nozzle, skin, and tail flame, which are used as targets.
Finally, the background and targets are fused based on Unity3D,
where the aircraft trajectory and attitude can be edited freely to
generate rich multi-target infrared data. The experimental results
show that the simulated image is not only visually similar to
the real infrared image but also consistent with the real infrared
image in terms of the performance of target detection algorithms.
The method can provide training and testing samples for deep
learning models for infrared target detection and tracking.

The infrared simulation of the target in this method has
not considered the environmental factors (such as weather,
temperature, illumination, etc.) and the sensor error. It is
necessary to further improve the precision of target infrared
simulation to meet some special application scenarios. This is
also the direction of our future work.
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