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Objectives: This study aimed to establish and validate a prognostic model

based on magnetic resonance imaging and clinical features to predict the

survival time of patients with glioblastoma multiforme (GBM).

Methods: In this study, a convolutional denoising autoencoder (DAE) network

combined with the loss function of the Cox proportional hazard regression

model was used to extract features for survival prediction. In addition, the

Kaplan–Meier curve, the Schoenfeld residual analysis, the time-dependent

receiver operating characteristic curve, the nomogram, and the calibration

curve were performed to assess the survival prediction ability.

Results: The concordance index (C-index) of the survival prediction model,

which combines the DAE and the Cox proportional hazard regression model,

reached 0.78 in the training set, 0.75 in the validation set, and 0.74 in the test

set. Patients were divided into high- and low-risk groups based on the median

prognostic index (PI). Kaplan–Meier curve was used for survival analysis (p =

<2e-16 in the training set, p = 3e-04 in the validation set, and p = 0.007 in

the test set), which showed that the survival probability of di�erent groups was

significantly di�erent, and the PI of the network played an influential role in the

prediction of survival probability. In the residual verification of the PI, the fitting

curve of the scatter plot was roughly parallel to the x-axis, and the p-value of

the test was 0.11, proving that the PI and survival time were independent of

each other and the survival prediction ability of the PI was less a�ected than

survival time. The areas under the curve of the training set were 0.843, 0.871,

0.903, and 0.941; those of the validation setwere 0.687, 0.895, 1.000, and 0.967;

and those of the test set were 0.757, 0.852, 0.683, and 0.898.

Conclusion: The survival prediction model, which combines the DAE and

the Cox proportional hazard regression model, can e�ectively predict the

prognosis of patients with GBM.
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Introduction

Glioblastoma multiforme (GBM) is a tumor caused by the

carcinogenesis of glial cells in the brain and spinal cord through

the interaction of genetic and environmental factors (Weller

et al., 2015; Xu et al., 2020). The potential risk factors include

specific gene polymorphism, ionizing radiation, and virus

infection. GBM may also cause increased intracranial pressure,

edema, brain herniation, epilepsy, and mental symptoms

as complications. Therefore, GBM is difficult to treat and

frequently recurs, which results in high mortality (Poff et al.,

2019; Peng et al., 2020). Due to individual differences and

personalized therapy, the survival time of different patients

with GBM shows high heterogeneity (Badve and Gökmen-Polar,

2015; Li et al., 2021). Studies have shown that the factors that

affect the survival time of GBM include the morphology and

degree of edema around the tumor, the degree of tumor necrosis,

the overall morphology and size of the tumor, and whether the

tumor has cystic changes.

Magnetic resonance imaging (MRI) is an important

diagnostic tool for brain tumors (Takaya et al., 2021). It has

been extensively applied in the diagnosis of brain tumors and

some neurodegenerative diseases (such as Alzheimer’s disease)

(Wang et al., 2017; Yan et al., 2018) and has become a recognized

imaging mode in the clinical treatment of GBM. Currently,

conventional MRI assists in diagnosis, planning operative

protocol, and monitoring disease progression and treatment

response (Jenkinson et al., 2007). Radiomics is a technique that

applies high-throughput computational approaches to extract

quantitative features from images, such as MRI and PET. These

features can be used to differentiate emerging cerebral lesions or

predict the effect of different treatment options on patients with

GBM. Radiomics also has the potential to non-invasively assess

important prognostic and survival models (Lohmann et al.,

2018; Conti et al., 2021; Schniering et al., 2022). By building

the survival prediction model, clinicians can provide a reliable

reference for each patient, formulate a therapeutic regimen,

and evaluate the potency to alleviate patients’ symptoms and

improve the survival time.

Abbreviations: AUC, areas under the curve; C-index, concordance index;

DAE, denoising autoencoder; MRI, magnetic resonance imaging; DWT,

denoise wavelet transform; CT, computer tomography; DeepConvSurv,

deep convolutional neural network for survival analysis; VOI, volume of

interest; BraTS, brain tumor segmentation; TCIA, The Cancer Imaging

Archive; ET, enhancing tumor; AE, autoencoder; PI, prognostic index;

Lowess, locally weighted scatterplot smoothing; ROC, receiver operating

characteristic; LASSO, least absolute shrinkage and selection operator;

CNNs, convolutional neural networks; SVM, support vector machine;

TCGA, The Cancer Genome Atlas; OS, overall survival; GBM, glioblastoma

multiforme; KPS, Karnofsky performance score.

Recently, deep learning-based models can learn more

abstract features, reflecting more potential biological

information. However, due to the complex patterns and

sharpness, it is challenging to build a survival prediction model

from medical images, especially using three-dimensional (3D)

medical images. As the calculated amount arises, it becomes

more challenging to construct an effective survival prediction

model, while the advantages of deep learning are more

prominent. Nie et al. (2019) used a multi-channel architecture

of 3D convolutional neural networks (CNNs) for deep learning

to extract high-level predictive features. Those deeply learned

features and the limited demographic and tumor-related

features are inputted into a support vector machine (SVM)

to generate the final prediction result. The obtained multi-

channel deep survival prediction framework can predict the

survival time of patients with great accuracy. Lao et al. (2017)

used the CNN_S model to extract deep features, then the

least absolute shrinkage and selection operator (LASSO) Cox

regression model was applied to construct a six-deep-feature

signature. This study indicated the potential of deep imaging

feature-based biomarkers in the preoperative care of patients

with GBM. Zhu et al. (2016) used a deep CNN for survival

analysis (DeepConvSurv) based on medical image data to prove

that compared with the radiomics approach, this method has

a significant performance improvement. Mobadersany et al.

(2018) proposed the survival convolutional neural networks

(SCNN) model, which performed deep learning to combine

the functions of an adaptive machine-learning algorithm

with a traditional survival model. This integrated model has

high accuracy in predicting the survival rate of patients with

GBM. Liu et al. (2019) proposed a 3D-deep CNN based on the

attention mechanism to use multimodal MRI of GBM to predict

survival. In this network, the attention module was incorporated

into the deep-learning network to enhance the ability to express

meaningful features while suppressing insignificant features. It

involved a 3D volume of interest (VOI) from four modal MRIs

as input, and the output was the risk value of each patient. The

addition of the attention mechanism improved the predictive

efficiency. Denoising autoencoder (DAE), an unsupervised

deep-learning algorithm, is a random version of autoencoder

formulation. It is designed to force the hidden layer of the

autoencoder to capture more robust features. Wang et al. (2020)

trained the autoencoder from a partially damaged (corrupted)

input to rebuild a clean (repaired) input based on the basic

principle. Thus, a good representation could be gained steadily

from a damaged input, and the corresponding clean input

could be restored. Tang et al. (2020) performed a multi-task

CNN to select characteristics related to tumor genotype from

preoperative multimodal MRI data to develop a tumor genotype

and survival prediction model. However, whether the DAE

methods can improve the extraction efficiency of survival

features remains unknown.
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In the present study, we built a convolutional DAE network

with the loss function of the Cox proportional hazard regression

model for the extraction of features for survival prediction. The

DAE was applied to extract the features of the tumor area from

theMRI of fourmodes and added into the risk prediction branch

at the minimum feature matrix. The prognostic index (PI) was

calculated from the risk scores of the Cox model and used

for constructing a survival prediction model. This network can

fully extract the features of the tumor region and build a more

accurate prognostic model for patients with GBM.

Materials and methods

Data set and preprocessing

This article uses the MRI of 205 patients from the public

dataset of the 2019 Multimodal Brain Tumor Segmentation

(BraTS) Challenge containing four modalities. Clinical data for

100 of these patients were obtained from the Cancer Genome

Atlas (TCGA) GBM project. All multimodal MRI scans are

provided in NIfTI files (.nii.gz), and the four MRI modalities

are T1, T2, T1ce, and Flair. According to the same annotation

protocol, all imaging data sets were manually segmented by

one to four evaluators according to the same annotation

standards. Their annotations were approved by experienced

neuroradiologists (Bakas et al., 2017a). The published dataset

can be used freely on the premise of citing specific documents.

All patients have survival time and survival status, and 100 of

them have clinical data (age, sex, race, Karnofsky performance

score (KPS), radiotherapy, chemotherapy).

As shown in Figure 1, each case has four modes, namely T1,

T2, T1ce, and Flair, and the specifications are 4 × 240mm ×

240mm × 150mm. At the same time, the data set also provides

GBM labels manually segmented by multiple experts. The labels

are three nested regions, which are the whole tumor region (the

green, yellow, and red sets in Figure 1), the area of the tumor

core (the yellow and red areas in Figure 1), and the enhancing

tumor (ET) (the red area in Figure 1).

The public dataset provided by the competition has

been partially preprocessed, including multimodal MRI data

registered to the same spatial template, the image is resampled

to 1mm × 1mm × 1mm, and brain MRI also performed

skull dissection. The dataset is provided by different scanning

device configurations and institutions (Bakas et al., 2017b,c).

Factors, such as the scanner itself and many unknown issues,

can cause differences in brightness on MRI images, and the

intensity value can vary within the same tissue, which is called

a bias field. The bias field is a low-frequency smooth undesirable

signal, which will cause unevenness in the MRI image. If the

uncorrected bias field images are directly used for deep learning,

it will affect the results of survival prediction. Therefore, before

training the survival prediction model of GBM, it is necessary

to perform offset field correction to minimize the influence

of the offset field on survival prediction. This article uses

ANTs N4BiasField Correction (Avants et al., 2009) to offset

field correction. Then, the data of each mode is normalized

separately. All the preprocessed data were compressed to H5

files. The training, validation, and test sets were randomly

divided according to the index. At the same time, the data can be

enhanced online (mirroring or rotating on different axes) during

the input network.

Network structure

In this study, the survival prediction model for GBM uses

a convolutional DAE. Autoencoder (AE) is a deep neural

network used for semi-supervised or unsupervised learning.

The autoencoder can restore the output to the same as the

input according to the deep features. After the autoencoder is

trained, its output can replicate the input as much as possible.

The network in this study is based on the DAE, a variant

of the AE, which can realize the powerful functions of anti-

noise and dimensionality reduction. The network structure of

this article is shown in Figure 2. The self-encoder contains two

parts: an encoder and a decoder. The encoder is expressed

as ϕ(x), and the input is the four modal MRI images of the

GBM lesion area. After the input, the batch normalization

layer and the drop out layer are added to randomly discard

the image pixels to enhance the anti-noise and robustness

of the network. The encoder includes three convolutions and

downsampling to obtain the hidden characteristic matrix of the

middle layer. Three convolutions generate 16, 32, and 64 feature

maps, respectively, with a LeakyReLU activation behind each

layer. The decoder is expressed as ψ[ϕ(x)], which includes three

convolutions and upsampling. Three convolutions generate

64, 32, and 16 feature maps, respectively, with a LeakyReLU

activation behind each layer. The output layer of the decoder

generates four feature maps through one convolution, followed

by a sigmoid activation. Finally, it restores the features of

the middle layer to the MRI images of the four modalities

corresponding to the input. After the middle layer, the survival

prediction branch was added, and the network was trained with

the observed result data (survival/follow-up time). The feature

matrix was flattened after the hidden layer feature matrix by

Flatten. After flattening, there are a total of 65,536 features, using

dense full connections to 1,024 features, randomly discarding

(drop out) some neurons, and using dense full connections

to 128 features, randomly discarding some neurons to prevent

overfitting of the branching network. The feature corresponds

to the 128-dimensional feature and the corresponding neural

network weight. It also corresponds to the product of the

independent variable and the partial regression coefficient in the

Cox proportional hazard regression model.
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FIGURE 1

MRI and segmented labeling of the four modes of glioma. (A) T1, (B) T2, (C) T1ce, (D) Flair, and (E) Ground Truth. The labels in (E) are three

nested regions, which are the whole tumor region (the green, yellow and red sets), the area of the tumor core (the yellow and red areas), and the

Enhancing Tumor (ET) (the red area).

Loss function

A fusion of the reconstruction loss function and the Cox

proportional hazard regression loss function is used in this

network. In the reconstruction loss function of the convolution

noise reduction autoencoder, the mean square error loss

function is selected. It is defined as follows:

Lr =
1

n

n
∑

i=1

||xi − ψ(φ(xi))||
2

where n represents the size of the sample. Minimizing the

reconstruction loss function ensures that the hidden layer in

the DAE can effectively learn the potentially valuable features in

GBMMRI.

Cox proportional hazards regression model with survival

outcome and survival time as dependent variables can

simultaneously analyze the impact of multiple factors on

survival time. To ensure that the hidden layer can effectively

process censored data and extract features that are incredibly

relevant and robust to survival, the Cox proportional hazard

regression model is applied to create the loss function after

densely connected in the middle layer. At the same time, the

Cox proportional hazard regression model can better correct the

influence of multiple confounding factors on the results. The

Cox proportional hazard regression model is defined as follows:

log
hi(t)

h0(t)
= β1zi1 + β2zi2 + . . . βPziP ,

where hi(t) represents the risk function of patient i and is

the probability of the subject’s death at time t. h0(t) is a

baseline risk level, and the hi(t) (i = 1,..., n) risk functions

of all patients at different times are compared with it. The
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FIGURE 2

Network structure combining DAE and Cox. Conv, convolutional layer; Ds, downsampling layer; FC, fully connected layer; Up, upsampling layer.

critical assumption of the Cox prognostic model is that the

hazard ratio hi(t)/h0(t) is constant for time. The natural

logarithm of the ratio is the weighted sum of multiple

predictors (here represented by zi1,..., zip), and the weight

coefficients are represented by β1,..., βp. These coefficients are

estimated by maximizing the partial likelihood function of Cox’s

proportional hazards:

log ζ (β) =

n
∑

i=1

δi







β ′zi − log
∑

j∈R(ti)

eβ
′zj







Among them, zi is the vector used to predict patient i, δi is an

indicator of patient i’s survival status (0= survival or censorship,

1 = death), and R(ti) represents the risk vector set of patient i.

This study applies the loss function to the survival prediction

model, which is defined as follows:

Ls = −

n
∑

i=1

δi







W′φ(xi)− log
∑

j∈R(ti)

eW
′φ(xj)







Among them, W , represents the weight vector of the final

output of the survival prediction branch and φ (xi) represents

the feature vector of the prediction branch. The multiplication

of the two is the patient’s risk prediction, which is the natural

logarithm of the hazard ratio.

In this study, the loss function of the prognostic model

is composed of the reconstruction loss function and the loss

function of the Cox proportional hazard regression model,

which is defined as follows:

Lhybrid = αLr + βLs = α

[

1

n

n
∑

i=1

||xj − ψ (φ (xi)) ||
2

]

+β



−

n
∑

i=1

δi







W′φ (xi)− log
∑

j∈R(ti)

eW
′φ(xj)











Among them, α and β are the reconstruction loss functions,

and the loss function of the Cox proportional hazard regression

model is the weight coefficient. For convenience, the sum of α

and β is set to 1.

Survival prediction model training

A total of 205 cases of MRI and survival data from

BraTS2019 containing four modalities are used in this study.

These cases are divided into 143 cases of the training set, 31 cases

of the validation set, and 31 cases of the test set. The result of

the segmentation of the lesion area is used as the input to the

model. The DAE and the Cox proportional hazard regression

loss functions are used to extract the multimodal image data of

GBM. Finally, the PI of each individual is not affected by time

changes. The data are randomly scrambled before entering the

network. The batch size in the input network is 26, and each

batch is sorted from short to long in the order of survival time.

The ratio of the reconstructed loss function and the loss function

of the Cox proportional hazard model was determined to be

7:3 after several experiments. The model has been optimized by
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Adam. The initial learning rate is 5e-4, and the epoch is 200. The

learning rate will decay by 0.5 after 10 epochs if the validation

loss is not improving. The maximum number of iterations of

training is set to 300.

Survival prediction model evaluation

In this study, we used the concordance index (C-index) and

the accuracy to evaluate the model’s performance. The C-index

was obtained by combining the PI with the individual’s survival

time and status and calculated by the R “Hmisc” package. The

accuracy is calculated based on a three-category classification.

We define the survival days <300 as a high-risk group, from

300 to 450 as a mid-risk group, and more than 450 as a low-

risk group (Bakas et al., 2018), and divided the PI evenly into

three parts in the training set, which was defined as low-,

medium-, and high-risk groups. To assess the performance

of the survival prediction model proposed in this study, its

accuracy is compared with three methods: post hoc (Hermoza

et al., 2021), random forest regressor (RFR) (Agravat and Raval,

2019), and a survival prediction model using neural networks

(Wang et al., 2019).

The survival prediction model was constructed by

combining the PI (produced by the network), the survival time,

and the survival status of each individual. All patients were

divided into high- and low-risk groups according to the median

of the PI. Then, we applied a Kaplan–Meier survival analysis

and the log-rank test to evaluate the model’s stratification ability.

This study used Schoenfeld residual method to verify whether

the PI predicted by the network is time-dependent (Zhang

et al., 2018). A Lowess (locally weighted scatterplot smoothing)

smoothing function was used for fitting to obtain the smooth

curve of Schoenfeld residuals and time. The correlation between

Schoenfeld residuals and time rank was tested to investigate

the independence between residuals and time. If the p-value of

the test is more than 0.05, it proves that the linear relationship

between residual and time is not significant, which further

shows that the PI does not depend on time changes. To

evaluate the predictive ability of the PI predicted by the network

and whether the predictive power of the PI decreases over

time, we constructed the time-dependent receiver operating

characteristic (ROC) curve for evaluation. There were stages

every 200 days, and fewer patients survived 800 days. The four

stages were evaluated in this study to reduce the impact of the

small patient sample number in the later stage.

Nomogram construction and evaluation

In addition, combined with clinical risk factors such as

age, gender, race, KPS, radiotherapy, and chemotherapy, a

nomogram was built on the predictive model for the training

TABLE 1 Comparison of the results of di�erent prognostic models.

Model Training
set

Verification
set

Test
set

Hermoza et al. (2021) 0.548 0.517 -

Agravat and Raval (2019) 0.554 0.517 -

Wang et al. (2019) 0.515 0.448 0.551

DAE+ Cox 0.664 0.613 0.548

set to predict overall survival (OS). The calibration curve

was constructed to analyze the diagnostic performance of the

nomogram in the training set, validation set, and test set.

Results

Performance of survival prediction
models

In this study, the consistency index of the survival prediction

model that combines the DAE and the Cox model reached 0.78

in the training set, 0.75 in the validation set, and 0.74 in the

test set. As shown in Table 1, the accuracy was used to evaluate

the performance of different prognostic models. In the test set,

the accuracy of our proposed model reaches 0.548, which is

0.3% lower than the model proposed by Wang et al. (2019).

However, in the training set and validation set, our proposed

method achieves a higher accuracy value than the other three

survival prediction models in Table 1. Therefore, our proposed

method has a slight advantage. Themodel proposed in this study

could extract the robust features related to survival prediction

from the multimodal MRI of GBM lesions and could process

censored data.

Confirm the validity of the PI

The Kaplan–Meier survival analysis with log-rank test

results is shown in Figure 3, where p = <2e-16 in the training

set, p = 3e-04 in the validation set, and p = 0.007 in the test set.

The p-value of log-rank test results was < 0.05 in all three sets,

which proved that the survival probability of different groups

divided by PI was significantly different. It also suggested that the

PI predicted by the network had an influential role in predicting

survival probability.

PI independence with time

Figure 4 shows the Schoenfeld residual plot of the PI in the

training set, validation set, and test set. In the residual check of

the PI, the fitting curve of the scatter plot was roughly parallel to
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FIGURE 3

Kaplan–Meier curve of risk grouping of the training set (A), validation set (B), and test set (C).

the x-axis. In addition, the p-value of the test was 0.11, more than

0.05, proving that the PI and survival time were independent of

each other and indicating that the survival prediction ability of

the PI was less affected by time.

Time-dependent accuracy analysis of the
model

Figure 5 shows the time-dependent ROC of the training

set, validation set, and test set. The area under the curve

(AUC) value of each period of the three sets was relatively

high. The AUC in the last stage was relatively high because

almost all high-risk patients had died. On the three sets,

the attenuation of AUC was minimal, which proved that

the predictive ability of the PI attenuates to a small extent

with time.

Development and validation of the
nomogram

The radiomics nomogram incorporating the PI and seven

clinical factors was constructed based on the multivariate

Cox regression (Figure 6). The figure represents the survival

prediction model for patients with GBM. The consistency index

of the nomogram model reached 0.79 in the training set, 0.74

in the validation set, and 0.75 in the test set. Calibration curves

(Figure 7) showed that the predicted OS of the nomogram

was closely aligned with the observed OS in the training set,

validation set, and test set.

Discussion

The structure of brain GBM is complex, and tumor tissue

mainly includes edema, necrosis, and tumor core. In addition,

the traditional extraction of imaging features is limited, and

many deeper features of brain GBM cannot be effectively

extracted. Autoencoder is an unsupervised learning technology

that applies neural networks for representational learning to

overcome the heterogeneity of individual tumors and contribute

to the noise reduction of images. These are the advantages of

traditional CNN networks.

Prognostic models are designed to assess the impact of

specific prognostic factors on events of interest over time and

predict the risk of future possibilities for new patients. The cure

rates of patients with GBM are inferior, and the survival rates

are often worse or even almost impossible to cure. Accurate

prediction of survival probability is essential for the treatment

of patients. Therefore, it is urgent to develop a prognostic

model to assess prognostic variables (Cheng et al., 2013;

Royston and Altman, 2013; Yeh et al., 2016). The most popular

prognostic model is the Cox proportional risk regression model

proposed by Cox (1972), a semi-parametric regression model.

Cox regression provides the direction of DAE learning and

can capture more features related to survival. It has unique

advantages in constructing a survival prediction model, which

can analyze the impact of multiple factors on survival and

process deleted data. It can obtain the risk level, which is

different from the traditional loss function used for survival

prediction. However, it is assumed that the linear logarithmic

risk function is too simple for clinical survival data. As a result,

many researchers have proposed non-linear risk models to fit

survival data as much as possible, such as Cox regression based

on neural networks (Cox, 1972) and multi-task survival analysis

learning (Li et al., 2016).

However, it is challenging to build a prediction model with

all the features, and it is prone to overfitting, which would

lead to inaccurate prediction results. Hence, it is necessary to

screen out the crucial features and eliminate the insignificant

ones, which led to the later development of Lasso-Cox (Zhang

and Lu, 2007), Ridge-Cox (Vinzamuri and Reddy, 2013), and

EN-Cox (Simon et al., 2011) models. In this study, we proposed
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FIGURE 4

Schoenfeld residual plot of the prognostic index in the training set (A), validation set (B), and test set (C).
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FIGURE 5

Time-dependent ROC of the training set (A), validation set (B), and test set (C).

FIGURE 6

Radiomics nomogram for overall survival of patients with GBM. The shaded part indicates the distribution status and probability density of the

patients.

a hypothesis of a survival prediction model combining the DAE

and Cox proportional hazards regression model. The empirical

results show that the model can better predict the survival of

patients with GBM. Through this model, we could obtain not

only the compelling image features but also the features that can

represent survival.

To evaluate the predictive power of the PI derived from

network prediction, we applied time-dependent ROC curve

analysis, which was constructed at different survival time

points. The result showed that the prediction ability of the

PI was practical with the increase in time. On the training

set, validation set, and test set, the attenuation of AUC

is minimal, which proves that the predictive ability of the

PI attenuates to a small extent with time. In the Kaplan–

Meier survival and log-rank test, the p-value was < 0.05

in the training set, validation set, and test set, proving that
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FIGURE 7

The calibration curves of the radiomics nomogram in the training set (A), validation set (B), and test set (C) of the overall survival of patients with

GBM. The calibration curves depict the calibration of the nomogram in terms of the agreement between the predicted risk and the observed

survival.

higher and lower PI values were significantly different. It also

confirmed that the PI of the network played an influential

role in predicting survival probability (Cui et al., 2020). In

the residual verification of the PI, the fitting curve of the

scatter plot was roughly parallel to the x-axis. The p-value of

the test was 0.11, more than 0.05, proving that the PI and

survival time were independent of each other and indicating

that the survival prediction ability of the PI was less affected

by time (Kwon et al., 2015). Previous studies (Sun et al., 2015;

Chen et al., 2021) have confirmed that clinical factors, such

as age, gender, and KPS, are important variables related to

the prognosis of GBM. We constructed a nomogram based

on the PI and clinical factors. The calibration plots for

the probabilities of OS showed good agreement between the

predicted OS by nomogram and the actual OS of patients with

GBM. The results suggested the accuracy of the nomogram

and further indicated that the nomogram can accurately

predict the prognosis of patients with GBM (Liu et al., 2020).

Compared with PI, the predictive performance of the nomogram

is improved.

Despite the promising results, this study still has

several limitations. This study is retrospective, and only

the Cancer Imaging Archive (TCIA) database was used. In

the future, a multicenter study is needed to richly assess

the generalization ability of the survival prediction model

(Lao et al., 2017). In addition, the survival prediction model

also can be added with TNM stage classification tasks

that might contribute to survival prediction in the future

and make better adjustments to the consistency index of

survival prediction.

This study proposes a GBM survival prediction model

based on DAE and Cox proportional hazard regression loss

function. The survival prediction branch is added, and the

Cox proportional hazard regression model is used as the

auxiliary loss function based on DAE. The results indicate

that the model can predict the prognosis of patients with

GBM well.
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