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This paper discusses a machine learning approach for detecting SSVEP at both ears

with minimal channels. SSVEP is a robust EEG signal suitable for many BCI applications.

It is strong at the visual cortex around the occipital area, but the SNR gets worse when

detected from other areas of the head. To make use of SSVEP measured around the

ears following the ear-EEG concept, especially for practical binaural implementation,

we propose a CNN structure coupled with regressed softmax outputs to improve

accuracy. Evaluating on a public dataset, we studied classification performance for

both subject-dependent and subject-independent trainings. It was found that with

the proposed structure using a group training approach, a 69.21% accuracy was

achievable. An ITR of 6.42 bit/min given 63.49 % accuracy was recorded while only

monitoring data from T7 and T8. This represents a 12.47% improvement from a single

ear implementation and illustrates potential of the approach to enhance performance for

practical implementation of wearable EEG.
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INTRODUCTION

Brain–computer interfaces (BCIs) provide direct communication between the brain and external
devices without relying on peripheral nerves and muscle tissue (Wolpaw et al., 2000). This can be
useful in a number of scenarios, for example, in cases when users have ALS or locked-in syndrome.
To enable this, brain imaging techniques are used to analyze brain activities before translating them
into device’s commands. Among existing techniques are functional magnetic resonance imaging
(fMRI) (Suk et al., 2016), functional near-infrared spectroscopy (fNIRS) (Naseer and Hong, 2015),
magnetoencephalography (MEG) (Mellinger et al., 2007), and electroencephalography (EEG).
Due to its relatively low cost, portability, and high temporal resolution, EEG is one of the most
widely used non-invasive methods in BCI. To generate the output commands of the EEG-based
BCI, several types of physiological paradigms have been considered such as motor imagery (MI)
(Wolpaw et al., 1991), P300 (Farwell and Donchin, 1988), steady-state visual evoked potential
(SSVEP) (Cheng et al., 2002), and steady-state auditory evoked potential SSAEP (Van Dun et al.,
2007; Kim et al., 2012). SSVEP, in particular, has gained a lot of attention for its characteristics of
less training, high classification accuracy, and high information transfer rate (ITR) (Wolpaw et al.,
2002).
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SSVEPs are periodic responses elicited by the repetitive fast
presentation of visual stimuli. They are mainly generated in
the occipital area, operate typically at frequencies between ∼1
and 100Hz, and can be distinguished by their characteristic
composition of harmonic frequencies (Herrmann, 2001).
Different target identification methods have been considered for
detecting SSVEPs in BCIs (Wang et al., 2008; Vialatte et al., 2009;
Gao et al., 2014). Originally, power spectrum density analysis
(PSDA)-based methods such as fast Fourier transform (FFT)
were widely used for frequency detection with single-channel
EEGs (Cheng et al., 2002; Wang et al., 2006). More recently,
spatial filtering methods including canonical correlation
analysis (CCA) (Lin et al., 2007) and common spatial pattern
(CSP) (Parini et al., 2009) have been applied to achieve more
efficient target identification results. The CCA-based method
was first developed for the frequency detection of SSVEPs
in 2007 (Lin et al., 2007). It performs canonical correlation
analysis between multi-channel EEG signals and predefined
sinusoidal reference signals at stimulation frequencies and
identifies the target frequency based on the canonical correlation
values. The CCA method, in particular, has been widely used
(Bin et al., 2009; Wang et al., 2010, 2011; Chen et al., 2014a)
because of its high efficiency, ease of implementation, and
the fact that it does not require calibration. To improve the
performance, further studies of VEP-based BCIs have suggested
for incorporating individual calibration data in CCA-based
detection to reduce misclassification caused by the spontaneous
EEG signals (Bin et al., 2011; Zhang et al., 2011, 2013, 2014;
Chen et al., 2014b; Nakanishi et al., 2014; Wang et al., 2014),
as the phase and amplitude of the fundamental and harmonic
components from each subject are different. The most widely
used methods for these enhanced CCA include the following:
combination method-CCA (Nakanishi et al., 2015), individual
template CCA (IT-CCA) (Wang et al., 2014), and more
recently proposed task-related components analysis (TRCA)
(Nakanishi et al., 2018). Most recent work on SSVEP includes
advanced techniques such as filter bank-driven multivariate
synchronization algorithm (Qin et al., 2021) and multivariate
variational mode decomposition-informed canonical correlation
analysis (Chang et al., 2022).

Machine learning is a branch of artificial intelligence (AI).
Without being explicitly programmed, the focuses are on the
use of data and algorithms for the computer to imitate the way
that humans learn and gradually improve its accuracy. Machine
learning has been used to solve many real-world problems,
the emerging of deep learning which is a class of machine
learning algorithms that uses multiple layers to progressively
extract higher-level features from the raw input, in particular,
has recently led to an explosive grown in the field. Convolutional
neural networks, or CNNs, are artificial neural networks that can
learn local patterns in data by using convolutions as their key
component. CNNs vary in the number of convolutional layers,
ranging from shallow architectures with just one convolutional
layer such as in a successful speech recognition (Abdel-Hamid
et al., 2014) to deep CNN (DCNN) with multiple consecutive
convolutional layers (Krizhevsky et al., 2012). As CNNs do not
strictly require feature extraction before processing compared to

other machine learning techniques such as linear discriminant
analysis (LDA), support vector machine (SVM), or k-nearest
neighbor (KNN), they can combine automatic feature extraction
and classification to form an end-to-end decoding method which
is very attractive for practical considerations. CNNs have indeed
been successfully applied in fields such as computer vision and
speech recognition medical image analysis. In general, a good
review on how deep learning has been studied and applied in
non-invasive brain signals, and its potential applications can be
found at Zhang et al. (2021).

In terms of CNN and SSVEP, Podmore et al. proposed a deep
convolutional neural networks (DCNNs) architecture to classify
an open-source SSVEP dataset which included 40 stimuli for
speller task with 87% offline accuracy using the period of data
observation (window length) of 6 s (Podmore et al., 2019). In
Kwak et al. (2017), a 2-D map (channels x frequencies) of SSVEP
data was used as the input to classify up to five SSVEP frequencies
using a multi-channel EEG headset. To control an exoskeleton
in an ambulatory environment, they achieved an accuracy above
94%, using a data length of 2s, and surpassed CCA performances.
In Nguyen et al. (2016), a one-dimensional DCNN was applied
to create a virtual keyboard using a single-channel SSVEP-based
BCI. An accuracy above 97% was achieved with a 2s data length
and close to 70% with a 0.5s window. Their CNN results also
surpassed CCA.

One of the major challenges for BCI to be widely adopted
has been to improve its practicality. Scalp-based EEG, especially
the conventional wet-electrode versions, requires the use of
conductive gel to enable a connection between the electrodes
and the scalp. As the recording quality degrades considerably
once the gel dries out, this makes them unsuitable for 24-
h use. On top of the preparation time necessary before for
each wearing, the use of electrode gel also leaves residue
for which users need to wash their hair at the end of each
recording session, adding further inconveniences. Dry electrodes
remove some of the inconveniences but at the expense of new
issues such as increased susceptibility to artifacts (Kam et al.,
2019; Marini et al., 2019). A number of research teams have
since turned their attention to the concept of ear-EEG. Ear-
EEGs are EEG devices that acquire signals around ears or in
the external ear canal. Not only these devices can potentially
bring benefits in terms of convenience, unobtrusiveness, and
mobility, but as people are already accustomed to hearables
devices such as the wireless headphones or hearing aids
in everyday life, this could potentially lead to a much
wider acceptance.

The first ear-EEG, which was an in-ear device with two-
channel electrode, was introduced by Looney (Looney et al.,
2011). Improvements have since been reported (Looney et al.,
2012; Kidmose et al., 2013; Kappel et al., 2014; Mikkelsen et al.,
2015). In general, a good match was observed between the
ear-EEG and on-scalp responses even though the ear-EEG had
lower absolute amplitudes than on-scalp EEG. It was also shown
that the degree of correlation between the on-scalp and ear-
EEG electrodes was higher, especially for on-scalp electrodes
placed near the temporal region (T7, T8) (Looney et al., 2012).
Alternatively, another major approach in ear-EEG has been the
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use of multi-channel EEG placed around the ear, for which
many researches (Bleichner et al., 2016; Mirkovic et al., 2016;
Bleichner and Debener, 2017) have been based on the cEEGrid
devices proposed in Debener et al. (2015). Potentially, there are
a number of applications, clinical and nonclinical, for which
a small number of electrodes are sufficient, and for which a
fully wearable recording platform is a prerequisite, including
a hearing aid (Mirkovic et al., 2016; Christensen et al., 2018),
sleep monitoring (Nguyen et al., 2016; Goverdovsky et al.,
2017), biometric identification (Nakamura et al., 2018), epilepsy
detection system (Gu et al., 2017), and fatigue estimation (Looney
et al., 2014a).

Combining an SSVEP paradigm with the ear-EEG has been
the theme explored in recent researches (Looney et al., 2012,
2014a; Kidmose et al., 2013; Lee et al., 2014; Goverdovsky et al.,
2016; Kappel and Kidmose, 2017; Kappel et al., 2019). Wang
et al. were the first to conduct offline and online experiments
to evaluate the feasibility of decoding SSVEP from the occipital
brain region compared to non-hair-bearing areas including the
face, behind ears, and neck areas (Wang et al., 2012; Wang Y.
T. et al., 2017). The results showed best SNRs of SSVEP were
obtained from the occipital areas as expected, with behind-the-
ear better than neck and face areas illustrating the potential use
of ear-EEG for SSVEP-based BCI. The ear-EEG has indeed been
proven to be capable of collecting evoked brain activities such
as SSVEP. However, a long distance between the visual cortex
and the ear makes the signal-to-noise ratio (SNR) of SSVEPs
acquired by earpieces relatively low. For example, Kidmose
et al. (2013) proposed an earplug-type ear-EEG electrode. With
three classes (10, 15, and 20Hz) of SSVEP, SNR was measured
in comparison with scalp-EEG. On average, SSVEP qualities
of ear-EEG at the first harmonic frequencies were found to
decrease from 30 to 10 dB. Looney et al. (2014b) also found
the SSVEP performance to decrease by ∼50% (i.e., capacity
ratios for scalp- and ear-EEG based on the estimated SNR
and independent of the stimulus presentation) using ear-EEG
with two LED visual stimuli (i.e., 15 and 20Hz). The level of
performance reduction was agreeable with Wang’s report (Wang
et al., 2012).

It is interesting to note that all ear-EEG studies except
multi-channel cEEGrid-based ones have looked at single ear
measurement. As people are accustomed to two-ear wearing
such as earphones, there is a gap for design and performance
evaluation of such binaural systems, especially with minimal
or indeed a single channel per ear for practical usage. In
this paper, we explore the viability of the concept using
public dataset, with a new CNN structure with modified
regressed outputs proposed as a way to maximize SSVEP
classification performance. The paper is organized as follows.
In Methods, the dataset, the experimental setup, the proposed
CNN structure, and signal processing strategies for binaural
processing are described. Results considering both subject-
dependent and subject-independent training methods are
presented in Results, with discussion including limitations
and future works in Discussion. The conclusion is given
in Conclusion.

METHODS

Dataset and Data Processing
The public dataset used (Wang Y. et al., 2017) contains
EEG records obtained from 35 subjects, eight of which were
experienced BCI users while 27 subjects did not have any prior
experience in using BCIs. It was originally used to evaluate a
virtual keyboard consisting of a computer display showing 40
visual flickers corresponding to different letters. The dataset has
since been used in other literature such as Bassi et al. (2021).
The data were recorded with a 64-channel EEG in 40 different
stimulation frequencies, ranging from 8 to 15.8Hz, with an
interval of 0.2Hz. Each subject observed the stimuli in six blocks
of 40 trials, one for each frequency. The data were down sampling
to 250Hz. For each label (trial), the data length was 6 s, each
with a 5-s valid data during the period from 2 to 6 s (1250 time
samples). In this work, the data were band-passed with passband
frequency of 5–125Hz which were then transformed using a
250-point fast Fourier transform (FFT). Each of the 125 points
representing fs/2 was then used to form each image row. The
data were reshaped into spectrograms, each with the size of 125
× 5 for a 5s window length. An example of the spectrogram
generated is shown in Figure 1. For the window lengths of 4, 3,
2, 1s considered in this work, the images created had the sizes of
125× 4, 125× 3, 125× 2, and 125× 1, respectively.

Proposed CNN Structure
The deep-learning structure investigated (Figure 2) had the
input layer with 2d convolution layer with (5,5) feature detector
(Kernel) and a ReLu activation. The input layer was followed
by a Max Pooling layer. A Dropout was added to the network
as a regularization technique to prevent overfitting. Another 2d
convolution layer with (3, 3) kernel, followed by another Max
Pooling and Dropout layers, was next. It was then flattened to
form 256 neurons fully connected layer. After another Dropout,

the network was flattered to form the output layer with three

neurons, each corresponded to a predicted class. A softmax

function was applied to each of the three nodes in the output
layer. The general form of a softmax function is given by the

following equation:

fj (z) =
ezj

∑K
k=1 e

zk
, j = 1, ......,K (1)

Z is the input vector to the softmax function, made up of K

elements (i.e., the number of classes). zj is the jth element of
Z. The function takes a real-valued input vector z and maps it

to a vector of real values in the range (0, 1). Accordingly, in

normal operation, an input signal can be predicted to belong to

a class associated with the output whose softmax value is highest,

compared to all outputs of the output layer.

Figure 3 shows the learned 3 × 3 and 5 × 5 filters. The

eight 5 × 5 filters corresponding to the first convolutional layer

are shown in Figure 3A, while the sixteen 3 × 3 filters from
the second convolutional layer are shown in Figure 3B. The
dark squares indicate small or inhibitory weights and the light
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FIGURE 1 | Example of a 125 × 5 spectrogram created from EEG.

FIGURE 2 | Proposed system, with CNN structure.

squares represent large or excitatory weights. Figure 4 shows
example feature maps, which internally capture the result of
applying the filters at the second convolutional layer. Intuitively,
it can be seen that the system looks for different kinds of
features, for example, in feature maps 6–8 the focus seems to
be more on the strong signals centered around the stimulus
frequency, whereas in feature map 14 the focus seems to be on the
wideband noise.

For training parameters, the learning rate was set at 0.001, with
the batch size 64 and the dropout rate of 0.5. The optimization
algorithm was Adam, with the cross-entropy function used as the

loss function (Roy et al., 2019). The stopping criteria for training
CNN were number of iterations or epochs above 100.

T7/T8 Regression
In this work, to support the binaural approach, the CNN
structure was further modified after the output layer. For each
softmax node, during validation session, linear regression was
performed. The regression model used softmax value obtained
when EEG input was from Oz as the target, and softmax
reading from classification results when using T7 and T8 EEGs
were used as inputs. During testing stage, the softmax outputs
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FIGURE 3 | Filters: (A) 5 × 5 filters and (B) 3 × 3 filters.

given EEG inputs from T7 and T8 were used as inputs in
the regression model to generate “re-estimated softmaxs” (i.e.,
softmaxsmodeled after those givenOz input). These re-estimated
softmaxs were then used to predict the classes in a normal way,
that is, for each sample, themaximum softmax predicted the class
that was associated with that softmax node.

The CNN was implemented in Keras (https://keras.io/) and
tensorflow framework (https://www.tensorflow.org/). Data were
prepared using MATLAB (Mathswork Inc.).

Experiments (Evaluation)
The proposed structure was used to train the data from the
dataset to train to classify three target frequencies that were
8, 11, and 14Hz, with window length varying from 1 to 5s.
With the 3Hz gaps, the frequencies were picked to minimize the
chance of misclassification of adjacent stimulating frequencies
due to noises. Performance was evaluated in terms of the
accuracy and ITR (in bit/min). ITR (Nakanishi et al., 2015)
stands for information transfer rate and is governed by the
following equation:

ITR =

(

log2 N + P log2 P + (1− P) log2

[

1− P

N − 1

])

×

(

60

T

)

(2)
where P is the classification accuracy, N is the number of stimuli,
and T is the stimulation time including the shifting period. Here,
the gaze shifting time was set at 0.55s according to simulated

online performance as in the previous studies (Yin et al., 2013;
Xu et al., 2014).

Two training schemes were considered.

a) Subject-dependent training
Data were from nine channels (Oz, P7, P8, PO7, PO8,

TP7, TP8, T7, and T8), with the EEGs of all 35 subjects
used. The Oz channel was picked as SSVEP was known to be
observable at the visual cortex (Herrmann, 2001; Han et al.,
2018). This study looked for an ear-EEG application, so T7
and T8, the channels closest to the ears available, were also
included. And since ERP was relatively localized with respect
to brain areas, it was anticipated that by picking P7, P8,
PO7, PO8, TP7, and TP8 that were adjacent channels along
the line of T7-O-T8, these channels would retain similar

important signal characteristics while providing appropriate
additional amount of uncertainty (noise) for the classifier to
generalize better. Each sample data, that is, the spectrogram,
were constructed from EEG data recorded at one of the
nine channels. They were randomly put into a sequence.
About 90% of data was for training, and the remaining 10%
of T7, T8, and Oz was used for testing with 5-fold cross-

validation. By using only information from either Oz, T7, or

T8 electrodes, we thus simulated a single-channel BCI.
b) Subject-independent training

Data from the same nine channels were randomly divided

into five groups, each with seven user data. Each group was
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FIGURE 4 | Example feature maps.

tested against model trained using data from the other four
groups. Results were averaged across the five test groups.

RESULTS

Figure 5 shows results of subject-dependent training. It can
be seen that the accuracy was best achieved by classifying
signal measured at Oz, at 88.89% given the window length of
5s. The accuracy decreased to 73.65% at 1s window length.
For 2s, considered a benchmark length for SSVEP accuracy
measurement in many works, measuring SSVEP at Oz with
the proposed CNN achieved around 79.05 %. The performance
dropped considerably with classifying using either T7 or T8 data.
The best accuracy was around 64.76 % at 5s window length (T7)
and dropping to as low as 51.11 % with 1s window (T8). But with
the regression scheme proposed, we can see that the accuracies
were up for results corresponded to all the window lengths, with
69.21 % accuracy given 5s window. At 2s window, the regressed
accuracy was 63.49%. The increased in accuracy with respect to
the average value of T7 and T8 (avT7T8) was found to be up to
12.47%. Compared to avT7T8, the improvements were found to
be significant for 2s, 3s, and 4s window lengths (P-values 0.0151,

0.0179, and 0.0160, respectively). In terms of ITR, the results
given different window lengths were as in Figure 6. It can be
seen that Oz achieved the rate of 18.95 bit/min with 1s window,
whereas regressed binaural best was 6.42 bit/min at 2s window
compared to 4.70 bit/min from T7/T8 average.

For subject-independent training, Figures 7, 8 show accuracy

and ITR results, respectively. It is clear that the performance
became considerably worse than subject-dependent training in

all measures. Measuring at Oz, the accuracy dropped ∼10 to

79.03% at 5s window and 71.11% at 2s, whereas T7 or T8
results only achieved around 40 % regardless of the window
length. The binaural regression applied also did not show
improvement in this case. One possible explanation could be
that subject-independent training actually made the classification
problem much more difficult for neural networks, as it increased
overfitting tendency (i.e., it does not generalize well). A model
is said to be overfit if it is over trained on the data such
that it also learns the noise from it. An overfit model learns
every example so precisely that it misclassifies an unseen/new
example. Usually for a model that is overfit, we see a good
training set score and a poor test/validation score. Consider
Figure 9 which shows typical model loss plots that were obtained
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FIGURE 5 | Comparison of mean classification accuracies (subject-dependent training). Error bars indicate the standard errors across the participants.

from the subject-dependent and subject-independent training,
respectively. We can observe a small sign of an overfitting trend
in both cases, as seen from the train and test curves. This is
understandable considering the relatively compact-sized dataset
that we used. Deeper architectures are known to bemore prone to
overfitting on relatively small datasets (Goodfellow et al., 2016).
Figures 10, 11 show the effect on the loss model when the size
of training dataset was further reduced by 25, 50, and 75%,
respectively. It can be seen that the accuracies of both validation
and test models decreased further, confirming the negative effect
of smaller dataset size on the accuracy. It seems, however, that
the overfitting problem was amplified in the subject-independent
case. As user’s data were not included in training, this affected the
quality of the model, resulting in a drop of performance in terms
of classifying accuracy of test data. Essentially, we can consider
the model not to be well generalized, as we have seen in Figure 5

compared to Figure 7. In terms of ITR (Figure 8), training with
data from Oz gave best result at 10 bit/min while the rest all
managed <1 bit/min ITR for all window lengths.

DISCUSSION

Main Findings
We have shown the potential use for ear-EEG SSVEP in a
binaural format, targeting especially single-channel earpieces

which offer a practical format for real-life applications. It can
be seen that generally, the accuracy got worse when classifying
using signals around the ears (from either T7 or T8) compared to
Oz measured at the occipital area. Figure 12 shows examples of
typical Oz and T7 magnitude responses given the three stimulus
frequencies. Evidently, it can already be seen that there seems
to be difference in terms of the signal quality. Figure 13 shows
histograms of narrowband SNR (measured at Oz and T7) from
100 randomly chosen 1s sequences. The SNRs were calculated
using the following equation:

SNR = 20 log10
2K.y

(

f
)

∑K
k=1

[

y
(

f − 1f .k
)

+ y
(

f + 1f .k
)]

(3)

y(f) is magnitude at the stimulus frequency, K is half the number
of adjacent bands, and 1f is the frequency step. The mean SNR
from EEG measured at Oz (Figure 13A) was calculated to be
7.54 dB, much larger than 0.35 dB measured at T7 (Figure 13B).
This level of difference is in line with finding from Looney et al.
(2014b).

To address this shortcoming, we have shown that using the
proposed CNN with group training, we could improve the ear-
measured results by 12.47%, closing the gap toward the level
obtained when using signal from Oz for classification. This was
achieved with a practical range of 2s window length. In terms of
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FIGURE 6 | ITR, subject-dependent training.

FIGURE 7 | Comparison of mean classification accuracies (subject-independent training). Error bars indicate the standard errors across the participants.
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FIGURE 8 | ITR, subject-independent training.

the training strategy, subject-dependent training was also found
to be better than subject-independent training. This may be due
to the longer training set overall, and the variety of data led
to the model being able to generalize better. Considering the
computational time, we also believe the proposed method is
capable of supporting real-time BCI applications. For example,
to process a batch of 100 images with pre-trained model
only required around 0.2 s based on a system with Core i7
CPU and RTX2070 GPU. The main latency would still be
determined mainly by the window length selected, similar to
other implementation methods.

Compared to other literatures, most have focused on
measuring the SSVEP signal from the occipital area. Nakanishi
et al. (2015) showed that with 8-channel EEG measurement
taken from the occipital and posterior areas, the proposed design
achieved more than 90% accuracy (depending on the window
length) with up to 91.68 bits/min ITR achievable for simulated
online BCI compared more favorably to results from the more
conventional CCA approach (50% accuracy approximately at 2s
window, 50.4 bits/min ITR). In Ravi et al. (2020), with 6-channel
recordings, CCA achieved 62–69% accuracy with short window
length of 1s. It also studied the effects of user-independent (UI)
and user-dependent (UD) trainings, with UD-based training
methods consistently outperforming the UI methods, which
agree with our finding. Extremely fast design was proposed in
Nakanishi et al. (2018). With 40 classification targets, 89.83%
accuracy and 198.67 bits/min ITR for free spelling task were

reported. Albeit offering a high ITR, the complicated interface
associated with having many stimuli (40 stimuli in this case)
could be a challenge to the user and may not be suitable
for certain applications, for example, mobile-based ones. It is
noted also that the design also required online training. In
all, it should be re-emphasized that all these multi-channel
systems require controlled environment and delicate setting
up arrangements.

For more mobile solutions, one potential answer is to use
a single-channel measuring at Oz format. Nguyen and Chung
(2019) designed their own EEG amplifier and in an N = 8 trial
achieved the accuracy of 99.2 % (offline) and 97.4 % (online),
with ITR of 49 bits/min when measuring at Oz. Using 1-D DNN,
the system classified five targets using 2s windows. Benchmark
CCA implementation was shown to achieve lower accuracy, at
around 80%. The system also required user-dependent training
scheme. Bassi et al. (2021) suggested a very short window time
of 0.5s. Using CNN with transfer learning to classify two targets,
they achieved 82.2% accuracy. It is interesting to note that the
reported system was tested on the same dataset and achieved
similar results to the Oz reference measurement here (0.5s 2
classes vs 2s 3 classes).

For ear-EEG, most took the multi-channel approach using
the cEEGed platform (Debener et al., 2015). With up to 18
channels reading from two ears, Zhu et al. (2021) achieved
81–84% accuracy with 1s window length, slightly less than
>90% accuracy from scalp reading. In the work, a CCA-based
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FIGURE 9 | Model loss: (A) subject-dependent and (B) subject-independent.
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FIGURE 10 | Size of dataset vs. accuracy (subject-dependent).

FIGURE 11 | Size of dataset vs. accuracy (subject-independent).

SSVEP measuring from ears provided as reference was found
to be only around 40–50% accurate. The dataset used was
actually from Kwak and Lee (2020), which achieved 80–90%

accuracy at 6s window, or around 60–70% at 2s window.
Kwak and Lee (2020) classified three classes with 91/90/86%
accuracies for single session, session-to-session transfer, and
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FIGURE 12 | Examples of magnitude responses: (A) magnitude response measured at Oz, 8Hz stimuli, (B) magnitude response measured at T7, 8Hz stimuli, (C)

magnitude response measured at Oz, 11Hz stimuli, (D) magnitude response measured at T7, 11Hz stimuli, (E) magnitude response measured at Oz, 14Hz stimuli,

and (F) magnitude response measured at T7, 14Hz stimuli.
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FIGURE 13 | Narrowband SNRs: (A) as measured from Oz (B) as measured from T7.

FIGURE 14 | Comparison with CCA.

subject-transfer decoding, respectively, using 6s window. For
online implantation, 18.07 bits/min ITR was achieved with 78.79
% accuracy. For 2s window, the accuracy was reduced to <60%,
with the error correct framework improved it to 78.79%. Other
than the cEEGed, Wang et al. (2015) used 6x2 channels with bio
semi amplifier plus custom ears, achieved 78.75% (offline) and
87.44% (online) accuracies. The window length was 4s, achieving
the ITR of 15.71 s. The performance was comparable to others
or to this work, but the number of subjects used was rather
small at only 2. In Lan et al. (2021), performance measured

at the ear areas was compared to those measured around the
occipital area. Using task-related component analysis (TRCA)
to classify eight classes with 5s window, the measurement at
either ear (three channels, FT7(8), T7(8), TP7(8)) achieved
∼35–44% accuracy depending on the type of reference used.
The accuracy improved to around 50–55% with six channels
(three from both ears) which was <69% accuracy we achieved
with the two-ear regression. Lan also showed that with only
three channels at the occipital area, accuracy above 90% could
be achieved.
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TABLE 1 | SSVEP performance comparison.

Work Tech EEG CH Position Subject N

[dataset]

Window length No of class Accuracy % ITR (bit/min)

Nakanishi

et al., 2015

IT-CCA Biosemi

ActiveTwo EEG

8 Op 10 [own] varies 12 >90

(CCA 50)

91.68 (CCA

50.4)

Ravi et al.

(2020)

CCA, FBCCA,

TRCCA

g.USBAmp 6 O1, O2, Oz

PO3, PO4, Poz

121[own]/

10[Nakanishi et al.,

2015]

0.5s−3s 7 CCA 62–69

(1s)

N/A

Nakanishi

et al. (2018)

TRCA Neuroscan

Synamps2

9 Pz, PO5, PO3,

Poz, PO4, PO6,

O1, Oz, O2

12[own] 0.5s offline0.3s online 40 89.83 198.67

Nguyen and

Chung (2019)

1-D CNN Custom 1 O1-Oz pair 8[own] 2s 5 99.2 offline

97.4 online

49

Bassi et al.

(2021)

DCNN/ Transfer

Learning

Neuroscan

Synamps2

1 Oz 35 [Wang Y. et al.,

2017]

0.5s 2 82.2 N/A

Zhu et al.

(2021)

EEGnet/ Ensemble

Learning

CEEGrid +

mBrain Train

Smarting

System

18 (2 × 9) 2X

round-the-ear

11 [Kwak and Lee,

2020]

1s 3 81–84 N/A

Kwak and

Lee (2020)

Error Correction

Regression

CEEGrid +

mBrain Train

Smarting

System

18 (2 × 9) 2X

round-the-ear

11[own] 2s,4s,6s 3 6s: 91/90/86

(single ses/

ses-to-ses/

sbj-trans)

2s: <60

2s:

18.07 online

(78.79%

accuracy)

Wang et al.

(2015)

Extended CCA Custom mold +

Biosemi

ActiveTwo EEG

12 (2 × 6) 2X In-ear 2[own] 4s 4 78.75 (offline)

87.44 (online)

15.71

Ahn et al.

(2018)

CCA Custom 1 1X In-ear 6[own] 7s 6 79.9 11.03

Lan et al.

(2021)

TRCA Neuroscan

Synamps2

3/6 3/6/9 FT7, T7, TP7,

FT8, T8, TP8

O1,Oz, O2,

PO5, PO3, POz,

PO4, PO6, PZ

35 [Wang Y. et al.,

2017]

5s 8 35-44% /

50-55%

>90% /

>97%/>97%

7 apx/11 apx

30 apx/32

apx/32 apx

Carvalho

et al., 2021

MVDR-CAR Neuroscan

Synamps2

16 O1, O2, Oz,

POz, Pz, PO3,

PO4, PO7, PO8,

P1, P2, Cz, C1,

C2, CPz, FCz)

35 [Wang Y. et al.,

2017]

3s 4/6 98%(96%

CCA) /98%

(83% CCA)

N/A

Israsena and

Pan-ngum

CNN/ Binaural

Regression

Neuroscan

Synamps2

2 T7,T8 35 [Wang Y. et al.,

2017]

2s 3 69.21 6.42

Consider the practicality issues with minimal channel ear-
EEG, (Looney et al., 2011) Looney’s original ear-EEG had two-
channel in-ear electrodes. It was shown that the degree of
coherence was high between the in-ear electrodes measurement
and those measured from the on-scalp T7, T8 areas. The most
similar in concept with performance measurement reported
was Ahn et al. (2018), which was a single-channel in-ear
EEG, tested on six persons. The accuracy was reported to be
79.9% with ITR 11.3 bits/min for six-target classification. This,
however, was achieved with 7s window length which could
be considered impractically too long for online applications,
especially for controlling external devices. From the paper’s
graph, it can be estimated that for 2s window, the accuracy
was reduced to only around 30% with ITR of 3 bits/min

which is less than the performance reported here. To explore
this further, we have reconstructed a CCA and measured
the classification performance given the same dataset as the
one we used. The results of Ahn’s CCA and our CNN-
based classifications are shown in Figure 14. Given CCA
classification at ear area (avT7T8) for this particular dataset,
it can be seen that the accuracy matches that of Ahn’s in-
ear work with 2s window length, but exhibits increasing
gap as window length increases. CCA classification from
signals at Oz improves the accuracy as expected, with
better results against Ahn’s work for window lengths up to
4 s. CNN-based designs were superior to all CCA designs,
with the regressed T7T8 design outperforming the in-ear
CCA counterpart.
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The difference is summarized in Table 1. Carvalho et.al.’s
work (Carvalho et al., 2021) which used the same dataset is also
included for comparison.

In summary, we see or confirm the following trends:

- User-dependent training for better performance.
- Machine learning over conventional CCA.
- Performance drops from measuring at Oz to ear areas.
- Better performance in binaural ear-EEG from our proposed
design compared to designs with similar specs.

Limitations and Future Work
In this work, we studied the effect of SSVEP classification
from EEG measured around the ear using data collected from
T7 and T8 areas. Although research has shown T7 and T8
characteristics to match those of in-ear measurements, actual
measurements from in-ear positions will help further confirm
the results discussed here. Also, as we looked for minimal
channel for practical/mobility, another factor to consider in these
conditions is ambulatory. Works such as Lee and Lee (2020)
have already shown that ML approach is more robust against
a number of ambulatory conditions. Dataset also matters, as
(Nakanishi et al., 2015; Ravi et al., 2020) already shown effects
of different datasets used on performance evaluation. Here, we
use dataset from Wang Y. et al. (2017) which is rather compact.
Although this helps evaluate whether the system is robust with
small dataset, which may be beneficial in real-world applications,
longer training data could potentially improve accuracy further
as deeper architectures are more prone to overfitting on relatively
small datasets (Goodfellow et al., 2016). Lastly, the group training
approach requires access to subject’s data. This individualized
data may be acquired during calibration process, and this is our
recommended approach.

CONCLUSION

This paper discusses a machine learning approach for measuring
SSVEP at both ears with minimal channel. We propose a
new CNN-based approach that was coupled with regressed
softmax output classification to improve accuracy. With the
proposed structure using group training approach, a 69.21%
accuracy was achievable. An ITR of 6.42 bit/min given
63.49 % accuracy was recorded while only monitoring data
from T7 and T8, representing a 12.47% improvement from
a single ear implementation and illustrating the potential
approach to enhance performance for practical implementation
of wearable EEG.
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