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Backpropagation has been regarded as the most favorable algorithm for

training artificial neural networks. However, it has been criticized for

its biological implausibility because its learning mechanism contradicts

the human brain. Although backpropagation has achieved super-human

performance in various machine learning applications, it often shows limited

performance in specific tasks. We collectively referred to such tasks as

machine-challenging tasks (MCTs) and aimed to investigate methods to

enhance machine learning for MCTs. Specifically, we start with a natural

question: Can a learning mechanism that mimics the human brain lead to

the improvement of MCT performances? We hypothesized that a learning

mechanism replicating the human brain is e�ective for tasks where machine

intelligence is di�cult. Multiple experiments corresponding to specific types

of MCTs where machine intelligence has room to improve performance

were performed using predictive coding, a more biologically plausible

learning algorithm than backpropagation. This study regarded incremental

learning, long-tailed, and few-shot recognition as representative MCTs. With

extensive experiments, we examined the e�ectiveness of predictive coding

that robustly outperformed backpropagation-trained networks for the MCTs.

We demonstrated that predictive coding-based incremental learning alleviates

the e�ect of catastrophic forgetting. Next, predictive coding-based learning

mitigates the classification bias in long-tailed recognition. Finally, we verified

that the network trained with predictive coding could correctly predict

corresponding targets with few samples. We analyzed the experimental result

by drawing analogies between the properties of predictive coding networks

and those of the human brain and discussing the potential of predictive coding

networks in general machine learning.
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brain-inspired learning, biologically plausible learning, deep learning,

backpropagation, predictive coding
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1. Introduction

The human brain has an intricate and heterogeneous

structure that consists of a high recurrent and nonlinear

neural network (Felleman and Van Essen, 1991; Friston,

2008; Bertolero et al., 2015). It is commonly understood

that the learning system of the human brain operates on
the synaptic plasticity mechanism (Hebb, 2005), wherein the
modulation in synaptic weights varies according to the intrinsic

or extrinsic stimuli (Power and Schlaggar, 2017). Specifically,
neural plasticity regulates the process of synaptic transmission
as a fundamental property of neurons (Citri and Malenka, 2008;
Mateos-Aparicio and Rodríguez-Moreno, 2019). Based on this

property, the neuronal responses to sensory stimuli enable the

robust recognition (Ohayon et al., 2012; Denève et al., 2017;

Geirhos et al., 2017; Wardle et al., 2020) and noise-resistance

learning (Suzuki et al., 2015; Perez-Nieves et al., 2021) in

human perception.

Based on the human brain architecture, artificial neural

networks (ANNs) were suggested to simulate the pattern of

the human decision-making process for recognition tasks.

Rumelhart et al. (1986) introduced the backpropagation

algorithm that adjusts the network parameters to achieve

reliable performance. Backpropagation iteratively updates the

network parameters relying on the error signal generated at

the end of the network between the produced output and

the desired output. In the last decade, with the benefits of

backpropagation (Rumelhart et al., 1986), ANNs have exceeded

human-level performance on classification, segmentation, and

detection (He et al., 2016; Dosovitskiy et al., 2020). However,

learning ANNs with backpropagation have been criticized for

their biological implausibility, wherein its behavior conflicts

with the activity of real neurons in the human brain (Akrout

et al., 2019; Illing et al., 2021). First, the human brain

operates according to neural plasticity, which indicates the

capability for modifying neural circuit connectivity or degree

of interaction (Neves et al., 2008). Second, global error-guided

learning requires the forward weight matrices to propagate the

error signal flow to the lower layer, that is weight transport

problem (Grossberg, 1987). Multiple learning algorithms have

been proposed to alleviate the previously mentioned issues

based on strong constraints of backpropagation and reinforce

its biological plausibility (Liao et al., 2016; Lillicrap et al., 2016;

Whittington and Bogacz, 2017; Woo et al., 2021; Dellaferrera

and Kreiman, 2022). This study explored the predictive coding

network (Whittington and Bogacz, 2017) among the various

biologically plausible learning and its characteristics.

A predictive coding network (Whittington and Bogacz,

2017) was introduced to resolve the biological limitations of

backpropagation depending on the hierarchically organized

visual cortex of the human brain (Rao and Ballard, 1999; Friston,

2008). With respect to biological plausibility, a predictive

coding network concentrates on local and Hebbian plasticity

by minimizing the prediction errors between expected and

actual inputs (Rao and Ballard, 1999; Millidge et al., 2020).

The learning mechanism of the predictive coding network

is different from that of backpropagation, which updates the

network parameters using only one error derived from the last

layer (Rumelhart et al., 1986). Predictive coding is regarded as a

local learning algorithm because its learning is performed with

local error nodes and global error nodes. A learning network

with predictive coding approximates the learning dynamics of

backpropagation (Whittington and Bogacz, 2017) and can also

be expanded to arbitrary computational graphs (Millidge et al.,

2020). Multiple works (Han et al., 2018; Wen et al., 2018; Choksi

et al., 2021) inspired by the property of prediction itself have

been proposed, and some studies (Choksi et al., 2021; Salvatori

et al., 2021) demonstrated that the potential of the predictive

manner related to human perception.

However, despite the remarkable accomplishment of

ANN architectures and their learning algorithms, there

remains a performance gap between machine and human

intelligence in some applications. We collectively refer

to these tasks as machine-challenging tasks (MCTs); MCTs

are difficult for machine intelligence while easy for human

intelligence. This study considers the representative MCTs as

incremental learning, long-tailed recognition, and few-shot

learning (Hassabis et al., 2017). A more detailed definition

and explanation of MCTs will be presented in Section 2.2.

Humans progressively and ceaselessly acquire new knowledge

and preserve it by virtue of the hippocampus (Preston and

Eichenbaum, 2013). The primary function of the hippocampus

is that it enables long-term memory of the spatial and sequential

order from the human experience (Bird and Burgess, 2008;

Davachi and DuBrow, 2015). This property makes the

human intelligence exhibits robust and performs better than

machine intelligence (Goodfellow et al., 2014; Zhou and

Firestone, 2019; Liu et al., 2021). Meanwhile, ANNs trained with

backpropagation tend to forget what it learned when it learns

new information, that is catastrophic forgetting (McCloskey

and Cohen, 1989; French, 1999; Goodfellow et al., 2013). As

another example, machine intelligence shows unsatisfactory

performance under limited or imperfect training data

recognition (De Man et al., 2019; Liu et al., 2019a). When

training ANNs for classification tasks in a long-tail scenario, the

classifier can be easily biased toward the majority classes that

contain the most data and show poor performance in minority

classes (Johnson and Khoshgoftaar, 2019). These phenomena

result from the fundamental differences in visual processing

between the brain and ANNs (Xu and Vaziri-Pashkam, 2021).

Inspired by Hassabis et al. (2017), we hypothesized that the

closer the learning algorithm is to the human brain, the more

effective it is for the MCTs.

Similar to our assumption on the MCTs, the learning

algorithms inspired by the brain are consistently studied to

reduce the performance gap between machine intelligence and
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human intelligence based on human’s various attributes. In

terms of human learning mechanisms, a spiking neural network

(SNN) is considered a promising solution to replicate the

neural processing process of the brain. Yang et al. (2022c)

proposed an SNN-based continual meta-learning framework

and demonstrated that the suggested model improves the

accuracy and robustness of the continual meta-learning tasks.

Yang et al. (2022b) also established the ensemble framework with

multiple spike-driven few-shot online learning and confirmed

the effectiveness of the brain-inspired paradigm. On the

other hand, recent studies reported that the neural network

trained biologically plausible manner embodies specific memory

functions in the human memory system. Salvatori et al. (2021)

discovered that the network trained with predictive coding

can naturally implement the associative memory function,

such as reconstructing incomplete regions. Yang et al. (2022a)

verified that the multicompartmental spiking neural network

incorporates the working memory satisfying four essential

components of brain-inspired mechanisms. Therefore, based

on previous studies, we speculated that predictive coding has

other latent properties. This study aimed to discover hidden

properties and extend the scope of predictive coding to MCTs.

Contrary to the conventional solutions for the MCTs, our study

focused on the predictive coding algorithm itself employed for

the optimization of the network parameters. In incremental

learning, it is confirmed that predictive coding better reveals

the plasticity-stability property and enables faster adaptation to

new tasks than backpropagation. In long-tailed recognition, it

reduces the classification bias problem of minority classes.

This paper is organized as follows: In Section 2, the

predictive coding network is briefly reviewed. In Section 3,

the experiments on incremental learning based on a predictive

coding network are presented. In Section 4, the experiments

on limited data recognition based on a predictive coding

network, such as long-tailed recognition and few-shot learning,

are described. In Section 5, we discuss why predictive coding

network improves the performance of MCTs. In Section 6,

related work to help understand our paper is presented. In

Section 7, we conclude the paper with limitations and a

summary.

Our contributions can be summarized as follows:

• The study characterized the MCTs, which are easy for

human intelligence and difficult for machine intelligence,

in machine learning fields and proposed a hypothesis

that the brain-inspired learning algorithm improves the

performance of MCTs.

• Predictive coding, a biologically plausible learning

algorithm, was adopted for MCTs, such as incremental

learning and limited data recognition. In addition,

extensive experiments were performed by reimplementing

the learning with backpropagation with predictive coding.

• The effect of learning algorithms close to brain learning

on MCTs in terms of neuroscience was presented. Mainly,

the experimental results were analyzed with respect to

the plasticity-stability dilemma and interplay between the

hippocampus and prefrontal cortex.

2. Related Work

2.1. Biologically Plausible Learning

The backpropagation algorithm (Rumelhart et al., 1986),

which simulates the properties of the human brain, has achieved

excellent progress in various machine learning tasks. The

algorithm calculates the global error by comparing the predicted

outputs and the actual targets at the network’s end to achieve an

objective. Then, it propagates the error signal to the front of the

network to update parameters. Although backpropagation is the

most popular learning algorithm for ANNs, it is often regarded

as a biologically implausible algorithm from a neuroscience

perspective. The main reason is that backpropagation does

not operate following the local synaptic plasticity (Takesian

and Hensch, 2013; Mateos-Aparicio and Rodríguez-Moreno,

2019) as a fundamental property of the nervous system.

Synaptic plasticity refers to the ability to reorganize structures

or connections by intrinsic or extrinsic stimuli. Another

reason is that the backpropagation requires a copy of the

weight matrices to transfer backward error signal (Grossberg,

1987). However, retaining synaptic weights on each neuron is

impractical in the human brain. So, Lillicrap et al. (2016)

replaced the backward weight matrices with fixed random

weights to avoid those problems. Liao et al. (2016) reported

that the signs of backward weight matrices were important,

and when the signs between the forward and backward

matrices were concordant, the same or better performance

could be achieved. Furthermore, various learning algorithms

have been proposed to reinforce biological plausibility while

maintaining the classification performance (Lee et al., 2015;

Whittington and Bogacz, 2017; Ahmad et al., 2020; Lindsey

and Litwin-Kumar, 2020; Pogodin and Latham, 2020). Among

them, predictive coding, based on the predictive process

of the brain, was suggested to achieve better biologically

plausible properties than the backpropagation algorithm and

achieved comparable performance to the backpropagation

on arbitrary computational graphs (Whittington and Bogacz,

2017).

2.2. Machine Challenging Tasks (MCTs)

ANNs have achieved comparable or superior

performances to humans by backpropagation in
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visual recognition (Russakovsky et al., 2015; Geirhos

et al., 2017). However, ANNs have unsatisfactory

performance in certain tasks regarded as simple

and easy for human intelligence (Goodfellow et al.,

2013; Snell et al., 2017; Cao et al., 2019). As detailed

in Section 1, these types of tasks as MCTs (e.g.,

incremental learning, long-tailed recognition, and few-shot

recognition).

Humans ceaselessly take new information from multiple

sensory organs and reorganize it in the brain (Felleman

and Van Essen, 1991; Denève et al., 2017). These processes

proceed in a lifelong manner because knowledge construction

is affected by previous experiences. In addition, humans can

refine or transfer knowledge acquired from different types of

previous tasks built in an incremental manner (Preston and

Eichenbaum, 2013; Davachi and DuBrow, 2015). In contrast

to human intelligence, ANNs have catastrophic forgetting in

which the collected information is lost after training of

subsequent tasks (Goodfellow et al., 2013).Moreover, the human

visual system shows robust performances even in limited data

recognition, such as long-tailed and few-shot visual recognition.

Real-world data commonly follow long-tailed distribution

wherein the majority classes occupy the significant part of

the dataset and have an open-ended distribution (Liu et al.,

2019b). The primary purpose of long-tailed recognition is to

correctly classify theminority class samples to the corresponding

targets, reducing the classification bias effect (Cao et al., 2019).

Further, the classification of tail class samples can be regarded

as a few-shot recognition problem as the degree of imbalance

increases (Samuel et al., 2021).

The discrepancy in learning performances between humans

and ANNs is closely related to the characteristics of the human

brain. First, the human brain operates under two properties:

plasticity and stability (Takesian and Hensch, 2013). Plasticity

refers to the brain’s change in connectivity and circuitry that

enables humans to acquire knowledge, keep memories, and

adapt to the external environment (Power and Schlaggar,

2017). Meanwhile, stability refers to the ability of long-term

memory where stable memory is relevant to stable neuron

connectivity (Susman et al., 2019). A balance between plasticity

and stability is achieved with excitatory and inhibitory circuit

activity in the visual cortex (Takesian and Hensch, 2013).

Second, the brain engages the hippocampus and neocortex, as

explained by the complementary learning system theory that

characterizes learning in the brain (Preston and Eichenbaum,

2013). The hippocampus focuses on acquiring new knowledge,

and knowledge is transferred and generalized to the neocortex

via the memory consolidation process. Such mechanisms do

not exist in backpropagation. However, they can be indirectly

performed in learning predictive coding through the free-

energy minimization process of predictive coding. As such,

we assume that humans can achieve superior performance

in MCTs.

3. Predictive Coding Networks

Most architectures in ANNs follow an L-layer structure

wherein each layer consists of a set of neurons (Rumelhart et al.,

1986). The training with the backpropagation algorithm can be

explained to minimize a global error generated at the last layer

of a network. In the backpropagation algorithm, an activation

value of each layer is defined as follows:

v̂0 = x (1)

v̂i = f (v̂i−1; θi) (2)

where i is the indices of layers, and θi is the parameters of i-th

layer. The goal of backpropagation algorithm is to minimize a

loss function L(ŷ, y) between the ground-truth target y and the

prediction value ŷ. The final layer output is derived from the

forward pass as follows:

ŷ = f (x; θ) = v̂L (3)

In the backward pass, the optimization of parameters is

performed by the derivative of the loss function. The gradient

of each layer is computed in reverse order as follows:

δi = δi+1
∂fi+1(v̂i; θi+1)

∂ v̂l
(4)

and

dθi = −
∂L(ŷ, y)

∂θi
(5)

where δi and dθi are the error signal and the gradient from i-th

layer, respectively.

Meanwhile, in the predictive coding algorithm, an error

node is defined in every layer, and the goal of learning is to

minimize the collective energy function (Friston, 2003; Bogacz,

2017; Buckley et al., 2017), which is the sum of prediction

errors as illustrated in Figure 1. A predictive coding network

assumes the network as a directed acyclic computational graph

G = {E , V} to deliver an error from the last layer to the first

layer. E and V are defined as a set of error nodes ei ∈ E and

a set of activation nodes vi ∈ V at every layer.

By analogy to the cortical hierarchy in the human brain,

predictive coding can be formulated as a variational inference

algorithm (Friston, 2005; Buckley et al., 2017). Millidge et al.

(2020) extended predictive coding to an arbitrary computational

graph G considering its hierarchical and generative structure.

Given a computational graph G, the feedforward prediction

is defined as p(vi) = 5N
i p(vi|Pi)) and variational posterior

is derived as Q({vi}) = 5N
i Q(vi), where P(x) indicates

the set of parent nodes and C(x) denotes the set of child

nodes for the given node x. Each activation node has the

prediction v̂i = f (P(vi); θi) = f (v̂i−1; θi) for i-th layer. Based
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FIGURE 1

Illustration of (A) backpropagation and (B) predictive coding. Di�erent from backpropagation, predictive coding has an error unit ǫi for each

activation unit vi and this enables predictive coding to perform local learning.

on this, Millidge et al. (2020) defined a objective function

of predictive coding as the variational free energy F as

follows (Friston, 2005; Buckley et al., 2017):

F = KL[(Q({vi})||p({vi}))] ≥ KL[Q({vi})||p({v1 :N−1|v0, vN})]

≈

N∑

i=0

eTi ei (6)

where a prediction error of each layer ei. The i-th error node ei
can be calculated as follows:

ei = v̂i−1 − vi = fi(vi−1; θi)− vi (7)

where vi−1 is the activation node value of the previous layer.

In the backward phase of predictive coding, network

parameters θ containing activation nodes {vi} and error nodes

{ei} are updated via gradient descent of each layer as follows:

dvi = −
∂F

∂vi
= ei −

∑

j∈C(vi)

∂ v̂j

∂vi
. (8)

The learning is performed by minimizing the variational free

energy F until converges as follows:

θi = θi + ηdθi (9)

where η is the weight learning rate. Parameters are updated as

follows:

dθi = −
∂F

∂θi
= −ei

∂fi(vi−1; θi)

∂θi
(10)

The equation 10 indicates the local learning rule of the predictive

coding where the parameters of i-th layer are only updated based

on the ei and vi−1.

4. Incremental Learning with
Predictive Coding

Based on previous studies (Hassabis et al., 2017; Perez-

Nieves et al., 2021), our fundamental assumption is that the

more biologically plausible the learning algorithm, closely

replicating the learning mechanism of the brain, the more

effective it will be for MCTs. Previous studies focused on

confirming that the predictive coding network itself inherits the

physiological characteristics of the brain. Salvatori et al. (2021)

recently explored that predictive coding networks naturally

implement associative memory, which plays a vital role in

human intelligence (Colom et al., 2022). Motivated by the

previous study, the current research assumed that predictive

coding networks have a latent ability to consolidate the

sequentially acquired knowledge in the human memory system.

Therefore, we propose a predictive coding framework for

incremental learning and verify the efficacy of MCTs. The

task of incremental learning can be mainly categorized into

two categories (Masana et al., 2020): class-incremental learning

and task-incremental learning. The current study focused on

the former. In class-incremental learning, the knowledge from

previously seen classes is no longer available when a network

learns the knowledge of unseen classes, and the learned network

aims to achieve favorable classification accuracy for all tasks

without forgetting. Multiple tasks were sequentially learned

based on the pre-defined order to validate our assumption, and

each task with its validation set finishing the training of the given

task was evaluated. The algorithms are detailed in Algorithm 1.

4.1. Experimental Settings

A 3-layer predictive coding network with ReLU non-

linearity, where the number of the hidden nodes was 800

for the simple dataset such as MNIST (LeCun et al., 1998)

and FMNIST (Xiao et al., 2017), was employed. Similar

to the study by Serra et al. (2018), a simplified Alexnet

architecture (Krizhevsky et al., 2012) consisting of three

convolutional layers was used for the complex dataset such as

CIFAR-10 (Krizhevsky et al., 2009). The three convolutional

layers comprised 64, 128, and 256 channels.
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Input: Dataset DT
t=1, Computational Graph G = {E ,V},

inference learning rate ηv, weight learning rate

ηθ

for all dataset for each task Dt ∈ D do ⊲ For

each minibatch in the sequential tasks

v̂0 ← xt ⊲ Initialize the graph with inputs

for all v̂i ∈ V do ⊲ Forward phase: calculate

predictions

v̂i ← f (P(v̂i); θ)

end for

ǫL ← fL(vL−1; θi)− vL ⊲ Compute output error

while not converged do ⊲ Backward phase:

backward iteration

for all (vi, ǫi) ∈ G do

ǫi ← v̂i−1 − vi ⊲ Compute prediction errors

vi ← vi + ηv
dF
dvi

⊲ Update the vertex values

end for

end while

end for

for all θ ti ∈ E do ⊲ Update weights at

equilibrium

θ ti ← θ t+1i + ηθ
dF
dθi

end for

return θ t

Algorithm 1. Predictive Coding for Incremental Learning.

We refined the data to formulate sequential incremental

tasks. The data were divided into multiple portions following

the representative incremental learning approaches (Lee et al.,

2017; Sokar et al., 2021), and constructed four datasets: disjoint-

MNIST, disjoint-FMNIST, split-MNIST, and split-CIFAR-10.

Disjoint-MNIST and disjoint-FMNIST were organized by

separating MNIST and FMNIST into two tasks. In addition, a

more complex dataset, called split-MNIST and split-CIFAR-10,

was also established, where all classes were separated into five

tasks, and each task contained two categories. The details of

the tasks on the multiple datasets are described in Tables 1 and

2. Finally, we evaluated incremental learning performance. We

trained a network with sequential order and measured that the

acquired knowledge was maintained after each task’s training,

same as Serra et al. (2018).

A learning rate of 0.05 was used, and the learning rate

was divided by 1/3 to perform incremental learning, if there

was no advancement in the validation loss for five consecutive

epochs. In predictive coding, the weight learning rate was set

as 0.1 while keeping the other hyperparameters. The minimum

learning rate was set as 1e−4 and batch size as 64. All

experiments were conducted using data split according to

five different seeds. We provide the code to reproduce the

results in the manuscript at https://github.com/jangho2001us/

PredictiveCoding$_$IncrementalLearning.

4.2. Experiments on Incremental Learning

Incremental learning was performed on disjoint-MNIST

and disjoint-FMNIST using the predictive coding framework

to validate our hypothesis. To implement the incremental

learning task in a predictive coding manner, we integrated

the code of Serra et al. (2018) and Rosenbaum (2021) by

replacing the network learning from the backpropagation with

the predictive coding networks. The performance of each task

was evaluated after completing the learning of each task in

Tables 3 and 4. The performance in all tasks learned was

evaluated using the best model of the last task. In this case, the

best model refers to the model with the highest performance

in the given task. Moreover, the other backpropagation-based

incremental approaches containing SGD (Goodfellow et al.,

2013), SGD-F (Goodfellow et al., 2013), EWC (Kirkpatrick

et al., 2017), IMM (Lee et al., 2017), LFL (Jung et al., 2016),

and LWF (Li and Hoiem, 2017) were evaluated to observe

whether the predictive coding framework itself is effectual for

preventing catastrophic forgetting. For all datasets, the average

performance of the network trained with SGD based on the

predictive coding manner outperformed the performance of

the network trained with SGD based on backpropagation.

Furthermore, learning with predictive coding exceeds strong

competitor EWC (Kirkpatrick et al., 2017) on disjoint-MNIST

and split-MNIST.

To make the challenging experimental settings, we

combined two classes into one task and created five tasks using

MNIST and CIFAR-10, similar to the study by Sokar et al.

(2021). Incremental learning performance of backpropagation

and predictive coding on split-MNIST and split-CIFAR-10

is shown in Tables 5 and 6. The performance of incremental

learning based on predictive coding was also compared with

that of conventional approaches (Goodfellow et al., 2013;

Jung et al., 2016; Kirkpatrick et al., 2017; Lee et al., 2017; Li

and Hoiem, 2017). To observe its ability to retain previously

obtained knowledge, we visualized the average accuracy

of trained tasks in Figure 2. Figure 2 and Table 5 are the

experimental results from the same protocol (split-MNIST).

After finishing every epoch, we evaluated the performance

of all the tasks and drew Figure 2. While Table 5 shows the

results of the average evaluation five times using the best model

derived from each task. It was confirmed that catastrophic

forgetting occurred in both learning algorithms, but the degree

of forgetting was certainly more severe in the experimental

results of backpropagation. Learning with predictive coding

showed stable performance even when the learning task

changed, in contrast to the pattern of backpropagation. In the

backpropagation experiment, when the network acquired the
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TABLE 1 Details of the tasks in the disjoint-MNIST and disjoint-FMNIST benchmarks.

Task id MNIST classes FMNIST classes Training Testing

1 [0, 1, 2, 3, 4] [T-shirt/top, Trouser, Pullover, Dress, Coat] 25000 5000

2 [5, 6, 7, 8, 9] [Sandal, Shirt, Sneaker, Bag, Ankle boot] 25000 5000

TABLE 2 Details of the tasks in the split-CIFAR-10 benchmark.

Task id CIFAR-10 classes Category Training Testing

1 [airplane, car] vehicle 10000 2000

2 [bird, cat] animal 10000 2000

3 [deer, dog] animal 10000 2000

4 [frog, horse] animal 10000 2000

5 [ship, truck] vehicle 10000 2000

TABLE 3 Comparison of incremental learning performance (%) on

disjoint-MNIST.

Algorithm Method Task1 Task2 Average

BP SGD (Goodfellow et al., 2013) 88.19 98.99 93.59

SGD-F (Goodfellow et al., 2013) 99.61 84.56 92.09

EWC (Kirkpatrick et al., 2017) 92.29 98.99 95.64

IMM-MEAN (Lee et al., 2017) 98.22 97.10 97.66

IMM-MODE (Lee et al., 2017) 85.51 98.47 91.99

LFL (Jung et al., 2016) 93.20 65.78 79.49

LWF (Li and Hoiem, 2017) 99.43 98.84 99.13

PC SGD (Goodfellow et al., 2013) 92.80 98.91 95.85

We denoted the learning with backpropagation as BP and learning with the predictive

coding framework as PC.We used the five random seeds in the experiments and reported

the average performance between task1 and task2.

knowledge of task 3, the knowledge of task 2 was forgotten.

Further, when the network learned knowledge of task 5, it

was confirmed that the discriminative information of tasks 1

and 2 was removed from the memories. These experimental

results confirm that a biologically plausible learning algorithm

reduces catastrophic forgetting in incremental learning

and enhances the performance of incremental learning as

one of MCTs.

We carried out additional experiments to demonstrate the

advantages of learning with the brain-inspired algorithm. We

implemented the predictive coding version of EWC (Kirkpatrick

et al., 2017), IMM-MEAN (Lee et al., 2017), and IMM-

MODE (Lee et al., 2017) algorithms and evaluated their

performance on disjoint-MNIST. In the EWC algorithm,

learning with predictive coding improves the average

performance from 95.64% to 97.52%. In addition, learning

with predictive coding enhances the average performance 0.21%

and 5.42% in IMM-MEAN and IMM-MODE, respectively.

TABLE 4 Comparison of incremental learning performance (%) on

disjoint-FMNIST.

Algorithm Method Task1 Task2 Average

BP SGD (Goodfellow et al., 2013) 67.37 97.47 82.42

SGD-F (Goodfellow et al., 2013) 91.87 82.06 86.96

EWC (Kirkpatrick et al., 2017) 88.79 96.66 92.72

IMM-MEAN (Lee et al., 2017) 85.70 95.46 87.78

IMM-MODE (Lee et al., 2017) 64.15 96.33 80.24

LFL (Jung et al., 2016) 79.00 83.01 81.00

LWF (Li and Hoiem, 2017) 91.24 97.35 94.30

PC SGD (Goodfellow et al., 2013) 75.68 97.11 86.40

We denoted the learning with backpropagation as BP and learning with the predictive

coding framework as PC.We used the five random seeds in the experiments and reported

the average performance between task1 and task2.

5. Limited Data Recognition with
Predictive Coding

The potential of predictive coding networks for limited

data recognition was then investigated. Specifically, the efficacy

of predictive coding networks in long-tailed recognition and

few-shot recognition type of MCTs was analyzed. First, real-

world datasets are often highly imbalanced following long-tail

distribution in which data category accounts for a significant

portion of the overall data (Johnson and Khoshgoftaar, 2019;

Liu et al., 2019b). Owing to the skewed class distribution of

the dataset, the network trained with a class-imbalanced dataset

may show a classification bias problem in which the samples of

tail classes are predicted as head classes (Cao et al., 2019). In

addition, managing few-shot samples in an open-world setting

is crucial because it is similar to the situation in which the

human recognition system can be encountered. Second, to

achieve more human-like recognition performance, effectively

managing few-shot examples in an open-world setting is crucial.

Two experimental scenarios are significant because it is realistic

situations that human recognition can encounter.

The cortical neuron in the human brain can learn with only

a few repetitions owing to the local synaptic plasticity (Yger

et al., 2015), and it is widely known that such plasticity

contributes to the interactions between limited data (Wu et al.,

2022). It has been demonstrated that the changes in synaptic

connections assist in learning new information and long-term

memory formation (Yang et al., 2009). Given the characteristics
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TABLE 5 Comparison of incremental learning performance (%) on split-MNIST.

Algorithm Method Task1 Task2 Task3 Task4 Task5 Average

BP SGD (Goodfellow et al., 2013) 98.52 74.06 93.74 96.43 99.61 92.47

SGD-F (Goodfellow et al., 2013) 99.95 90.52 95.43 98.06 87.38 94.27

EWC (Kirkpatrick et al., 2017) 99.41 75.24 94.21 96.34 99.60 92.96

IMM-MEAN (Lee et al., 2017) 99.94 98.67 94.38 96.55 88.33 95.57

IMM-MODE (Lee et al., 2017) 99.88 74.20 95.27 97.47 99.42 93.25

LFL (Jung et al., 2016) 94.34 52.62 54.34 70.63 89.36 72.26

LWF (Li and Hoiem, 2017) 99.95 99.10 99.77 99.83 99.76 99.68

PC SGD (Goodfellow et al., 2013) 99.89 97.09 99.28 99.39 98.37 98.80

We denoted the learning with backpropagation as BP and learning with the predictive coding framework as PC.We used the five random seeds in the experiments and reported the average

performance from task1 to task5.

TABLE 6 Comparison of incremental learning performance (%) on split-CIFAR-10.

Algorithm Method Task1 Task2 Task3 Task4 Task5 Average

BP SGD (Goodfellow et al., 2013) 72.17 66.08 71.44 84.17 93.71 77.51

SGD-F (Goodfellow et al., 2013) 95.72 67.96 60.03 69.97 77.38 74.15

EWC (Kirkpatrick et al., 2017) 72.76 64.90 67.53 73.99 72.15 70.26

IMM-MEAN (Lee et al., 2017) 89.71 78.35 78.51 74.73 78.91 80.04

IMM-MODE (Lee et al., 2017) 76.14 67.07 73.63 84.79 93.87 79.10

LFL (Jung et al., 2016) 71.50 59.30 71.71 84.47 84.85 74.37

LWF (Li and Hoiem, 2017) 76.95 70.58 78.46 94.34 93.99 82.86

PC SGD (Goodfellow et al., 2013) 70.42 74.27 80.70 87.21 90.96 80.71

We denoted the learning with backpropagation as BP and learning with the predictive coding framework as PC.We used the five random seeds in the experiments and reported the average

performance from task1 to task5.

of synaptic plasticity, experiments with a predictive coding

framework were performed on the class-imbalanced data, and

the biologically plausible learning algorithm that helped limited

data recognition was identified.

5.1. Experimental Settings

The same architecture used in the previous section

consisting of three-layer MLP was used in long-tailed

recognition. The number of hidden neurons was set as 800

with ReLU non-linearity and dropout. We used MNIST (LeCun

et al., 1998) for our experiment and synthesized the long-tailed

data with an imbalance ratio γ . The imbalance ratio was defined

as the proportion of the samples of the highest number of

classes to the lowest number of classes as Nmax
Nmin

. Although it

differed depending on the imbalance ratio, in general, Nmax

and Nmin usually followed the relationship, Nmax ≫ Nmin.

Exponential distribution and the number of samples Nl in

l-th class was defined as Nl = Nmax · γ
− l−1

L−1 . The four types

of imbalanced data distribution were then synthesized as

previously described (Kim et al., 2020). To train a network, we

set a batch size of 128 and optimized a model until 100 epochs.

When backpropagation was used for learning, the learning rate

was increased from 0.0001 to 0.5 by growing five times, and the

best performance results among them were determined. When

predictive coding was used for the optimization, a learning rate

of 0.002 with a weight decay of 2e−4 was used. Additionally, the

weight learning rate η was set as 0.1 and the number of iterations

as 20 as hyperparameters for predictive coding networks. All

the experiments with predictive coding were performed under

the fixed prediction assumption. We provide the code to

reproduce the results in the manuscript at https://github.com/

jangho2001us/PredictiveCoding$_$LongTailedRecognition.

In few-shot recognition, the same experimental settings with

those of Snell et al. (2017), which comprised four convolutional

blocks with Batch normalization, ReLU, and MaxPool were

used. Experiments on few-shot recognition were conducted

with Omniglot (Lake et al., 2011) dataset containing 1623

categories of handwritten characters. The performance of few-

shot recognition is commonly measured by N-way k-shot

classification, where N implies the number of given classes and

k indicates the number of samples in each category. The current

study extended the experimental protocol of the original paper

to 30-way k-shot experiment settings because those evaluation
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FIGURE 2

Qualitative and quantitative performance comparison on two learning schemes for (A,B) backpropagation and (C,D) predictive coding on

split-MNIST. In (A,C), the solid line indicates the average accuracy for each task and the transparent region represents the standard deviation on

five random seeds. The vertical dashed line refers to the point at which the task to be learned changes. In (B,D), each value indicates the

performance each task measured by the final model.

protocols are more difficult because the number of classes for

the candidate group increases. The learning rate was set to 1e−3

and then reduced by 1/10 every 20 epoch to train a network. For

learning networks with a predictive coding framework, the same

learning rate, weight decay, weight learning rate, and iterations

were used. For more information, please refer to the original

paper (Snell et al., 2017). We provide the code to reproduce the

results in the manuscript at https://github.com/jangho2001us/

PredictiveCoding$_$FewShotRecognition.

5.2. Experiments on Long-tailed
Recognition

In Table 7, we compared the long-tailed recognition

performance with Cross-Entropy (CE) loss, Mixup

approach (Zhang et al., 2017), Focal loss (Lin et al., 2017),

Class-Balanced Focal (CB Focal) loss (Cui et al., 2019), Label-

Distribution-Aware-Margin (LDAM) loss (Cao et al., 2019),

and Balanced Meta-Softmax (BALMS) loss (Ren et al., 2020).

Further details on multiple learning objectives are provided in

the Supplementary material. The experimental results showed

the benefit of learning with predictive coding networks. First,

the long-tailed recognition performance was higher by 4.45% in

learning the network with a predictive coding framework than

that in learning with CE loss under severe class imbalance of

data distribution. Similar results in the following experiments

were observed when the network was trained with other learning

objectives such as Focal (Lin et al., 2017) and BALMS (Ren

et al., 2020). In this experiment, the performance improvement

is evaluated using the predictive coding framework rather than

comparing performance between different learning objectives.

The results shown in Table 7 indicate that the learning algorithm

close to the human brain brings a positive effect on MCTs,

confirming our assumption.

5.3. Experiments on Few-shot
Recognition

The few-shot recognition performance trained with

backpropagation and predictive coding framework is shown

in Table 8, Learning with predictive coding enabled robust

recognition under the various few-shot experimental protocols.

Additionally, predictive coding networks showed their potential

ability under challenging inference settings such as 20-way 1-

shot and 30-way 1-shot rather than 20-way 5-shots and 30-way

5-shots. The experimental results confirmed our assumptions

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.1062678
https://github.com/jangho2001us/PredictiveCoding$_$FewShotRecognition
https://github.com/jangho2001us/PredictiveCoding$_$FewShotRecognition
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lee et al. 10.3389/fncom.2022.1062678

TABLE 7 Comparison of classification performance (%) on MNIST under four di�erent imbalance distributions.

Imbalance Ratio (γ )

Algorithm Objective Function 200 100 50 10

BP CE 68.78 78.06 89.63 97.17

Mixup (Zhang et al., 2017) 67.60 76.69 86.97 96.15

Focal (Lin et al., 2017) 70.92 79.42 90.89 97.31

CB Focal (Cui et al., 2019) 69.93 79.72 91.26 97.09

LDAM (Cao et al., 2019) 65.17 75.58 84.91 97.14

BALMS (Ren et al., 2020) 72.25 81.34 92.50 97.23

PC CE
73.23

(+4.45)

79.26

(+1.20)

90.10

(+0.47)

97.37

(+0.20)

Mixup (Zhang et al., 2017)
67.77

(+0.17)

77.60

(+0.91)

88.26

(+1.29)

96.27

(+0.12)

Focal (Lin et al., 2017)
71.99

(+1.07)

79.57

(+0.15)

91.18

(+0.29)

97.03

(-0.28)

CB Focal (Cui et al., 2019)
70.19

(+0.26)

80.28

(+0.56)

91.40

(+0.14)

97.24

(+0.14)

LDAM (Cao et al., 2019)
65.54

(+0.37)

76.05

(+0.47)

85.08

(+0.17)

97.20

(+0.06)

BALMS (Ren et al., 2020)
74.22

(+1.97)

82.28

(+0.94)

93.50

(+1.00)

97.45

(+0.22)

Experiments are performed with five random seeds, and the average performance is reported. Relative variance is provided in the bracket. Increments are presented as red and decrements

as blue.

TABLE 8 Experimental results on the low-shot recognition on the Omniglot dataset.

Algorithm Method
5-way Acc. 10-way Acc. 20-way Acc. 30-way Acc.

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

BP ProtoNet 98.41 99.56 96.87 99.18 94.64 98.54 92.97 97.98

(Snell et al., 2017)

PC ProtoNet 98.46 99.59 96.98 99.19 94.88 98.59 93.14 98.05

(Snell et al., 2017) (+0.05) (+0.03) (+0.11) (+0.01) (+0.24) (+0.05) (+0.17) (+0.07)

Five random seeds are used in the experiment, and the average performance is reported. Relative variance is shown in the bracket. Increments are presented as red.

and supported that the brain-like learning algorithm was

effective for MCTs.

6. Discussion

6.1. Analysis of Plasticity-stability Aspects

The plasticity-stability dilemma is a well-known problem

widely studied in biology (Mateos-Aparicio and Rodríguez-

Moreno, 2019). This phenomenon is related to the power of

consolidation of new information without forgetting previously

acquired information (Mermillod et al., 2013). Further, it is

an essential issue in incremental learning with ANNs (Lin

et al., 2022). The human brain is well-controlled to learn

new information and to prevent the learned information

from being overridden by the new information (Takesian and

Hensch, 2013). However, ANNs naturally induce catastrophic

forgetting and expose the trade-off between plasticity and

stability (Kirkpatrick et al., 2017).

To confirm that predictive coding achieves a better

plasticity-stability trade-off than backpropagation, we

experimented with split-MNIST by controlling the stability

of two learning mechanisms. Adjusting the learning rate

is not directly related to stability, but it was used because

it was considered as a factor that could adjust stability in

our experiments. In Figure 3, we report the experimental

results and compare the learning schemes by adjusting the

learning rate of backpropagation and the weight learning rate

of predictive coding. In backpropagation experiments, the
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FIGURE 3

Comparison of learning with (A) backpropagation and (B) predictive coding on split-MNIST in two learning schemes. To adjust network stability,

the learning rate of backpropagation and the weight learning rate of predictive coding are varied.

learning is reduced from 0.01 to 0.0001 to decrease forgetting

of acquired knowledge. When the learning rate was 0.0001, the

network forgot less information to perform task 2. However,

it still showed limited performance in tasks 1 and 2. Thus,

maintaining stability by reducing the learning rate may not

be acceptable because it deteriorates the overall performance.

Meanwhile, performance was consistently high for each task in

predictive coding experiments. These results implied predictive

coding had better plasticity properties than backpropagation

while maintaining stability.

6.2. Interplay of Hippocampus and
Prefrontal Cortex

The hippocampus plays an essential role in episodic memory

at the top of the cortical processing hierarchy (Felleman

and Van Essen, 1991). In incremental learning, the ability to

regulate learned information and retrieve context-appropriate

memories is essential. We can understand the effectiveness of

predictive coding in incremental learning as the interaction

between the hippocampus and the prefrontal cortex in the

human brain (Eichenbaum, 2017; Barron et al., 2020). It is

well known that the hippocampus can quickly encode new

information, stabilize memory traces, and organize memory

networks (Preston and Eichenbaum, 2013). In addition, this

mechanism has been physiologically proven through functional

magnetic resonance imaging studies (Hindy et al., 2019).

We have shown that the learning process of predictive

coding networks is analogous to the interaction between

the hippocampus and the prefrontal cortex in the human

brain (Eichenbaum, 2017). As described in Algorithm 1, the

learning process based on predictive coding networks can be

divided into two phases: forward and backward pass. In the

forward phase, the predictive coding network computes its

predictions for every layer. In the backward phase, the predictive

coding network minimizes the free-energy summation as a

learning objective. The two-phase learning of predictive

coding networks corresponds to acquiring and consolidating

information in the hippocampus and prefrontal cortex. The

predictive coding framework promotes the two processes and

enables accurate inference when data containing information

corresponding to the previously learned task are received.

6.3. Rationale for Selecting Predictive
Coding

The reason why we selected predictive coding as a brain-

inspired algorithm is as follows. As described in Section 2,

predictive coding is potentially more biologically plausible

because local learning rules perform parameter updates. This

property is distinct from the update of backpropagation

executed from the global error signal. It will be ideal if the

parameter update is performed asynchronously in a different

layer, such as the neural plasticity of the human brain. However,

the parameter update of predictive coding occurs under the

fixed prediction assumption (Millidge et al., 2020). The fixed

prediction assumption implies that the parameters are updated

based on the fixed predictions of the forward phase.Whittington

and Bogacz (2017) demonstrated that a predictive coding

network with a fixed prediction assumption performs the same

parameter updates as backpropagation. Another limitation of

predictive coding is the degree of convergence of variational

free energy used as a learning objective. The convergence of

the backward phase is achieved by setting a specific number

of iterations (Rosenbaum, 2021). Depending on the number

of backward iterations, learning with predictive coding may
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converge or diverge. Although these two issues introduced

earlier remain open questions, we conducted our experiments

using predictive coding because we thought its advantages

outweighed its disadvantages.

7. Conclusion

This study empirically demonstrated the potential

effectiveness of predictive coding in MCTs. However, despite

this, the predictive coding algorithm still has some limitations.

First, predictive coding requires a longer training time than

backpropagation because it executes backward iteration until

the error nodes and activation nodes converge. Although we

expanded our experiments for large networks such as VGGNet

and ResNet (He et al., 2016; Krizhevsky et al., 2017), we could

not perform the experiments on MCTs because of the excessive

training time. Second, to conduct learning with predictive

coding, the network should be an architecture composed of

sequential layers. For example, if shortcut connections exist, it is

challenging to implement them into a predictive coding layer.

In this case, we set the block unit, which is the boundary of the

shortcut, as the predictive coding layer. If predictive coding

combines learning speed and scalability, there will be infinite

opportunities for development as a learning algorithm that can

replace backpropagation.

In summary, we extensively analyze the benefits of learning

ANNs with predictive coding frameworks for MCTs. MCTs can

be described as tasks that are easy for human intelligence while

difficult for machine intelligence. Based on our hypothesis, we

empirically demonstrate that brain-inspired predictive coding

has advantages in incremental learning on MNIST and CIFAR,

long-tailed recognition on MNIST, and few-shot recognition on

Omniglot. In neuroscience, especially the intrinsic properties

of the human brain, we discuss why training ANNs with

a predictive coding framework improves the performance of

MCTs. The study concludes that predictive coding learning is

similar to the plasticity-stability property of the human brain

and mainly mimics the interaction between the hippocampus

and prefrontal cortex. Finally, it is an interesting avenue

for future work to reduce the training time under the fixed

prediction assumption and relax the constraint of predictive

coding while maintaining the performance.
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doi: 10.1016/j.cub.2013.05.041

Rao, R. P., and Ballard, D. H. (1999). Predictive coding in the visual cortex:
a functional interpretation of some extra-classical receptive-field effects. Nat.
Neurosci. 2, 79–87. doi: 10.1038/4580

Ren, J., Yu, C., Ma, X., Zhao, H., Yi, S., et al. (2020). “Balanced meta-softmax
for long-tailed visual recognition,” in Advances in Neural Information Processing
Systems 33, 4175–4186.

Rosenbaum, R. (2021). On the relationship between predictive
coding and backpropagation. arXiv preprint arXiv:2106.13082.
doi: 10.1371/journal.pone.0266102

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning
representations by back-propagating errors. Nature 323, 533–536.
doi: 10.1038/323533a0

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., et al. (2015).
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252.
doi: 10.1007/s11263-015-0816-y

Salvatori, T., Song, Y., Hong, Y., Sha, L., Frieder, S., Xu, Z., et al. (2021).
“Associative memories via predictive coding,” in Advances in Neural Information
Processing Systems 34, NeurIPS 2021.

Samuel, D., Atzmon, Y., and Chechik, G. (2021). “From generalized zero-
shot learning to long-tail with class descriptors,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, Waikoloa, HI, 286–295.
doi: 10.1109/WACV48630.2021.00033

Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018). “Overcoming
catastrophic forgetting with hard attention to the task,” in International Conference
on Machine Learning (PMLR), Stockholm, 4548–4557.

Snell, J., Swersky, K., and Zemel, R. (2017). “Prototypical networks for few-shot
learning,” in Advances in Neural Information Processing Systems 30, NeurIPS 2017,
Long Beach, CA.

Sokar, G., Mocanu, D. C., and Pechenizkiy, M. (2021). Addressing the
stability-plasticity dilemma via knowledge-aware continual learning. arXiv preprint
arXiv:2110.05329. doi: 10.48550/arXiv.2110.05329

Susman, L., Brenner, N., and Barak, O. (2019). Stable memory with unstable
synapses. Nat. Commun. 10, 1–9. doi: 10.1038/s41467-019-12306-2

Suzuki, Y., Ikeda, H., Miyamoto, T., Miyakawa, H., Seki, Y., Aonishi, T.,
et al. (2015). Noise-robust recognition of wide-field motion direction and the
underlying neural mechanisms in Drosophila melanogaster. Sci. Rep. 5, 1–12.
doi: 10.1038/srep10253

Takesian, A. E., and Hensch, T. K. (2013). Balancing
plasticity/stability across brain development. Prog. Brain Res. 207, 3–34.
doi: 10.1016/B978-0-444-63327-9.00001-1

Wardle, S. G., Taubert, J., Teichmann, L., and Baker, C. I. (2020). Rapid and
dynamic processing of face pareidolia in the human brain.Nat. Commun. 11, 1–14.
doi: 10.1038/s41467-020-18325-8

Wen, H., Han, K., Shi, J., Zhang, Y., Culurciello, E., and Liu, Z. (2018). “Deep
predictive coding network for object recognition,” in International Conference on
Machine Learning (PMLR), 5266–5275.

Whittington, J. C., and Bogacz, R. (2017). An approximation of the error
backpropagation algorithm in a predictive coding network with local hebbian
synaptic plasticity. Neural Comput. 29, 1229–1262. doi: 10.1162/NECO_a_00949

Woo, S., Park, J., Hong, J., and Jeon, D. (2021). “Activation sharing
with asymmetric paths solves weight transport problem without bidirectional
connection,” in Advances in Neural Information Processing Systems 34, NeurIPS
2021.

Wu, Y., Zhao, R., Zhu, J., Chen, F., Xu, M., Li, G., et al. (2022). Brain-inspired
global-local learning incorporated with neuromorphic computing. Nat. Commun.
13, 1–14. doi: 10.1038/s41467-021-27653-2

Xiao, H., Rasul, K., and Vollgraf, R. (2017). Fashion-MNIST: a novel
image dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747. doi: 10.48550/arXiv.1708.07747

Xu, Y., and Vaziri-Pashkam, M. (2021). Limits to visual representational
correspondence between convolutional neural networks and the human brain.Nat.
Commun. 12, 1–16. doi: 10.1038/s41467-021-22244-7

Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are
associated with lifelong memories. Nature 462, 920–924. doi: 10.1038/nature08577

Yang, S., Gao, T.,Wang, J., Deng, B., Azghadi,M. R., Lei, T., et al. (2022a). SAM: a
unified self-adaptive multicompartmental spiking neuron model for learning with
working memory. Front. Neurosci. 16, 850945. doi: 10.3389/fnins.2022.850945

Yang, S., Linares-Barranco, B., and Chen, B. (2022b). Heterogeneous ensemble-
based spike-driven few-shot online learning. Front. Neurosci. 16, 850932.
doi: 10.3389/fnins.2022.850932

Yang, S., Tan, J., and Chen, B. (2022c). Robust spike-based continual meta-
learning improved by restricted minimum error entropy criterion. Entropy 24, 455.
doi: 10.3390/e24040455

Yger, P., Stimberg, M., and Brette, R. (2015). Fast learning with weak synaptic
plasticity. J. Neurosci. 35, 13351–13362. doi: 10.1523/JNEUROSCI.0607-15.2015

Zhang, H., Cisse, M., Dauphin, Y. N., and Lopez-Paz, D. (2017).
mixup: beyond empirical risk minimization. arXiv preprint arXiv:1710.09412.
doi: 10.48550/arXiv.1710.09412

Zhou, Z., and Firestone, C. (2019). Humans can decipher adversarial images.
Nat. Commun. 10, 1–9. doi: 10.1038/s41467-019-08931-6

Frontiers inComputationalNeuroscience 14 frontiersin.org

https://doi.org/10.3389/fncom.2022.1062678
https://doi.org/10.1038/ncomms13276
https://doi.org/10.1109/CVPR52688.2022.00019
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.1007/s11633-022-1375-7
https://doi.org/10.1016/S2589-7500(19)30123-2
https://doi.org/10.1109/CVPR.2019.00264
https://doi.org/10.48550/arXiv.2010.15277
https://doi.org/10.3389/fncel.2019.00066
https://doi.org/10.1016/S0079-7421(08)60536-8
https://doi.org/10.3389/fpsyg.2013.00504
https://doi.org/10.48550/arXiv.2006.04182
https://doi.org/10.1038/nrn2303
https://doi.org/10.1016/j.neuron.2012.03.024
https://doi.org/10.1038/s41467-021-26022-3
https://doi.org/10.1002/wdev.216
https://doi.org/10.1016/j.cub.2013.05.041
https://doi.org/10.1038/4580
https://doi.org/10.1371/journal.pone.0266102
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/WACV48630.2021.00033
https://doi.org/10.48550/arXiv.2110.05329
https://doi.org/10.1038/s41467-019-12306-2
https://doi.org/10.1038/srep10253
https://doi.org/10.1016/B978-0-444-63327-9.00001-1
https://doi.org/10.1038/s41467-020-18325-8
https://doi.org/10.1162/NECO_a_00949
https://doi.org/10.1038/s41467-021-27653-2
https://doi.org/10.48550/arXiv.1708.07747
https://doi.org/10.1038/s41467-021-22244-7
https://doi.org/10.1038/nature08577
https://doi.org/10.3389/fnins.2022.850945
https://doi.org/10.3389/fnins.2022.850932
https://doi.org/10.3390/e24040455
https://doi.org/10.1523/JNEUROSCI.0607-15.2015
https://doi.org/10.48550/arXiv.1710.09412
https://doi.org/10.1038/s41467-019-08931-6
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org

	Brain-inspired Predictive Coding Improves the Performance of Machine Challenging Tasks
	1. Introduction
	2. Related Work
	2.1. Biologically Plausible Learning
	2.2. Machine Challenging Tasks (MCTs)

	3. Predictive Coding Networks
	4. Incremental Learning with Predictive Coding
	4.1. Experimental Settings
	4.2. Experiments on Incremental Learning

	5. Limited Data Recognition with Predictive Coding
	5.1. Experimental Settings
	5.2. Experiments on Long-tailed Recognition
	5.3. Experiments on Few-shot Recognition

	6. Discussion
	6.1. Analysis of Plasticity-stability Aspects
	6.2. Interplay of Hippocampus and Prefrontal Cortex
	6.3. Rationale for Selecting Predictive Coding

	7. Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


