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Background: Parkinson’s disease (PD) is a common age-related chronic

neurodegenerative disease. There is currently no affordable, effective, and less

invasive test for PD diagnosis. Metabolite profiling in blood and blood-based

gene transcripts is thought to be an ideal method for diagnosing PD.

Aim: In this study, the objective is to identify the potential diagnostic

biomarkers of PD by analyzing microarray gene expression data of samples

from PD patients.

Methods: A computational approach, namely, Weighted Gene Co-expression

Network Analysis (WGCNA) was used to construct co-expression gene

networks and identify the key modules that were highly correlated with PD

from the GSE99039 dataset. The Least Absolute Shrinkage and Selection

Operator (LASSO) regression analysis was performed to identify the hub

genes in the key modules with strong association with PD. The selected hub

genes were then used to construct a diagnostic model based on logistic

regression analysis, and the Receiver Operating Characteristic (ROC) curves

were used to evaluate the efficacy of the model using the GSE99039 dataset.

Finally, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) was used

to validate the hub genes.

Results: WGCNA identified two key modules associated with inflammation

and immune response. Seven hub genes, LILRB1, LSP1, SIPA1, SLC15A3,

MBOAT7, RNF24, and TLE3 were identified from the two modules and used

to construct diagnostic models. ROC analysis showed that the diagnostic

model had a good diagnostic performance for PD in the training and

testing datasets. Results of the RT-PCR experiments showed that there were
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significant differences in the mRNA expression of LILRB1, LSP1, and MBOAT7

among the seven hub genes.

Conclusion: The 7-gene panel (LILRB1, LSP1, SIPA1, SLC15A3, MBOAT7,

RNF24, and TLE3) will serve as a potential diagnostic signature for PD.

KEYWORDS

Parkinson’s disease, WGCNA, LASSO regression, potential diagnostic predictor,
computational approach

1. Introduction

Parkinson’s disease (PD) is an age-related disease and
is the second most common chronic neurodegenerative
disorder (Dassati et al., 2021). Its clinical symptoms
include static tremors, muscle tension, and loss of smell
(Bostantjopoulou et al., 2013). Although Positron Emission
Computed Tomography (PET) imaging of dopamine
transporter is used in the diagnosis of PD, it is expensive
and inconvenient and therefore not suitable for some
medical centers (Nicastro et al., 2021). Currently, PD is
mainly diagnosed based on physical examination and
clinical symptoms, and there are no affordable, effective,
and less invasive examination methods (Farotti et al.,
2020).

Biomarkers in peripheral blood samples are a good solution
to the diagnosis of PD. Early α-synuclein and DJ-1 are
considered as possible peripheral biomarkers, but experimental
results show that they are not ideal (Chahine et al., 2014).
Later studies found that low levels of peripheral uric acid
(Weisskopf et al., 2007), epidermal growth factor (Chen-
Plotkin et al., 2011), and apolipoprotein A1 protein predicted
an increased risk of PD (Qiang et al., 2013). In recent
years, with the development of bioinformatics, gene expression
microarray, or next generation sequencing technology is an
ideal method to screen PD biomarkers from peripheral blood
transcripts (Shamir et al., 2017; Falchetti et al., 2020; Jin
et al., 2020; Lin et al., 2021). In addition to transcriptomics,
epigenetics, and proteomics are also good ways to explore
potential biomarkers for the diagnosis of PD (Mayo et al.,
2021).

The difficulty in the diagnosis of PD lies not only in
the location of the lesion in the central nervous system,
where most biological factors are sequestered by the blood-
brain barrier, resulting in fewer biomarkers in peripheral
blood, but also that the clinical manifestations of PD overlap
with other neurodegenerative diseases. In this study, we used
bioinformatics methods to screen for potential diagnostic
markers of PD in peripheral blood from Gene Expression
Omnibus (GEO) datasets in samples containing PD and other
neurodegenerative diseases (NDD).

2. Materials and methods

2.1. Microarray data preprocessing

The data of GSE99039 analyzed during the current study are
available from the GEO database. The GSE99039 is the largest
sample size dataset of all PD peripheral blood transcriptional
analysis datasets and contained 205 idiopathic PD patients,
233 healthy controls, and 48 NDD patients [including 27
patients with Huntington disease, and 21 with Multiple System
Atrophy (MSA), Corticobasal Degeneration (CBD), progressive
supranuclear palsy (PSP), or PD dementia (PDD)] (Shamir et al.,
2017). These data were generated using the GPL570 platform
(Affymetrix Human Genome U133 Plus 2.0 Array).

The raw gene expression data and clinical trait data of
GSE99039 were downloaded from the GEO database. The
Affy package in R was used for background correction and
quantile normalization of the raw expression data (Gautier et al.,
2004), whereas the ArrayQualityMetrics package was used for
quality assessment to remove unqualified samples (Distances
between arrays, Boxplots, MA plots, two of the three items
are unqualified as unqualified sample: 1 PD, 1 NDD, and 3
control) (Kauffmann et al., 2009). The SVA package in R was
used to remove batch effects. Platform annotation files were
used to annotate the probes, and the average expression levels
of genes represented by more than one probe were calculated
(Leek et al., 2012). The GSE99039 dataset was randomly
divided into the training set and test set at a ratio of 7:3
(Table 1).

TABLE 1 Samples of training, testing, and validation datasets
after preprocessing.

Training Testing

PD 156 48

NDD 41 6

Normal 157 73

Total 354 127
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2.2. Construction of co-expression
network with WGCNA

WGCNA package in R was used to construct the co-
expression network and identify co-expression gene modules.
First, genes with the top 25% variance in gene expression from
the GSE99039 training set were used to construct scale-free
co-expression networks. To construct scale-free networks, we
chose the soft threshold power value. Subsequently, we used
Pearson correlation matrices to calculate a correlation matrix
for the genes. Next, we transformed the correlation matrix into
a weighted adjacency matrix using the power function. Finally,
we performed step-by-step network construction and module
detection using the following major parameters: deepSplit = 2,
power = 11, networkType = unsigned, minModuleSize = 30, and
mergeCutHeight = 0.20. We identified the key modules that are
strongly associated with PD based on the correlation between
modules and disease group (Langfelder and Horvath, 2008).

2.3. Gene ontology and KEGG
enrichment analysis

ClusterProfiler package was used to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of genes in key modules (Yu et al., 2012).

2.4. Identification of hub genes and
construction a prediction gene
signature

Module membership (MM) represents the intramodular
connectivity of any gene in a given module. A higher absolute
value of MM indicates that a gene has a higher negative or
positive correlation with the module eigengenes (MEs). Gene
significance (GS) is used to incorporate external information
into the co-expression network, with a higher absolute value of
GS indicating the increased biological significance of a gene for a
given clinical trait. We selected hub genes in key modules based
on the criteria: | MM| > 0.8 and | GS| > 0.2 (Xia et al., 2020).
We performed the LASSO regression analysis to extract genes
strongly associated with PD in the training dataset via glmnet
package in R.

2.5. Construction of the diagnostic
model

The selected genes were used to construct a diagnosis model
based on multivariate Logistic regression in the training set
in the glmnet package in R. To evaluate the ability of the

TABLE 2 Primer information.

Target name Primer

GAPDH ACAGCCTCAAGATCATCAGC

GGTCATGAGTCCTTCCACGAT

LILRB1 GCACCCTGGATTACACGGAT

GATACCGCCCTGTGTGTTCCC

LSP1 GGTTCAGGCTTCAGTCCCAG

CCTCCCCTTTACGGTTCCAG

SIPA1 CCACAGCCAAGCCATCAGTA

TTCCGCAGAGACAAGGTACG

SLC15A3 CCAAGGACTTTGGGAACATCA

CTCTCATAGCGTCCAGCGAT

MBOAT7 ACTATGAGACCATCCGCAAC

ACTGCACCGTCATGTTCCA

RNF24 TCCAGAATCTGCCTCTCAACA

ATTCTTTGTGTGCTTGATGTCT

TLE3 CCACCATGAGATGAACGGCT

AACAGCTCCAAAGCTCACCA

Logistic regression model to identify PD, Receiver Operating
Characteristic (ROC) curve analysis conducted by the pROC
package and confusion matrix were used in the training set and
test set (Robin et al., 2011).

2.6. RT-PCR validation of the hub
genes

Serum samples from five patients without PD and five
patients with PD were collected for Reverse Transcription-
Polymerase Chain Reaction (RT-PCR) validation to validate the
predictive power of the signature. This protocol was approved
by the Ethics Committee or Institutional Review Board of
Changde First People’s Hospital (Approval number: 2018-028-
01). Total RNA samples were extracted using the TRIzol
reagent (Thermo, 15596026) according to the manufacturer’s
instructions. The RNA was reverse-transcribed to cDNA
which was prepared using the SYBR qPCR reaction system
(Thermo, PIKOREAL96, USA) for RT-PCR. Glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) served as the internal
control. Relative mRNA expression was calculated using the
11CT method. Primers used are shown in Table 2.

2.7. Statistical analysis

T-test was used for RT-PCR data analysis. All statistical
analysis was performed in the R software (v. 4.1.2).
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FIGURE 1

Construction of WGCNA co-expression modules. Analysis of the scale-free fit index (A) and the mean connectivity (B) for various
soft-thresholding powers. (C) Dendrogram of all differentially expressed genes clustered based on a dissimilarity measure (1-TOM).

Unless otherwise stipulated, P < 0.05 was regarded as
statistically significant.

3. Results

3.1. Weighted gene co-expression
network analysis

Preprocessing of the GSE99039 training dataset resulted in
the identification of 21,655 genes expression profiles. Based on

genes with the top 25% variance in expression, 5,414 genes were
selected for WGCNA. To construct an approximate scale-free
topological network, we choose the power 11, which is the lowest
power for the scale-free topological fitting exponential curve to
flatten out when its value goes beyond 0.8 (Figure 1A) and mean
connectivity is close to 0 (Figure 1B). The identified genes were
divided into 12 modules, with the gray module consisting of
genes that could not be clustered (Figure 1C).

The magenta and yellow modules had the highest
correlation with the PD group (r = 0.21, p < 0.01; r = 0.17,
p < 0.01) (Figure 2A), and were thus identified as key modules.
The interaction relationships among the 11 modules obtained
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FIGURE 2

Correlation analysis of modules from weighted gene co-expression network analysis and identification of PD-associated modules. (A) Heatmap
of correlation between clinical traits (x-axis) and modules (y-axis). The abscissa represents the clinical information (PD, NDD, Normal) contained
in the dataset, and the ordinate represents different modules. The histogram on the right is the color scale. Numbers inside the heatmap signify
correlation values and p-values (in parenthesis). (B) Heatmap depicting the interaction of co-expressed genes. Different colors in both axes
represent different modules, and the brightness of red in the middle of heatmap indicates the connectivity degree of the corresponding
modules. (C) Hierarchical clustering dendrogram displaying the similarity of each module eigengenes value. (D) Heatmap showing correlation
between each module, labeled by their corresponding color.

from WGCNA were plotted as network heatmap (Figure 2B).
The results showed a high degree of independence between
these modules, which means that gene expression among the
modules is relatively independent. In addition, to represent
the similarity of modules, we performed hierarchical clustering
according to the signature gene values of each module (Figure
2C). The results showed that these modules were mainly divided

into three clusters, and the results of the module-associated
heatmap were consistent (Figure 2D).

3.2. GO and KEGG enrichment analysis

Gene Ontology and KEGG enrichment analysis was
performed on 210 genes in the magenta module and 272 genes in
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FIGURE 3

Functional enrichment analyses of magenta and yellow modules. (A) GO analysis of genes in magenta module. (B) KEGG pathway analysis of
genes in magenta module. (C) GO analysis of genes in yellow module. (D) KEGG pathway analysis of genes in yellow module.

the yellow module. The GO analysis was performed in relation
to three aspects: biological process, cellular component, and
molecular function.

Magenta module GO terms were enriched in “cytokine-
mediated signaling pathway,” “secretory granule membrane,”
and “immune receptor activity” (Figure 3A). The KEGG
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TABLE 3 Magenta and yellow modules Hub gene’s MM and GS.

Modules Gene symbol MM GS

Magenta DGAT2 0.890622815 0.200158516

HCK 0.856668415 0.201961097

MBOAT7 0.841048131 0.226820797

RNF24 0.830176878 0.220654612

FOSL2 0.817954018 0.202700685

GPR97 0.837251440 0.209726069

TLE3 0.879416377 0.237222540

Yellow C15orf39 0.802615634 0.208988011

LILRB1 0.833006299 0.204477963

LSP1 0.834070703 0.217503094

RHOG 0.859659866 0.202549826

RPS6KA1 0.865249043 0.211739457

SIPA1 0.862102043 0.201769263

SLC15A3 0.835962872 0.213660706

pathway analysis results showed that the genes were enriched
in pathways involved in “Osteoclast differentiation” and
“Chemokine signaling pathway” in the magenta module
(Figure 3B).

Yellow module GO terms were enriched in “myeloid cell
differentiation,” “secretory granule lumen,” and “actin binding”
(Figure 3C). The KEGG pathway analysis results showed that
the genes were enriched in “Osteoclast differentiation” and
“lysosomal pathways” (Figure 3D).

Results from GO and KEGG enrichment analysis indicated
that the genes in the key modules may be involved in the
development of PD.

3.2. Selection of potential biomarkers
for PD diagnosis

Based on the criterion: | MM| > 0.8 and | GS| > 0.2,
we identified seven hub genes from the magenta and yellow
modules, respectively (Table 3). Next, we performed the Least
Absolute Shrinkage and Selection Operator (LASSO) regression
analysis to identify the relationship between genes in key
modules and the PD patients and using the glmnet package
in R (Figure 4). Consequently, seven genes, LILRB1, LSP1,
SIPA1, SLC15A3, MBOAT7, RNF24, and TLE3 were found
to be highly associated with PD in the GSE99039 training
dataset.

FIGURE 4

The process of screening genes most associated with prognosis in the training set by Lasso regression. (A) Processes of LASSO regression
model fitting. (B) The misclassification error in the jackknife rates analysis.
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FIGURE 5

ROC curves were used to evaluate the accuracy of logistic regression model. (A) Analysis of the GES9903 training set. (B) Analysis of the
GES9903 test set.

3.3. Construction of gene diagnosis
model

The seven genes were used to construct a diagnosis
model using multivariate Logistic regression. The
gene-based model index was created according to
the following formula: index = (1.09 × expression of
LILRB1) + (1.26 × expression of LSP1) + (1.13 × expression of
SIPA1) + (1.06 × expression of SLC15A3) + (1.24 × expression
of MBOAT7) + (1.25 × expression of
RNF24) + (1.45 × expression of TLE3).

Receiver Operating Characteristic curve analysis indicated
that the AUC of the 7-gene-based model was 0.65 in the training
set and 0.60 in the test set (Figures 5A, B). The confusion matrix
results show that the False Positive Rate (FPR), False Negative
Rate (FNR), and Error Rate (ER) of the model in the training
set are 0.263, 0.545, 0.387, respectively, and 0.241, 0.667, 0.402
in the test set respectively (Tables 4, 5). These suggests that the
Logistic regression model had stability.

3.4. The experiment of seven hub
genes

Reverse Transcription-Polymerase Chain Reaction results of
RNAs isolated from peripheral blood samples of PD patients
showed that mRNA expression levels of LSP1, LIRB1, and
MBOAT7 in the PD group were higher than those in the control
group (< 0.05), but the expression levels of SIPA1, SLC15A3,
TLE3, and RNF24 was not significantly different between the
two groups (Figure 6). The identified seven genes may serve as
potential diagnostic biomarkers.

TABLE 4 Training set confusion matrix.

Total = 354 Actual

Control PD

Predicted Control 146 85

PD 52 71

TABLE 5 Test set confusion matrix.

Total = 127 Actual

Control PD

Predicted Control 60 32

PD 19 16

4. Discussion

Parkinson’s disease is a type of NDD commonly seen in the
elderly. The main motor symptoms of this disorder are caused
by the degeneration of dopamine neurons in the substantia
nigra that innervate the striatum (Pajares et al., 2020). Currently,
the diagnosis of PD is mainly based on clinical examination.
Therefore, there is need to develop a more accurate, widely
applicable, and specific diagnostic technique for PD.

Using WGCNA, we identified two key modules that were
able to distinguish patients with PD from other NDD patients
and healthy individuals. Then we used seven hub genes LSP1,
LIRB1, MBOAT7, SIPA1, SLC15A3, TLE3, and RNF24 from
the key modules to construct a PD prediction model. GO
and KEGG enrichment analysis showed that the genes in
the two Hub modules were mainly related to inflammation
and immunity. The seven genes in the model, all associated
with inflammation or immunity, were highly expressed in
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FIGURE 6

Reverse Transcription-Polymerase Chain Reaction validation of the hub gene between PD and normal controls. (A–G) Relative expression levels
of LILRB1, LSP1, MBOAT7, RNF24, SIPA1, SLC15A3, and TLE3. *p < 0.05.

the bone marrow, lymph nodes, or brain. Studies have
demonstrated that inflammation is an important factor in the
development of PD, but the exact underlying mechanism is
unclear. The innate immune mechanism of PD patients is
dysregulated, microglial cell proliferation can be seen in the
brain (McGeer et al., 1988), and there are autoantibodies against
α-synuclein protein, dopamine, and melanin in serum and
cerebrospinal fluid (Double et al., 2009; Yanamandra et al.,
2011), suggesting that humoral immunity may play a role
in PD-related neuroinflammation and neurodegeneration. In
addition to microglia and astrocyte hyperplasia in the brain
of PD patients, peripheral inflammation, and PD risk-related
genes can also promote chronic inflammatory responses that
lead to the progression of this neurodegenerative disease
(Pajares et al., 2020), and cytokine such as IL1β, IL2, IL6,
IFN-γ, and TNF-α can be detected in peripheral blood
(Reale et al., 2009).

The LSP1 gene encodes an intracellular F-actin binding
protein expressed in lymphocytes, neutrophils, macrophages,
and endothelial cells (Palker et al., 1998). The protein can
regulate the movement of neutrophils, adhesion to fibrinogen
matrix proteins, and trans-endothelial migration. It is also
expressed in CD8 + T cells and is associated with T-cell
maturation, and chemotaxis of neutrophils (Wu et al., 2007).
CD8 + T cells play an important role in PD development. In

the early stages of PD, infiltration of the substantia nigra of
CD8 + T cells precedes synuclein deposition. The infiltration of
cytotoxic CD8 + T cell in the substantia nigra takes place before
α-synuclein aggregation and neuronal death, and it parallels
the progression of neuronal death and synuclein disease in
PD (Galiano-Landeira et al., 2020). Oxidative modification of
specific proteins associated with PD (i.e., α-syn nitrification) has
been implicated in the generation of new epitopes that initiate
peripheral blood-driven CD4 + and CD8 + T cell responses
(Benner et al., 2008). CD8 (+) T-cells are mainly expressed in
the peripheral immune system of PD patients, while the levels of
CD4 (+) CD25 (+) T-cells tend to be low (Baba et al., 2005). The
LILRB1 gene is a member of the leukocyte immunoglobulin-
like receptor (LIR) family, which is present in the gene cluster
19Q13.4 in the chromosome (Truong et al., 2019). The receptor
is expressed on immune cells, binds to MHC class I molecules
on antigen-presenting cells, and transduces negative signals
that inhibit stimulation of immune response. Activation of LIR
suppresses NKR expression in late differentiation of CD8 + T
cells (Martínez-Rodríguez et al., 2010).

MBOAT7 encodes a membrane-binding protein,
lysophosphatidylinositol transferase 1 (LPIAT1), which
has 472 amino acids and is present in the inner membranes of
organelles such as endoplasmic reticulum and mitochondria
(Gijón et al., 2008). It is mainly involved in the metabolism
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of phospholipids, and is not directly involved in the oxidative
energy pathway. MBOAT7 regulates free arachidonic acid
(AA) in cells by remodeling phospholipids (Dursun et al.,
2020). Free AA is up-regulated in the brain of PD animal
models, and metabolism-related COX-2 of AA increases (Lee
et al., 2010). LPIAT1 regulates the levels of arachidonic acid in
phosphatidylinositol, which is necessary for cortical lamination
in mice (Lee et al., 2012). MBOAT7 gene mutation or abnormal
expression has been associated with mental impairment,
epilepsy (Jacher et al., 2019), and changes in MRI signals of the
cerebral pallidus (Ozpinar et al., 2021).

The TLE3 gene encodes transcriptional co-repressors
belonging to the transduction protein-like enhancer family
(Dehni et al., 1995). Members of this family play a role in the
Notch signaling pathway, and TLE3 expression is associated
with neurogenesis and epithelial differentiation. Inhibition
of the Notch signaling pathway is known to alleviate PD
symptoms (Wang et al., 2019). Interestingly, DNER-an activator
of the NOTCH1 pathway was higher in PD than in atypical
parkinsonisms (Santaella et al., 2020). TLE3 is involved in
immune regulation, promotes memory B-cell development
(Ascoli et al., 2022), and acts as a predictor of peripheral CD4 + T
cell depletion (Laidlaw et al., 2020).

The product of SIPA1 gene is the mitogen-induced GTP-
activating protein (GAP), which is located in the perinuclear
region and affects mitogen-induced cell cycle progression
(Wang et al., 2020). It is associated with lymphocyte
proliferation (Minato, 1996) and regulation of T-cell function
(Ishida et al., 2003). SLC15A3 contributes to the dipeptide
transmembrane transporter, participates in dipeptide input
across the plasma membrane, and is located in the inner
membranes of the cell organelles (He et al., 2018). Studies
have shown that SLC15A3 is regulated by various TLRS
and plays an important role in regulating TLR4-mediated
inflammatory response (Song et al., 2018). RNF24 gene
encodes a complete membrane protein containing ring zinc
finger. The encoded proteins may interact with multiple
transient receptor potential cationic channel subfamily C
(TRPC) proteins and regulate their transport and insertion
into the plasma membrane (Lussier et al., 2008). RNF24
gene is associated with viral immunity (Samus et al.,
2020).

LSP1 is the one with the highest efficacy value among
the differentially expressed genes verified by RT-PCR in the
model, and its biological function is consistent with the
peripheral inflammation of PD, so it’s considered a critical
gene among the seven hub genes. We believe that GO and
KEGG pathways implicated by models, the more genes are
enriched, the more important they are for PD. Therefore, three
GO terms and one KEGG pathway are important for PD in
our model. They were myeloid cell differentiation, cytokine
mediated signaling pathway, actin binding, and osteoclast
differentiation. Among them, studies on osteoclasts and PD

have increased in recent years (Malik et al., 2021; Hong
et al., 2022), which indicates that osteoclasts may be a new
research direction for Parkinson’s mechanism or peripheral
biomarkers.

The limitation of this study is that the number of cases
included in the verification experiment is relatively small.
Increasing the number of verification experiment samples
may lead to better experimental results. At the same time,
there is a lack of in vitro experiments to study the relevant
mechanism. In summary, we found seven genes that are
potential biomarkers of PD.

5. Conclusion

Our study identified new potential diagnostic biomarkers
for PD in peripheral blood and provided insights for
developing effective diagnostic and therapeutic strategies for
patients with PD.
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