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Self-organized criticality in a
mesoscopic model of
excitatory-inhibitory neuronal
populations by short-term and
long-term synaptic plasticity

Masud Ehsani1* and Jürgen Jost1,2

1Max Planck Institute for Mathematics in Sciences, Leipzig, Germany, 2Santa Fe Institute, Santa Fe,

NM, United States

Dynamics of an interconnected population of excitatory and inhibitory spiking

neurons wandering around a Bogdanov-Takens (BT) bifurcation point can

generate the observed scale-free avalanches at the population level and

the highly variable spike patterns of individual neurons. These characteristics

match experimental findings for spontaneous intrinsic activity in the brain. In

this paper, we address the mechanisms causing the system to get and remain

near this BT point. We propose an e�ective stochastic neural field model

which captures the dynamics of the mean-field model. We show how the

network tunes itself through local long-term synaptic plasticity by STDP and

short-term synaptic depression to be close to this bifurcation point. The

mesoscopic model that we derive matches the directed percolation model at

the absorbing state phase transition.

KEYWORDS

critical brain hypothesis, Bogdanov-Takens bifurcation, scale-free avalanches,
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1. Introduction

Neural networks as complex dynamical systems with many degrees of freedom

varying over different time scales can be seen as a self-tuning system that attains

a dynamical regime where the system can carry out its task. On the other hand,

spontaneous intrinsic activity of cortical neural assemblies in absence of any information

processing task can be perceived as a substrate for the neural dynamics which can give us

insights into the preferred dynamical regime and the goal of self-organization processes.

Dynamic and functional characteristics of spontaneous activity are connected to the

structural architecture of the brain as well as the ongoing self-organization process.

Experimental findings on different temporal and spatial resolutions highlight the scale-

free characteristic of spontaneous activity. When recorded by coarse-grained methods

like EEG and MEG, spontaneous brain activity shows nested oscillations with a power

spectrum that indicates scale-free properties, i.e., P(f ) ∝ 1/f β (Linkenkaer-Hansen et al.,

2001; Miller et al., 2009; Hardstone et al., 2012). Microelectrode recordings of smaller
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cortical regions show activity in the form of avalanches with

power-law distributions of size and duration in different setups

such as cultured slices of rat cortex (Beggs and Plenz, 2003),

awake monkeys (Petermann et al., 2009), in cerebral cortex and

hippocampus of anesthetized, asleep, and awake rats (Ribeiro

et al., 2010), and the visual cortex of an anesthetized cat (Hahn

et al., 2010).

One explanation for the scale-free characteristics is that

cortical networks operate near a critical second-order phase

transition (Chialvo, 2004; Tagliazucchi and Chialvo, 2013). On

one hand, close to the edge of an active-inactive phase transition,

local populations of neurons in the cortex would be in an idle

state ready for processing information, but at the same time

away from overactivation. On the other hand, close to the phase

transition, an order parameter, a macroscopic state different

from the inactive state comes into existence. The emergence

of a macroscopic mode of activity acts as the coordinator of

individual neurons which are enumerated in quantity and prone

to various kinds of noise to produce a cooperative large-scale

activity (Chialvo, 2010).

The type of the phase transition and the dynamical regime

that produces the aforementioned characteristics of avalanches

have been studied in different neuronal models. Active-inactive

phase transition in a purely excitatory population of neurons

(Levina et al., 2007, 2009) and synchronization phase transition

in an excitatory population coupled with short-term depression

of synaptic resources (di Santo et al., 2018) have been proposed

as the origin of avalanche dynamics. The main hypothesis is

that system resides near the bifurcation point of the quiescent

state. In an Inh.-Exc. network, Benayoun et al. proposed a

stochastic model of spiking neurons which matches the Wilson-

Cowan mean field in the limit of infinite system size that shows

scale-free avalanches in the balanced state in which the sum of

excitation and inhibition is much larger than the net difference

between them (Benayoun et al., 2010). Under symmetry

conditions on weights, the Jacobian has negative eigenvalues

close to zero in the balanced state. de Candia et al. (2021)

showed that this stochastic model exhibits second-order phase

transition with scale-free avalanches and the interaction of noise

and nonlinearity is the origin of this behavior. In this model,

the Poisson firing of the neurons is preassumed and symmetric

synaptic connections and O(N−1) scaling of weights is required

for applying the linear noise approximation. Furthermore, the

origin of the scale-free behavior and the bifurcation diagram

of the model in a wider regime of parameters has not been

studied. To investigate further the emergence of avalanches

in the EI network, in Ehsani and Jost (2022), we used a

bottom-up approach to obtain a single neuron’s gain function

subjected to fluctuating conductance-based synaptic currents

and studied the linear Poisson firing regime for EI homogenous

sparse population using Fokker-Planck formalism. We showed

that the Bogdanov-Takens bifurcation point of the mean-field

equations for dynamics of a sparse homogenous excitatory

and inhibitory population of spiking neurons is the operating

point of the system producing the characteristic spontaneous

activity in the form of scale-free avalanches and Poisson firing

of neurons. In this regime, the system is close to both the

saddle-node bifurcation point at the low firing rate regime and

Hopf-bifurcation of the quiescent fixed point. Tight temporal

balance of inhibition and excitation at this state and Poisson

firing of neurons is the origin of critical behavior. By mapping

single population dynamics to a branching process, we have

explained the emergence of power law exponents in the spiking

neural network which coincides with critical exponents of the

branching process.

To tune the system at the critical point, many modeling

approaches and adaptive mechanisms have been suggested

during the decades of research on the critical brain hypothesis.

The self-organizing principle is mainly based on the model of

neuronal dynamics and the choice of the control parameter. In

the excitatory neuronal population, a SOC model that attracted

much attention is introduced by Levina et al. (2007, 2009).

In their model, short-term depression of excitatory synapses

coupled with internal neuronal dynamics self-tunes the system

at the edge of the active-inactive phase transition. In addition to

self-organization by short-term depression in synapses which is

also used in Peng and Beggs (2013) and di Santo et al. (2018),

self-organization by other control parameters like degree of

connectivity or synaptic strength has been studied (Bornholdt

and Roehl, 2003; Rybarsch and Bornholdt, 2014). In Brochini

et al. (2016), self-organization in stochastic spiking neuron

model by short-term plasticity of the gain function instead

of synaptic weights is introduced. Meisel and Gross (2009)

introduced a self-organizing excitatory neural network by STDP.

Scarpetta and Candia (2013) studied transient replay of stored

patterns by STDP in a balanced network at a macroscopic

phase transition induced by noise and also observed scale free

avalanches and studied their statistics near the noise induced

phase transition (Scarpetta et al., 2013).

Here, we consider the self-tuning of the system at the

BT critical point of the EI interconnected network. The

self-organizing parameter in our network is the balance of

opposing forces resulting from the activities of inhibitory and

excitatory populations, and the self-organizing mechanisms are

long-term synaptic plasticity through the mechanism of Spike

Timing Dependent Plasticity (STDP) and homeostatic short-

term depression of the synapses. The former tunes the overall

strength of excitatory and inhibitory pathways to be close to a

balanced regime of these currents and the latter, which is based

on the finite amount of resources in brain areas, acts as an

adaptive mechanism that tunes micro populations of neurons

subjected to fluctuating external inputs to attain the balance in

a wider range of external input strengths. The importance of

both types of synaptic plasticity in the emergence and tunning

of the critical state has been also mentioned in a review article

by Zeraati et al. (2021). Here, we show this phenomenon in the
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context of EI networks with long-term synaptic plasticity in all

types of synapses which has not been studied previously.

For analytical analysis of STDP on average weight

connections, we use the inhomogenous Poisson neuron

assumption that has been studied in Kistler and van Hemmen

(2000) and Burkitt et al. (2007). Under general conditions on

inhibitory and excitatory STDP kernels, i.e., negative integral

of the excitatory and positive integral of the inhibitory STDP

kernels, learning results in a balanced internal state. This

condition on kernels leads to stabilization of rates as also

discussed in Kempter et al. (2001). We use the model of Tsodyks

and Markram (1997) for short-term depression of the excitatory

synapses which has been studied vastly (refer to for example

Kistler and van Hemmen, 1999).

Using the Poisson firing assumption, we propose a

microscopic Markovian model which captures the internal

fluctuations in the network due to the finite size and matches

the macroscopic mean-field equation by coarse-graining. Near

the critical point, a phenomenological mesoscopic model for

excitatory and inhibitory fields of activity is possible due to

the time scale separation of slowly changing variables and

fast degrees of freedom. We will show that the mesoscopic

model corresponding to the neural field model near the

local Bogdanov-Takens bifurcation point matches the Langevin

description of the directed percolation process.

2. Materials and methods

2.1. Neuron model

We use an integrate and fire neuron model in which the

change in the membrane voltage of the neuron receiving time

dependent synaptic current i(t) follows

C
dv(t)

dt
= gLeak(vLeak − v(t))+ i(t) (1)

for v(t) < vth. When the membrane voltage reaches

vth = −50mv, the neuron spikes and immediately its membrane

voltage resets to vrest which is equal to vLeak = −65mv.

In the following, we want to concentrate on amodel with just

one type of inhibitory and one type of excitatory synapses, which

can be seen as the average effect of the two types of synapses. We

can write the synaptic inhibitory and excitatory current as

i(t) = ginh(t) ∗ (VRinh − v(t))+ gexc(t) ∗ (VRexc − v(t))

(2)

VRinh and VRexc are the reverse potentials of excitatory and

inhibitory ion channels and based on experimental studies we

choose values of −80 and 0mv for them respectively. gInh(t)

and gExc(t) are the conductances of inhibitory and excitatory

ion channels. These conductances are changed by the inhibitory

and excitatory input to the cell. Each spike of a presynaptic

inhibitory or excitatory neuron j to a postsynaptic neuron k that

is received by k at time t0 will change the inhibitory or excitatory

ion channel conductance of the postsynaptic neuron for t > t0

according to:

gkInh(t) = wkj ∗ ginh0 ∗ exp(− t − t0

τ inhsyn

)

gkExc(t) = wkj ∗ gexc0 ∗ exp(− t − t0

τ excsyn
) (3)

Here, we assume that the rise time of synaptic conductances

is very small compared to other time scales in the model, and

therefore, we modeled the synaptic current by a decay term with

synaptic decay time constant τsyn which we assume to be the

same value of 5ms for both inhibitory and excitatory synapses.

2.2. Network architecture

In the remainder of this study, in the simulation, we

consider a population of NExc = 2 ∗ 104 and NInh =
0.25 ∗ NExc inhibitory spiking neurons with conductance-

based currents introduced in this section. Each excitatory

neuron in the population is randomly connected to kEE =
NExc

100
= 200 excitatory and kEI = kEE

4
inhibitory neurons

and each inhibitory neuron is connected to kIE = kEE and

kII = kEE

4
excitatory and inhibitory neurons, respectively.

The weights of excitatory synaptic connections are in a range

that 10 − 20 synchronous excitatory spikes suffice to depolarize

the target neuron to the level of its firing threshold when

it is initially at rest at the time of input arrival. Weights

are being drawn from a log-normal probability density with

low variance. Therefore, approximately O(
√

kEE) spikes are

adequate for firing. Assuming homogeneity in the population

as we have discussed in the introduction we can build a mean-

field equation for the excitatory and inhibitory population in this

sparse network, assuming each neuron receives input with the

same statistics.

2.3. Avalanche regime of activity as
desired operating point of the system

In Ehsani and Jost (2022), we have investigated the dynamics

of excitatory and inhibitory (EI) sparsely connected populations

of spiking leaky integrate neurons with conductance-based

synapses. We have seen that close to the Bogdanov-Takens

bifurcation point of the mean field equation, the output firing

of the population is in the form of avalanches with scale free

size and duration distribution. This matches the characteristics

of low firing spontaneous activity in the cortex. By linearizing

gain functions and excitatory and inhibitory nullclines, we
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FIGURE 1

Zoom in on the local bifurcation diagram at low firing rates and the corresponding regimes of phase space with di�erent numbers of fixed

points. The dashed line is the condition on the equal slope of linearized nullclines and the semi-dashed line is the condition on equal

y-intercepts. BT point (black dot) is close to the intersection of these lines. In the labeling of regions (Q) denotes quiescent state fixed point, (L) is

the fixed point in low firing rate, (M) is the fixed point in the linear section, and (H) is the high firing fixed point.

approximated the location of the BT bifurcation point. This

point in the control parameter phase space corresponds to

the internal balance of excitation and inhibition and a slight

excess of external excitatory input to the excitatory population.

Due to the tight balance of average excitation and inhibition

currents, the firing of the individual cells is fluctuation-driven.

Around the BT point, the spiking of neurons is a Poisson

process and the population average membrane potential of

neurons is approximately at the middle of the operating interval

[Vrest ,Vth]. Moreover, the EI network is close to both oscillatory

and active-inactive phase transition regimes.

At equilibrium, population rates satisfy a system of fixed

point equations of the form:

ρI = gI(ρI , cEIρE + cIIρI + dρIExt)− z0

ρE = gE(ρI , cEEρE + cEIρI + dρEExt)− z0 (4)

where cxy = ckxywxy(VRy − 〈Vx〉). kxy is the average number

of synaptic connections between neurons of population y to

neurons in population x with an average strength of wxy. z0 is

a constant that depends on Vrest ,Vth, the maximal rates and the

SD of the input. VRy is the reverse potential level of a neuron

of type y and 〈Vx〉 is the average potential level of neurons in

population x that can be written in fluctuation driven the firing

regime as:

< Vx >=
gLVL + g0excwxEρEτVRexc + g0

inh
wxIρIτVRinh

gL + g0excwxEρEτ + g0
inh

wxIρIτ
(5)

τ is the synaptic current decay time constant, gL, gexc and

ginh are the baseline conductances of leaky, excitatory and

inhibitory ion gates, respectively. We took wEE and ρEExt as

control parameters and analyzed solutions to Equation (4). By

substituting nonlinear gain functions with their corresponding

linearization in the Poisson firing regime, we showed that the

low BT point is located close to the matching condition for the

y-intercept and the slopes of the linearized nullclines, which are

written as:

c∗EE = cEIcEI

cII

ρE
∗

Ext =
c∗EE
cIE

(ρIExt − d)+ d (6)

where d is a constant equal to
gL(Vrest − Vth)

τ ∗ g0exc ∗ (Vth − VRexc )
.

Figure 1 shows the location of the BT point on the local

bifurcation diagram and matching condition of Equation 6.

Nullclines of Equation 4 near the BT point are depicted in

Figure 2. Close to the BT point, the volume of the basin of

attraction of the quiescent state is small, and internal noise

can make the system escape from it. Activity grows and decays

back to the quiescent state along heteroclinic orbits connecting

the two saddle points in the low firing rate regime which

coincides with the slow manifold of the fixed points. Along this

slow manifold, there is a tight temporal balance of excitation

and inhibition in the forms of avalanches of highly variable

sizes. This results in balanced currents at each cell leading to

Poisson firing of individual neurons. At the population level,

the temporal balance of excitation and inhibition cancels out

the average current to the cells while the fluctuation in the

current which is proportional to the average rates leads to a

branching factor close to unity for both excitatory and inhibitory
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FIGURE 2

Nullclines’ arrangements near the BT point in the local

bifurcation diagram. The black dashed line is saddle-separatrix

loop bifurcation and the blue dotted-dashed is saddle-node on

limit cycle (SNLC) bifurcation line.

populations. The mapping to the branching process on a single

EI network explains the emergence of power law exponents in

the spiking neural network which agrees with the mean field

branching process.

2.4. Synaptic plasticity

We will analyze and simulate a network in which neurons

will adapt their connections according to the Spike-timing

dependent plasticity (STDP) paradigm (Gerstner et al., 1996),

which provides a foundation for temporal coding.

In STDP, the weight of a connection is modified depending

on the time interval between pairs of pre- and post-synaptic

spikes. For every pair, the weight of the synapse changes

according to the equations

1w(1t) =







f+(w)K+(1t) if1t ≥ 0

−f−(w)K−(1t) if1t < 0
(7)

where 1t = tpost − tpre is the time difference between the

postsynaptic spike and the presynaptic one. The functions f+
and f− model the dependence of the weight change on the

current value of the synaptic weights. K+ and K−, called STDP

kernels, usually are decaying functions of time which reflects the

fact that closer pre- and post-synaptic spikes generate stronger

weight changes. Usually, we model the kernels by a single

exponential such as K+ = A+e
− |1t|
τs+ and K− = A−e

− |1t|
τs− .

As it is evident from equation (7) when the postsynaptic neuron

fires after the presynaptic neuron, the strength of the connection

increases and it decreases for the opposite temporal order. We

assume the same type of the STDP rule for both inhibitory

and excitatory connections although with different kernels. In

the following, we suppose that the dependence of STDP on the

synaptic weight is negligible and therefore replace the functions

f+ and f− by a constant which is then absorbed into the

kernels. In this case, we have to assume a saturation level for the

maximum strength of the synapses, wE
max and wI

max.

We use the model of Tsodyks andMarkram (1997) for short-

term depression of the excitatory synapses reduces the outgoing

synaptic efficacy of excitatory synapses to an excitatory neuron

in case of a high rate of presynaptic activity. To model the

STP effect, we assume that the effective utility of the excitatory

synapses of neuron j to the other neurons is proportional to

the fraction of the available synaptic resources u. The decrease

of neurotransmitters at the synapses and depression in release

probability due to consecutive uses of neurotransmitters in

previous spikes of the presynaptic neuron are the sources of STP.

We assume by each spike of a presynaptic neuron, u is reduced

by the factor qu and then recovers with the time constant τSTP
which is of order 100ms to a few seconds. Therefore, synaptic

efficacy of the postsynaptic synapse of neuron j evolves as:

duj

dt
= 1

τSTP
(1− uj)− quj

∑

k

δ(t − t
j
k
) (8)

3. Results

3.1. Long term synaptic plasticity by
STDP tunes synaptic weights close to the
balanced state

A typical neuron in the cortex has 103 − 104 synaptic

connections with 80% of them of excitatory type and 20%

of inhibitory type. On the other hand, even in the resting

state, neurons on average have a non-zero firing rate with

an average rate of 1Hz and their spike trains are very noisy

with exponential inter-spike interval distribution indicating that

the spiking of individual neurons is a Poisson point process.

Yet another experimental fact about synaptic strength between

neuron states is that usually, 10 − 20 presynaptic synchronous

spikes suffice to bring a typical neuron to the firing threshold.

If we take τm = 20ms as the membrane potential decay

time constant, then during this time window a typical neuron

receives 20 − 200 excitatory spikes, which are enough for the

neuron to periodically spike at a very high rate. To avoid this,

the inhibitory input in this time window should largely cancel

the excitatory current. Therefore, for the average currents to

maintain the average membrane potential below the threshold

in order to avoid a high firing state and produce high variability

in the spike trains, inhibitory and excitatory currents should
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be balanced. Dynamical balance of excitation and inhibition

ensures a low level of activity, i.e., an asynchronous firing state.

In the following, we present a synaptic plasticity rule which tunes

the average synaptic weights to the balanced state.

We derive an equation for the evolution of the average

and the variance of weights between excitatory and inhibitory

neurons during the plasticity period.

Spike-timing dependent plasticity (Equation 7) changes

synaptic weights on a very slow time scale compared to firing

dynamics of the neurons, therefore, during a time period of

[t, t + 1t] where 1t is long in comparison with the inter-spike

time interval but small enough that the change in the weight

wij of the synapse from neuron j to neuron i is infinitesimal, we

can write:

1wij =
∫ t+1t

t

∫ ∞

0
Sj(s)Si(s+ δ)f+(wij)K+(δ)dδds

+
∫ t+1t

t

∫ ∞

0
Si(s)Sj(s− δ)f−(wij)K−(δ)dδds (9)

where Si(t) and Sj(t) are the spike trains of the presynaptic and

the postsynaptic neurons. Assuming that during this period, the
firing rate of the output neuron is constant on average and there
exist many pre- and post-synaptic spikes, we can write the mean
change in the incoming synaptic weights to the neuron i as,

〈1wij〉j
1T

=
∫ ∞

0
〈Sj(s)Si(s+ δ)〉jK+(δ)dδ−

∫ ∞

0
〈Sj(s)Si(s− δ)〉jK−(δ)dδ

(10)

We want to investigate the evolution of the synaptic

weights in the EI population in an asynchronous irregular state.

Therefore, we assume that in the regime of spontaneous activity,

neurons are firing as a Poisson process. Moreover, to estimate

the cross-correlation of the pre- and the post-synaptic spike

train we argue that the excitatory input to the cell has a positive

correlation with preceding spikes in the target neuron. The

magnitude of this excess correlation depends on the weight of

the synapse and it is restricted to the time window before the

firing of the postsynaptic neurons. With this in mind, we use the

following approximation introduced in van Rossum et al. (2000)

and Câteau and Fukai (2003) for the cross-correlations of spike

trains to account for the causal contributions of presynaptic

spikes to the postsynaptic ones of a synapse with the strength

wi:

〈SEpre(s)SEpost(s+ δ)〉 = ρEpreρpost + ρEprewi(VRexc − Vi)γ
E(δ)

〈SIpre(s)SEpost(s+ δ)〉 = ρIpreρpost − ρIprewi(Vi − VRinh)γ
I(δ)

(11)

Here, Vi is the voltage level of the postsynaptic neuron. As

the second terms in both equations encode the excess correlation

(anticorrelation) of the presynaptic excitatory(inhibitory) input

preceding the firing at the postsynaptic neuron, we set γ I(δ) =
γ E(δ) = 0 for δ < 0. For positive values of δ, this function

which is independent of the rates and the weights of the synapses

encodes the causal effect of the presynaptic spike which arrives δ

units of time before firing of the postsynaptic neuron. Therefore,

it is a decaying function of δ. Moreover, we have assumed the

dependence on the weight of the synapse to be of a linear form,

which is a good approximation in the regime of small synaptic

weights. Inserting the above approximation and labeling the

STDP kernels of Exc. to Exc. (EE) and Exc. to Inh. (IE) synapses

as KE and the STDP kernels of Inh. to Inh. (II) and Inh. to Exc.

(EI) synapses as KI , we can write the evolution of the average

excitatory and inhibitory synaptic strength to the neuron i as

d〈wE
ij〉

dt
= 〈ρEj 〉ρi(K

E
+ − K

E
−)+ 〈ρEj 〉〈wE

ij〉(VRexc − 〈Vi〉)KE
+γ E

d〈wI
ik
〉

dt
= 〈ρIk〉ρi(K

I
+ − K

I
−)− 〈ρIk〉〈w

I
ik〉(〈Vi〉 − VRinh)K

I
+γ I

(12)

Here, bars denote integrals of the kernels on the positive

or negative real lines. In the population of sparsely connected

and sufficiently homogeneous neurons, in terms of the number

of connections of each neuron, and the regime of asynchronous

homogeneous firing, i.e., when all the neurons fire with the same

average rate but with a random phase of firing between them, the

average weights evolve as

dwEE

dt
= ρ2EK̂

E + ρEwEE(VRexc − 〈VE〉)KE
+γ E

dwEI

dt
= ρEρIK̂I − ρIwEI(〈VE〉 − VRinh)K

I
+γ I

dwIE

dt
= ρEρIK̂E + ρEwIE(VRexc − 〈VI〉)KE

+γ E

dwII

dt
= ρ2I K̂

I − ρIwII(〈VI〉 − VRinh)K
I
+γ I (13)

From the above equations, it is straightforward to see when

K̂E
: = K

E
+ − K

E
− < 0 and K̄I

: = K
I
+ − K

I
− > 0, the stationary

solutions satisfy:

cstEI
cstEE

=
K̂IKE

+γ E

K̂EKI
+γ I

=
cstII
cstIE

(14)

We take the proportion of inhibitory synapses to excitatory

synapses to be equal for both excitatory and inhibitory neurons,

i.e.,
kEI

kEE
= kII

kIE
. The above condition brings the slopes of

the excitatory and the inhibitory nullclines close to each other

(Equation 6) leading to the intersection in the semi-linear regime

and proportionality of excitation and inhibition:

ρstI

ρstE

≈ cEE

cEI
(15)

Figure 3 shows that STDP tunes the weights to this balanced

inhibition dominated state in which1W = CEECII−CEICIE ≈
0. As the system settles in this state, synaptic plasticity has a
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FIGURE 3

E�ect of synaptic plasticity on the network with three di�erent initial weight configurations when external excitatory input to both excitatory and

inhibitory populations are of the same magnitude ρExt= 150 Hz. (A–D) Evolution of average synaptic weights by STDP. (E) Change in the balance

condition by STDP. Slopes of the Exc. and the Inh. nullclines approach each other under STDP in all three configurations. (F) The final state of

the average neuron firing rates for these three networks lie below 1Hz. (G) Network activity for di�erent clusters of neurons with di�erent overall

average inward synaptic weights. As STDP leads to an increase in the variance of the weight distribution, clusters with di�erent overall

connectivity strengths and correspondingly di�erent average rates emerge.

strong effect when neurons are in a higher (here the linear)

firing regime. In this state, rates vary co-linearly according to

the above equation. On the other hand, synaptic plasticity rules

for wII and wEI , i.e., the second and fourth lines in equation

(14), lead to a relation for stationary weights in the form of

cII

cEI
=

kIIρ
st
I

kEIρ
st
E

. Comparing these last two equations, we arrive

at kIIc
st
EE = kEIc

st
II . Assuming kII = kEI , the mentioned relation

adjusts the trace of the Jacobian at the fixed point in the linear

section to be near zero. Therefore, the plasticity rule and the

dynamics of the near-linear regime stabilize the system near the

BT point in the long term. When the external input to Exc.

and Inh. populations are finely tuned, STDP alone can lead to

the emergence of avalanches in the system. In the following

section, by introducing a short-term plasticity mechanism we

aim to tune the system at the critical point in the presence of

fluctuating input.

3.2. Short-term plasticity tunes the
network in a wide range of external input

In the following, first, we will discuss the adaptive role of

short-term synaptic plasticity in bringing the network of the EI

population to the avalanche regime. Afterward, we will discuss

how internal or external noise close to the BT point can also

cause the switch between the quiescent (Down) and the low

firing (Up) states. We will discuss the Up-Down state transition

by short-term depression can be achieved either through a

switch between bi-stable states or by bringing the system close to

the BT point by dampening the overall excitation. Here, we just

consider the short-term plasticity of synapses between excitatory

neurons. This type of plasticity might occur in other types of

synapses as well, but we will not discuss this here. Because

there exist numerous input synapses and we have assumed

homogeneous connectivity, each neuron senses a large sample

of the network activity and is connected with an overall average

weight with a small variance to the excitatory neuron pool. With

regard to these assumptions and structural homogeneity and

based on Equation (8), we can write down the dynamic of the

average synaptic weights to the neuron i in the state of the

network with an excitatory population firing rate of magnitude

ρE as:

dwEE

dt
=

w0
EE − wEE(t)

τSTP
− wEE(t)qρE(t) (16)

The rate equations for the EI population are of the form:

dρE

dt
= − 1

τm
(ρE(t)− f (ρE(t), ρI(t),wEE(t)))

dρI

dt
= − 1

τm
(ρI(t)− g(ρE(t), ρI(t))) (17)

Taking the time scale of short term plasticity to be much

larger than the EI-network activity decay time constant, i.e.,

τSTP >> τm, we can rewrite the dynamic in terms of fast,

d/dtf , and slow time, d/dts, evolution. Here, tf = t/τm and
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FIGURE 4

Output excitatory rates as a function of WEE and the corresponding graphs for the average synaptic e�cacy 〈WEE〉St at three values of q (dashed

red curve belongs to the largest and the dashed green curve is for the lowest value). Based on the value of W0
EE , two di�erent scenarios can

occur. In (A), by decreasing q, through a saddle-node bifurcation stable and unstable fixed points appear at low and high values of the rates. In

(B), with higher W0
EE , by decreasing q after the Hopf bifurcation of the low firing rate fixed point, an oscillatory solution for (u, ρout) emerges.

ts = t/τSTP . Defining µ = ts/tf and ρ =
(

ρE

ρI

)

, we arrive at

dρ

dtf
= −(ρ − f (ρ,wEE))

dwEE

dtf
= µ(w0

EE − wEE)− qτmwEEρ
E (18)

This set of equations can have a stable fixed point or an

oscillatory behavior.

The average synaptic efficacy in the stationary state with the

average excitatory rate ρ∗E is:

〈wEE〉St =
w0
EE

1+ τqρ∗E
(19)

In case there exists a fixed point or a stable limit cycle

solution around this point in the (ρE, ρI , 〈WEE〉st) phase space,
the system might settle down at this solution (Figure 4A). The

dynamics of the EI population near this region (with the slow-

fast assumption) can be written as

ρstE = f (kEEρ
st
E , kEIρ

st
I , λ

Ex
E , λExI ,

w0
EE

1+ τq〈ρst〉 )

ρstI = g(kEIρ
st
E , kIIρ

st
I , λ

Ex
E , λExI ) (20)

This mechanism is effective to bring the system close to the

BT point. Short synaptic plasticity is a method of gain control

that can bring the system from a wide range of input and

initial states to the low activity background state. In Figure 5,

we consider a system that is already tuned by STDP to the

balanced state of weights (Equation 14) receiving various rates

of external excitatory input to the excitatory population. In all

cases, the system is initially away from the BT point. Without

STP, the system shows a high firing rate oscillatory activity with

an average rate of around 300Hz (with Nullcline configuration

of Figure 7C). STP brings all of them closer to the avalanche

regime. The average synaptic efficacy 〈u〉 in these cases does not

oscillate significantly.

When the external input rate is tuned very close to the BT

point, where the quiescent fixed point and a low firing weakly

(un)stable point lie close to each other, we see asynchronous

avalanches of highly variable sizes (refer to Figures 6A, 7A).

Without STP, we observe higher rates and less variable quiescent

(Down) state time intervals (Figure 6B). Finite-size fluctuations

kick the system out of the quiescent fixed point while STP plus

fluctuations at the low rate fixed point drive the system back

to the quiescent state. Average membrane potential and single

neuron potentials in this case show a transition between two

levels (refer to Figure 6B).

Figure 6C shows the cumulative avalanche size distribution

function in a log-log plot for avalanches as in Figure 6A. The

slope of the linear regression line is close to 0.5 indicating

that the avalanche size distribution function is a power law

with the exponent τ = −1.5. In the Appendix 1, we

have presented statistics of the avalanches including duration

distribution function, shape collapse, and power law scaling

of mean size vs. mean duration. The branching ratio for

the final state of the system is shown in Figure 8B. For

ρExt = 230Hz, the branching ratio is slightly less than one

which is in agreement with our prediction in the avalanche

regime. Figure 8A shows excitatory and inhibitory stationary

rates of the EI population subject to external rates in the

range 200–500 Hz. STP leads to low firing rate states and

prevents overactivation.
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FIGURE 5

EI population with short term plasticity subjected to three di�erent external excitatory rates ρexcExt = [380, 280, 240]Hz in panels (A1–A3), (B1–B3),

and (C1–C3) respectively. Other parameters of the model are WEI = 1.5, WII = 2, WIE = 0.75, W0
EE = 0.54, ρ inhExt= 150Hz, q = 0.3 and

τSTP = 10 ∗ τsyn. Left plots (A1, B1, and C1), show the excitatory population rates, middle plots (A2, B2 and C2), show the population average

membrane potential and right plots (A3, B3 and C3), show the average excitatory synaptic e�cacy 〈u〉.

FIGURE 6

(A) System with the same parameters values as in Figure 5 except that here ρexcExt = 230Hz. (B) EI population with the same parameters as in (A)

but without STP. (C) Avalanche size distribution in a log-log plot for the network in (A) (blue) and two networks with smaller W0
EE which does not

show scale free avalanches.

As the system resides closer to the low firing regime, the

effective synaptic strength of Exc.-Exc. connections is lowered

by STP (Figure 7B). On the longer time scale STDP transforms

the combination of weights to move the system to the avalanche

regime by aligning the slopes of linearized nullclines and setting

the trace of Jacobian at the fixed point on a linear section close

to zero. Figure 9, shows the cooperation of both STDP and STP

brings the system initially away from the BT point to the critical

avalanche regime. STP prevents high firing as well as being

trapped in the quiescent state, therefore constraining the system

to be in a low firing state which in a longer time scale leads to

tunning in the vicinity of BT point by STDP.
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FIGURE 7

Excitatory (red) and inhibitory (blue) nullclines, i.e., solutions to Equation 4 for excitatory and inhibitory rates, respectively. Dashed lines are the

linearized nullcline approximation with slopes of k
cEI

cEE
(Exc.) and k

cII

cIE
(Inh.) where k is a constant. STDP brings these slopes close to eachother

(Equation 14). (A) Nullclines at the Avalanche regime: The volume of the basin of attraction of the stable quiescent state is small and a weakly

stable or unstable fixed point at the intersection in the semi-linear regime of nullclines is close to the origin. (B) System with only a saddle fixed

point with a limit cycle solution with medium firing rates. (C) System with only a high firing fixed point. (D) System with only a stable quiescent

state fixed point.

FIGURE 8

(A) The final excitatory (red) and inhibitory (blue) output rates for the system in Figures 5, 6A. STP works as a gain control mechanism. (B) The

branching ratio in the network states shown in Figures 5, 6A is defined as the average number of post-synaptic neurons of a single presynaptic

neuron which set to fire by receiving the presynaptic input spike. Higher external rates set more neurons close to the threshold and thus the

branching factor increases. When the inflection point of the steady membrane potential distribution passes the membrane threshold in the

steady-state firing rate regime this increment rate slows down leading to the concavity of the branching factor curve.

Another way that STP can cause a switch between two

distinct firing states is in the EI population which possesses bi-

stability. In this case, a change of u can make each of the bi-

stable nodes unstable while the system resides near them. The

decrease of u in the up-state makes the up-state fixed point

unstable at some value of u(t) (and accordingly wEE). Therefore,

the system will jump to the remaining stable fixed point in a low

or quiescent state. In the very low firing regime (the quiescent

state), u will recover to its asymptotic value, and the average

synaptic weight increases toward w0
EE. If the quiescent state is

unstable when u approaches its maximum value, we observe

a transition to the high state. Moreover, if the volume of the

basin of attraction of the quiescent fixed point is small, external

and internal noise can also induce the transition to the high

rate fixed point and the quiescent fixed point need not become

unstable at w0
EE. For high values of u, the up-state fixed point

is the stable point of the fast system but an unstable point of

the slow one. Therefore, following the slow path up-state loses
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FIGURE 9

(A) STDP and STP tune the weights to the avalanche regime by tuning the inhibitory feedback. (B) Evolution of average weights: WII (black),WEI

(blue),WIE (cyan), WEE (red), We�
EE = uWEE (magnet), and 1W = We�

EEWII −WEIWIE (green). (C) In the avalanche regime, both the

determinant(green) and the trace(magnet) of the Jacobian of the fixed point at the linearized nullclines are nearly zero.

FIGURE 10

EI population with short term plasticity subjected to four di�erent external excitatory rates ρexcExt = [400, 330, 270, 225]Hz in panels (A1–A3),

(B1–B3), (C1–C3), and (D1–D3) respectively. Other network parmeters are WEI = 2, WII = 2, WIE = 0.75, W0
EE = 0.74, ρ inhExt = 150 Hz and STP

parameters are q = 0.4 and τSTP = 10 ∗ τsyn. Left plots (A1–D1): excitatory rates; middle plots (A2–D2): average membrane potential; right plots

(A3–D3): average synaptic e�cacy 〈u〉.

stability and the fast system remains with only a stable low fixed

point. The trajectory of the slow u is oscillatory in this case.

Figure 10 shows both ways that STP can produce synchronous

avalanche behavior in the system. WhenWEE = w0, the system

is close to the constraints on the alignment of the semi-linear

segments of the EI-nullclines which results in the presence of a

high firing state as a unique fixed point of the system. In the high

input rate case, ρExt = 400Hz, corresponding to Figure 10A

and the nullcline diagram of Figure 7C, due to STP, the system

moves from a high state of activity to a limit cycle solution at

lower firing rates. This final state is shown in Figure 10A and

nullcline arrangements in this state are depicted in Figure 7B.

Here, there is an unstable source in the linear branch sector

which is surrounded by a limit cycle. Moreover, oscillations in

〈u〉 have a low amplitude because of the temporal averaging. On

the other hand, the two bottom panels in Figure 10 are related

to the situation of a switch between the high fixed point and

the quiescent node. As shown in nullcline graphs in Figure 7C,
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at high synaptic efficacy the high firing state is the only stable

fixed point, however, a high firing rate leads to a fast decline of

the synaptic efficacy which brings the system to the state with

the nullcline map of Figure 7D which has a stable quiescent

fixed point. The final state activity, in this case, is composed of

avalanches with a high rate of firing in a short time window.

Decreasing the q factor can result in a longer up-state period.

Also, 〈u〉 oscillates between two limits in these cases.

In this particular case, necessary conditions for up to down

transitions are:

kEEW
0
EE > kEIWEI

kEE
w0
EE

1+ τqρH
< kEIWEI (21)

The first condition means that the slope of the excitatory

nullcline is smaller than the inhibitory one, which indicates a

stable high firing fixed point. The second condition states that

at this high firing state the stationary weight is not accessible

before a stability loss. The slope of nullclines increases by the

decrease of effective WEE which causes the high state to lose

stability either through a Hopf or a saddle-node bifurcation.

Finally, the plots in Figure 10B depict the case where STP

brings the system close to the BT point which shows low to

medium size avalanches with higher variability. In summary,

the transition from a quiescent state to a high firing state

can be of two distinct types. One way is that by increasing

WEE, the quiescent fixed point and the unstable saddle move

toward each other and in this way the basin of attraction of

the quiescent fixed point shrinks and noise can initiate the

escape from this fixed point to the higher firing state. This is

the mechanism for alternation between quiescent periods and

avalanche periods, corresponding to nullclines arrangements of

Figures 7A,D with dynamics of Figure 6A. The other possibility

is that a fixed point losses stability through a Hopf bifurcation

either before or after the emergence of a saddle-node in the

middle branch.

3.3. Continuum stochastic model of
neuronal dynamics near BT point

We have shown that a single EI population in both regimes

of sparse connectivity and all-to-all connectivity (Ehsani and

Jost, 2022) exhibits scale-free avalanches near the critical point

with Poisson firing of individual neurons. Next, we want to

investigate if avalanche dynamics in weakly interconnected EI

population persists. Our goal is to introduce a phenomenological

stochastic field equation for the dynamics of population rates in

the vicinity of the BT point.

We start with the model of Wilson and Cowan for the

dynamics of the spatio-temporal mean fields of the excitatory

and the inhibitory population rates, E(x, t) and I(x, t), in a 2D

model of the cortex. Defining V(x, t) =
(

E(x, t)

I(x.t)

)

, D as the

diffusion matrix and f :R2 → R2 as the gain function, one

can write down the reaction-diffusion rates dynamics in the

following form:

τ
∂V(x, t)

∂t
= D∇2V(x, t)+ f (V(x, t)) (22)

The ODE part of this equation is the dynamic of a single EI

population. The corresponding low firing fixed point (E0, I0) is

stable in a specific parameter regime. It usually loses stability

either via a saddle-node or a Hopf bifurcation which leads

to either a region of bi-stability of low and high firing states

or the emergence of oscillations. However, still far away from

the bifurcation point since the diffusion matrix is not a scalar

multiple of the identity, Turing instabilities can occur in

the system.

Besides Turing instabilities, it can also happen that the

fixed point itself loses its stability at k = 0 through a

Hopf bifurcation, where the real part of the eigenvalues of L

becomes zero:

∂EfE + ∂I fI = 0

det(L) = ∂EfE∂I fI − ∂I fE∂EfI > 0 (23)

Furthermore, exactly at the BT point, we would also have

det(L) = 0. Figure 11 shows the activity of 20 interconnected

EI-populations each operating close to the BT point. Overall

activity in this system is of synchronous avalanches type.

Up-down state transitions also become synchronized. We can

model weakly interconnected EI populations in the avalanche

regime which shows oscillation of frequency ωi as pulse-

coupled oscillators and therefore investigate conditions on

synchronization and traveling wave solutions. This analysis

is out of the scope of the current work. Another approach

consists in supplementing the macroscopic field equation

with an appropriate noise term to derive the mesoscopic

equation. As can be seen from Figure 11, the overall network

activity is of avalanche type. This provides again evidence

that avalanches are scale-free and occur in different temporal

and spatial scales. However, our neural field model still lacks

the internal finite-size fluctuation effects, inhomogeneities,

and cross-correlation between individual neurons, and also

inter-populations correlations.

To investigate the fluctuations around mean field rate

dynamics, we study a Markov model inspired by the fact that

close to the BT point, the firing of individual neurons is a Poisson

point process. We consider a homogeneous network of size N

in which temporal and spatial variances in the firing rates of

neurons are minimal. In this network, fluctuations in the finite

system firing rates in the steady-state will be proportional to

O(
1√
N
). To model the finite-size stochastic effects, we need
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FIGURE 11

Simulation result of 20 interconnected EI populations each of size NE = 10, 000 arranged on a ring. Average synaptic weights between two

di�erent EI subnetworks decay with the phase di�erence of them. Parameters of synaptic weights in each EI population are WEE = 0.6,

WEI = 2,WII = 2,WIE = 0.75, ρEExt = 230Hz, and ρ IExt = 150Hz. (A) The average firing rate of the whole network. (B) Raster plot of the

sub-population of 50 neurons in one single EI subnetwork. Although neurons fire at avalanche times, they do not fire in all of them, which leads

to high variability in their interspike interval times. (C) The membrane potential of a single neuron is in a constant transition between a state

close to the threshold and a state close to the resting potential. (D) The average membrane potential of an EI-population (red for Exc. and blue

for Inh.). (E,F) The activity of two distinct EI subpopulations shows high variability in the sizes of avalanches in both of them.

to write down dynamics of micro-state evolution that match

the mean-field upon coarse-graining. As we have seen, the

operating region of the EI population is around a low firing state

where neurons fire with high variability of inter-spike intervals

indicating that we can model their spiking as a Poisson process.

In this regime of activity, we can write down the microscopic

evolution of a model neuron with two active and inactive states.

The transition rate α between the active and the inactive state

should model the vanishing of the postsynaptic potentiation,

and the rate of inactive to active transition depends on the

input and is, therefore, denoted by f (i). We want to model

the system in the statistical homogenous state, in which the

probability that a neuron fires depends only on the number of

active neurons and therefore is the same for every neuron in

the population.

After using system size expansion method (refer to

Appendix 2), we arrive at the following equations for

variance of population rate at the stationary point of the

macroscopic equation:







A11 0 A12

0 A22 A21

A21 A12 A11 + A22













Var(ǫ)st

Var(i)st

Cov(ǫ, i)st






= −α

2







ρstE
ρstI
0






(24)

which has the solution:

Var(ǫ)st ≈ c((A11A22 − A21A12 + A2
22)ρE + A2

12ρI)

Var(i)st ≈ c((A11A22 − A21A12 + A2
11)ρI + A2

21ρE)

Cov(ǫ, i)st ≈ −c(A11A12ρI + A21A22ρE) (25)

with c = −α
2(A11 + A22)(A11A22 − A21A12)

. The average

population rate and the fluctuation around the macroscopic

state are:

〈 E

NE
〉 = ρE Var(

E

NE
) = Var(ǫ)

NE

〈 I

NI
〉 = ρI Var(

I

NI
) = Var(i)

NI
(26)

From equations (25) and (26), it can be seen that close to

the bifurcation of the macroscopic equation, i.e., the BT point,

where both trace and determinant of the Jacobian are close to

zero, fluctuation magnitudes increase. The important point is

that the population variance is linear in the rates.

Moreover, close to the BT region, the fixed point on the semi-

linear regime has an eigenvalue close to zero. Dynamics along

the slow manifold which provides the detailed temporal balance

of inhibition and excitation enables us to write the instantaneous

inhibition rate as the linear function of the excitatory rate.

Therefore, we can write down the rate dynamics of the excitatory
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population in terms of a stochastic field equation when both

inhibitory feedback and fluctuations are local. From equation

(15), we know that near the BT point, there is a linear relation

between rates, i.e., I ≈ cEE

cEI
E. Therefore, the average current to

the excitatory population close to the BT point (Equation 6) can

be written as γ = cEEE − cEII ≈ 0. The second derivative in

the expansion of the gain function for the excitatory population

from equation (22) in the region of low activity is

1

2

∂2f

∂E2
E2 + ∂2f

∂EI
EI + 1

2

∂2f

∂I2
I2 (27)

where we can use the following approximations for the gain

function derivatives:

∂2f

∂I2
∝ W2

EI ,
∂2f

∂E2
∝ W2

EE,
∂f

∂I∂E
∝ −WEEWEI (28)

By using the linear relation of the inhibitory and excitatory

rates near the BT as the result of the projection of the dynamic

to the slow manifold, we can replace inhibitory local field

strength by a term linear in the local excitatory field. Besides,

fluctuations in the average population activity, Equation (26),

linearly depend on the rate. Therefore, we can write down the

stochastic field equation for the excitatory rate in the region of

small γ :

∂E(x, t)

∂t
= γE(x, t)+ D1E(x, t)− uE2(x, t)+ ψ(x, t)

〈ψ(x, t)ψ(x′, t′)〉 = 2

√

σ 2

N
E(x, t)δ(x− x′)δ(t − t′) (29)

Here, u < 0 is the coefficient related to synaptic weights

that can be explicitly derived by assuming a certain form

of the gain function and proportionality of the rates. This

stochastic partial differential equation after appropriate rescaling

E(x, t) = σ

uτ
S(x, t) agrees with the Langevin description of

directed percolation which is of the following form with new

transformed coefficients:

∂S(x, t)

∂t
= (γ ′ + D′1)S(x, t)− u′S2(x, t)+ ψ(x, t)

〈ψ(x, t)ψ(x′, t′)〉 = 2u′S(x, t)δ(x− x′)δ(t − t′) (30)

At γ ′ = 0, the above system shows an absorbing state

phase transition. Thus, from any active state, the system

relaxes by avalanches with a power-law size distribution to an

inactive state.

In an isolated EI population, external drive to the

inhibitory and the excitatory population should be present

to counterbalance the dissipation by the leaking currents and

thereby set the average membrane potential in these neurons

at a state above the resting threshold. External excitatory input

to the excitatory population is slightly higher than the external

FIGURE 12

Solid curves are the output rates for three di�erent external

input strengths vs. WEE: Blue (400Hz), red (310Hz), and black

(220Hz). Dashed curves show average stationary synaptic

weight, 〈WEE〉, in the network with STP with di�erent maximum

synaptic e�cacies: W0
EE =1.3 (red), 0.9 (blue), 0.7 (green), and

0.65 (magenta). Intersections of the dashed and the solid curves

are the fixed points of the EI network with STP for the

corresponding control parameters. These fixed points are

located in the low firing rate regime close to the

avalanche region.

drive to the inhibitory population which leads to a slightly

higher average membrane potential in the excitatory population.

Furthermore, we can assume that the external spike train to

each neuron is Poisson as well. The external drive by itself

would not lead to significant firing in the individual neurons

but the strengths of the internal connections between them are

tuned in a way that bursts of activity occur in the excitatory

population which is then followed by the inhibitory ones.

The internal feedback inhibition is strong enough to kill the

excitatory burst. In a slightly inhibition-dominated regime, we

have sharp synchronous responses to the external input in a

short time window. On the other hand, the network has a

safe margin from an overly active state. In the absence of the

input distinguished from random external noise, the system

shows scale-free avalanches because of the maintenance of the

inhibition-excitation balance. However, the external drive must

compensate for the dissipation of the system to stay at or

near the critical point. Without mechanisms like short-term

plasticity, the external drive has to be fine-tuned for the system

to show criticality. However, short-term plasticity in a network

in which synaptic weights are already near a slightly inhibition

dominated regime broadens the range of the external drive

strength which leads to critical avalanches. Figure 12 shows final

output rates for three different values of the external excitatory

rates and W0
EE with STP. In all these cases, the operating

point of the system is close to the bifurcation point of the

quiescent state.

We can extend the short term synaptic depression of

equation (8) to a continuum field equation by defining a field

of excitatory synaptic efficacy �(x, t) ∝ 〈WEE〉(x, t) with local
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FIGURE 13

Intersection of curves given by equations (32) and (33). Setting

�0 to a value close to α by STDP and su�cient amount of

synaptic depression leads to a stationary value of �st very close

to the critical value. The blue curve is associated with a higher

value of q.

dynamics of equation (16):

τm
∂E(x, t)

∂t
= (−α +�(x, t))E(x, t)+ D1E(x, t)

− uE2(x, t)+ ψ(x, t)
∂�(x, t)

dt
= 1

τSTP
(�0 −�)− q�E(x, t)

〈ψ(x, t)ψ(x′, t′)〉 = 2

√

σ 2

N
E(x, t)δ(x− x′)δ(t − t′) (31)

Here, α represents both the decay of activity by leaky

currents of the cells and the inhibition feedback which varies

linearly with the excitatory rate. The dynamic excitatory synaptic

strength brings the coefficient of the linear term to a value near

zero (refer to Figure 13). This set of equations has a stationary

synaptic efficacy solution of the value

�st =
�0

1+ qτSTPEst
(32)

On the other hand, in the active phase, the stationary

homogeneous rate is :

Est =
−α +�st

u
(33)

Assuming |u| is a very small quantity and Est is also small

in the low firing rate regime then −α + �st ≈ 0 and Est =
1

qτSTP
(
�0

α
− 1).

Long-term synaptic plasticity tunes�0 so that the coefficient

of the linear term is close to zero and a moderate level of

short-term depression suffices to bring the system to the critical

point. Altogether, equation (31) is the description of an EI

interconnected spiking neuron network tuned to the critical

point of balancing inhibition and excitation both by long-

term synaptic plasticity and short-term synaptic depression. The

system wanders around the phase transition point and shows

avalanche dynamics with scale-free size and time distribution,

the proportionality of inhibition and excitation, up and down

state transitions of the membrane potential and population

activity rates, and oscillations of order of the 10Hz resembling

ubiquitous alpha-band oscillations.

4. Discussion

In this study, we have proposed a self-organizing model for

the cortical dynamics which tunes the system to the regime of

low firing avalanche dynamics corresponding to the ongoing

intrinsic activity in the cortex. We showed that long-term

synaptic plasticity by STDP tunes the synaptic weights to achieve

the internal balance of inhibition and excitation. This effect does

not depend on the exact shape of STDP kernels, however, the

stability of results depends on the sign of the integral of the

kernels. On the other hand, short-term depression of excitatory

synapses can tune the system in response to the wide range of

the strength of the external drive. We have not considered short-

term plasticity for other types of synapses. However, we believe

that under appropriate conditions on their respective strengths,

we can observe the same qualitative regulation effects. Short-

term homeostatic regulations acting at the time scale of neuronal

dynamics are needed to self-tune the open non-conservative

system subjected to varied external input at the critical point. On

the other hand, long-term plasticity is responsible for bringing

the system close to the bifurcation point. The interplay of these

two types of synaptic plasticity is responsible for self-tuning to

the critical state.

At the critical state, our system shows power law distribution

functions for avalanches size and duration which matches the

branching process and mean-field directed percolation process.

In addition, scaling relation among the exponents and avalanche

shape collapse is another proof that we are at the edge of a

second-order phase transition. We have shown in Ehsani and

Jost (2022) that close to the BT point, the branching factor

is close to one because of the tight balance of inhibition and

excitation and Poisson firing of neurons in the avalanche regime.

Feedback inhibition is proportional to the excitatory rate

on the slow manifold i.e., I(t) = αE(t) where α ∝ WEE

WEI
. By

using this linear relation between rates, we rewrite the Wilson-

Cowan field equation in the regime of low firing rate where the

system is locally close to the BT point. Moreover, we showed that

internal noise in local EI populations in this state is of Poisson

type. Therefore, by knowing the noise variance and the fact that

there is a tight temporal balance of inhibition and excitation,

we showed that the excitatory field dynamics formulated as a

stochastic field equation in the low firing rate regime matches

the Langevin description of directed percolation at the absorbing

state phase transition. However, there is not such an absolute

absorbing state in our system. External drive to the neurons,

which is also stochastic, would lead to the background level
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of firing and fluctuations in the network. In an open system,

the external load has to be fine-tuned to compensate for the

dissipation to remain at the critical point. Short-term depression

of excitatory synapses allows this tuning for a wider range of

external drives. Tuning the system at the critical point can

be achieved by coupling fast population dynamics with slow

adaptive gain and synaptic weight dynamics, which make the

system wander around the phase transition point. Therefore,

by introducing short-term and long-term synaptic plasticity, we

have proposed a self-organized critical stochastic neural field

model (Equation 31).

We have shown that in a weakly interconnected neuronal

mass model the avalanche dynamics persist when local

subpopulations are close to the BT critical point. However, a

comprehensive study of the coupled field equation dynamics

in a 2D or 3D network requires further study. Types of

solution and dynamic repertoire of this coupled stochastic

field equations have not been done in this study. Neural field

models, without noise, can show vast dynamical solutions,

including wave propagation in terms of a front solution in

a bistable network (refer to Amari, 1977; Ermentrout, 1998),

propagating pulses in an excitable medium (refer to Pinto

and Ermentrout, 2001b), and spatially localized oscillations,

spiral waves in the oscillatory regime of a local EI population

(Troy and Shusterman, 2007), localized bump solutions (Pinto

and Ermentrout, 2001a) and spatially periodic patterns called

Turing patterns (Ermentrout and Cowan, 1979 also refer to

Bressloff, 2011, for a comprehensive review). Analysis of the

full stochastic version of neuronal field formulated in terms of

coupled or non-coupled SPDE is a rather new area of study.

The stochastic version of the continuum neural field for the

excitatory population without STP has been discussed in Buice

and Cowan (2007) and Bressloff (2019). Buice and Cowan

used a coherent path formalism and the Doi-Peliti functional

representation to translate the microscopic master equation to a

path integral representation for activity fields (Buice and Cowan,

2007). One advantage of their method is that the study of

scale invariance at criticality in the functional representation is

possible. They proposed that the stochastic neural field equation

for the excitatory system at a critical point can be written in

the form of Langevin’s description of directed percolation. Using

coherent path formalism to investigate the critical behavior of

the coupled system of Equation (31) can be illuminative for

understanding the critical behavior of the system. Moreover, we

have written down the dynamics of the excitatory field assuming

a fast linear inhibitory feedback. Modeling the whole dynamic

as a directed percolation of two dynamical variables is another

possibility that we have not explored.
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