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Sensorimotor information provided by mossy fibers (MF) is mapped to high-

dimensional space by a huge number of granule cells (GrC) in the cerebellar

cortex’s input layer. Significant studies have demonstrated the computational

advantages and primary contributor of this expansion recoding. Here, we

propose a novel perspective on the expansion recoding where each GrC

serve as a kernel basis function, thereby the cerebellum can operate like a

kernel machine that implicitly use high dimensional (even infinite) feature

spaces. We highlight that the generation of kernel basis function is indeed

biologically plausible scenario, considering that the key idea of kernel machine

is to memorize important input patterns. We present potential regimes for

developing kernels under constrained resources and discuss the advantages

and disadvantages of each regime using various simulation settings.

KEYWORDS

cerebellum, expansion recoding, kernel machine, radial basis (RBF) neural network,
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Introduction

Sensorimotor information from multiple sources enters the cerebellar cortex via
mossy fibers (MFs), where it is transformed and represented in a much larger population
of granule cells (GrCs). This “expansion recoding” of MF can be regarded as the
projection of distinct patterns into a high-dimensional space where they are more likely
to be linearly separable, thus making easier to be readout by Purkinje cells (PC) (Albus,
1971; Cayco-Gajic and Silver, 2019). There have been investigations concerning the
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computational importance of expansion recoding and what
factors contribute it. For example, sparse coding of GrCs
has been highlighted as a strategy for producing minimum
overlap between GrCs representations for distinct states (Albus,
1971; Marr and Thach, 1991; Olshausen and Field, 2004).
Meanwhile, several studies have focused mainly on the role of
sparse connectivity between MFs and GrCs in high-dimensional
expansion (Billings et al., 2014; Cayco-Gajic et al., 2017; Litwin-
Kumar et al., 2017).

However, in majority of these discussions, it has been readily
assumed that the input representation is expanded to high-
dimensional space via random projection. Random expansion
can increase the capacity to differentiate across varied input
combinations. Meanwhile, it implies that population codes
are largely unstructured and task independent (Flesch et al.,
2022). Though it is unknown whether the granular layer’s
expansion is truly random, a few notable studies have been
conducted to examine this subject. According to one study,
when noisy clustered inputs were expanded through random
synapses, response variability for inputs within the same cluster
was increased, and this noise amplification effect was more
pronounced as the expanded representation became sparser
(Babadi and Sompolinsky, 2014). A recent study, on the
other hand, suggested that random expansion in GrC layers
can optimally transforms representations to assist learning
when compression to pontine nuclei (presynaptic layer to
the granular layer) is structured (Muscinelli et al., 2022).
There have been also comparable discussions in other brain
regions. It has been demonstrated that a high dimensional
representation seen in the prefrontal cortex may be produced
by non-linearly combining diverse input sources from a
randomly connected neuronal population (Barak et al., 2013;
Rigotti et al., 2013). Alternatively, it has been shown that the
neuronal representations of the prefrontal and parietal cortex
are structured on a low-dimensional and task-specific manifold
during context-dependent decision making (Mante et al., 2013;
Flesch et al., 2022). In the fly olfactory system whose expansion
structure is similar with the cerebellum (Stevens, 2015), it is
known that glomerular inputs to Kenyon cells increase their
dimensions by random convergence rather than organized
connectivity (Caron et al., 2013).

In this study, we propose and investigate the possible
scenarios of structured expansion of the GrC layer. In particular,
we consider the possibility that the GrCs serve as kernel
basis functions, thereby the cerebellum can operate like a
kernel machine that implicitly uses high dimensional (even
infinite) feature spaces. Even highly complex tasks then can
be performed by simple linear combination of the granular
outputs by the downstream PCs. To investigate candidate
scenarios that develop kernels under constrained resources
(i.e., restricted number of kernels), we conducted simulations
under various experimental conditions and compared their
strengths and weaknesses.

Granule cells can serve as the
kernel basis functions tuned to
specific combinations of mossy
fiber inputs

Although there have been some reports that firing rates of
cerebellar neurons linearly encode task-related factors (Ebner
et al., 2011), this does not preclude the possibility of the non-
linear computations in the cerebellum (Dean and Porrill, 2011).
Given the architecture of MFs-GrCs-PCs, GrCs can be modeled
as basis functions that mix the MF inputs and offer bases that
can be linearly combined by the PCs. Then, mathematically,
only simple linear combination in the PC can make non-linear
mapping from MF inputs (Raymond and Medina, 2018; Sanger
et al., 2020).

Beyond this simple concept of basis function, we propose
that a GrC can function as a non-linear kernel (e.g., Gaussian
kernel) that computes similarity of the received inputs to a
specific activity pattern in the MF space, to which a kernel
is tuned. It has been widely observed that neurons in the
brain are tuned to important and/or commonly encountered
patterns among experienced stimuli (Hubel and Wiesel, 1962;
Georgopoulos et al., 1982; Aflalo and Graziano, 2007). Assuming
that GrCs are also tuned to previously experienced stimulus
patterns, it is natural to view them as kernels memorizing
training data samples, which is a fundamental concept of the
kernel machine. To elaborate our perspective, first, we gently
remind that non-linear decision boundary in the original input
space can be transformed to linear decision boundary in high-
dimensional feature space (Figure 1A, top). A deep neural
network’s learned function can also be expressed as a linear
combination of the representation of the last hidden layer,
corresponding to the transformed inputs in the feature space
(Figure 1A, bottom left). Biological neural networks can also
use the same strategy (high-dimensional expansion followed by
simple linear combination) to represent complicated functions
in many brain areas. However, backpropagation, the standard
training method for deep neural networks is often regarded
as biologically implausible. The question then becomes how
biological neural networks identify high-dimensional feature
spaces in order to learn complicated target functions. One
possibility is a simple random projection into the high-
dimensional space without any structure. The other possibility
we propose is that kernel functions can provide efficient solution
and the cerebellum could have adopted it. It is well known that
every function, no matter how complicated, can be represented
as a linear combination of kernel functions as long as it is
located in the reproducing kernel Hilbert space (Schölkopf
et al., 2002; Figure 1A, bottom right). Kernel functions induce
high-dimensional (even infinite) feature space implicitly by
memorizing the training samples (known as “kernel trick”).
Consequently, given that we assume that kernels already have
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FIGURE 1

Cerebellum viewed as a kernel machine and candidate regimes for locating kernel basis functions. (A) Input data x ∈ X can become linearly
separable by mapping to the high-dimensional feature space F, and a target function f can be expressed as a linear combination of the bases in

the high dimensional feature space (top), A learned function of deep neural network
∧

y can be represented as a linear combination of feature
detectors φ, which compose the mapping function φ : X→ F (bottom left). If target function f exists in reproducing kernel Hilbert space, it can
also be found as a linear combination of kernel functions κ : XxX→ R. Then, the cerebellar microcircuit can be described as a kernel machine,
where mossy fiber (MF) inputs are implicitly mapped to the feature space by the kernel evaluations in granule cell (GrC) layer and the learning is
confined to synaptic weights between parallel fiber (PF) and Purkinje cell (PC) (bottom right). The φ subscript and κ subscript denote the index
of hidden unit in each network, and wi and α denote the weight from jth hidden unit to the output in each model. (B) Representative examples
of candidate kernel regime. The regular kernel regime partitions the input space based on Cartesian coordinates. The K-means kernel regime,
named after K-means clustering algorithm, covers the data distribution based on their cluster structure. The support vector kernel regime
selects samples to maximize the margin between different classes, resulting in a dense allocation of kernel functions along the decision
boundary.

been properly developed through the evolution or development,
the kernel machine can be a biologically plausible model that has
the benefit of avoiding computational complexity while utilizing
the feature space’s representational capability (Príncipe et al.,
2011).

Here, we present a Gaussian kernel as an example of non-
linear kernel, which is a popular and powerful kernel for pattern
recognition (In the discussion, the biological plausibility of
assuming Gaussian kernel is addressed in further depth). If
each GrC is thought of as a Gaussian kernel function centered
on a certain input pattern, then computation of the granular
layer is thought of as a calculation of the similarity between
the new input data and the centers of the kernels (i.e., input
patterns to which GrCs are tuned). The PCs then compute
weighted summation of GrC outputs, and in fact, this circuit
is equivalent to a radial basis function (RBF) network. It has
been shown that RBF networks with single hidden layer are
capable of universal approximation (Park and Sandberg, 1991).
However, the problem is that the complexity of kernel methods
is often proportional to the number of training data on a
linear, quadratic, or even cubic scale. Thus, sparsification, the
process of selecting only “important” subset of training samples,

is essential. In biological context, limited computing resources
might impose this sparsification issue. Consequently, we raise
the question of which regime would have been adopted to
identify important input patterns (Figure 1B), suggest candidate
regimes, and provide preliminary simulation results.

Candidate regimes for identifying
important input patterns under
constrained resources

We present potential strategies to identify important input
patterns (combination of MFs) and assign them as kernel bases,
which could be implemented throughout the evolution and/or
developmental process (Figure 1B).

Presented regimes can be broadly divided into a task-
independent regime that selects a set of samples that efficiently
cover the input space regardless of task demands and a task-
dependent approach that selects the relevant samples for the
task being performed. Proposed task-independent regimes are
as follows; (1) Random kernel regime where samples are chosen
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FIGURE 2

Simulation results of candidate regimes under various experimental settings. (A) Generated dataset with varied degrees of distributional
complexity. From the left to right: Two classes of data were drawn from a mixture of Gaussian distribution with 2, 5, and 25 clusters.
(B) Classification accuracy of random projection regime with and without non-linear activation. From the left to right: the performances of
network models with 5, 20, and 100 hidden units. (C) Classification accuracy of candidate regimes. Each row reflects the proportion of relevant
dimensions in input data, and each column represents the number of hidden units (kernel basis functions), reflecting the model’s resource
constraint. Each line color represents a different regime, and legends are only inserted in the plots in the last column for visualization. In panels
(B,C), the X-axis labels depict the number of local clusters in the dataset, representing data distributional complexity. (D) Selected samples in
each regime. On the input data, chosen samples (centers of Gaussian kernels) in each regime are plotted with the cross mark.

randomly, (2) Regular kernel regime where samples are selected
in such a way to cover every dimension of the input space evenly,
(3) Frequency kernel regime where the most frequent samples
are chosen, and (4) K-means kernel regime where samples
close to cluster centroids are chosen. Proposed task-dependent
regimes are as follows; (1) Support vector kernel regime
which pick samples near to the decision surface that separates
the classes in a manner that maximizes the margin between
the classes, and (2) Novelty kernel regime that sequentially
recruits samples with novelty criterion and conducts pruning,
alternatively (Refer to “2.5 Method” section for the details).
Lastly, random projection regime is adopted as a control.

Comparing classification
performance of candidate regimes
under varying conditions

To compare the efficacy of the candidate regimes under
diverse experimental conditions, we built neural network
models according to each regime and evaluated the learning

performances for the binary classification task (Refer to
“2.5 Method” section for the details). The experimental
condition consists of two components. The first relates to data,
which is further subdivided into data distribution complexity
(Figure 2A) and proportion of task-relevant dimension. The
second is resource constraint, which refers to the allowed
number of kernel basis functions that comprise the hidden layer
(i.e., the number of recruited GrCs).

First, we confirmed that non-linear computation in
expansion layer can provide advantage compared to linear
computation in our classification task (Figure 2B). Then,
we investigated if the various kernel machines outperform
the random projection model under varying conditions,
and if so, which kernel regime is preferable under which
conditions (Figure 2C). We found that, overall, the kernel
regimes outperformed the random projection regime in
varying conditions. Among the kernel regimes, the novelty
kernel regime was particularly robust to diverse experimental
conditions and ranked highly on average. The order of the
other kernel regimes was varied depending on the experimental
settings, but there was no discernible pattern. The support
vector kernel regime rated top in the condition that the largest
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number of kernels are allowed (kernel basis function = 100), but
its performance was suffered greatly under all other conditions.
Even if the kernels were chosen in the same way as the
support vector machine, one of the most powerful algorithms
in machine learning, it may be a highly inefficient strategy when
the number of available kernels is insufficient in relation to the
complexity of the task. In case of the regular kernel regime, the
performance degradation was most noticeable as the fraction
of irrelevant feature dimensions grew. This regime distributes
kernel resources as uniformly as possible over all dimensions
of the input space without regard for data structure or task
relevance, therefore when the distribution of data is skewed in
a particular direction or relevant information is scarce in the
input, this strategy would be extremely inefficient. However, it
may be advantageous when the distribution of data is unknown
or flexible.

As stated above, kernel regimes generally perform better
than random projection, yet it is notable that random projection
benefits under certain conditions. The stronger the resource
constraint and the sparser the task-relevant dimension (moving
to the lower left of Figure 2C), the higher the ranking of random
projection. Notably, under the condition that only a few kernel
functions are available and that the proportion of task-relevant
to irrelevant information in the input is 50/50 (Figure 2C, kernel
basis function = 5, and relevant dimension = 2/4), random
projection regime came in second, following the first-place
method by a small margin. It suggests that random strategy may
be effective option in the absence of reliable prior knowledge for
the data or task.

Discussion

The cerebellar GrCs, the most abundant neurons in the
brains of many vertebrates, make up the cerebellar input
layer. Diverse discussions have been advanced regarding the
computational significance of this dense neuronal population.
Many studies have focused on expansion recoding and the
crucial factors that lead to the high-dimensional representation.
These arguments are mostly based on known physiological
and anatomical characteristics of the cerebellar circuit, such as
coding level of GrCs and sparse connectivity between MFs and
GrCs. Our proposal is significant in the following ways: First,
we proposed GrCs behave as kernel basis functions, explaining
how cerebellar cortex provides great representational capacity at
accountable computing cost. Second, this broadens the question
to include how to identify the kernel basis functions in terms of
resource constraint.

Related biological features supporting
each kernel regimes

Although the kernel regimes we suggested are theoretically
driven, there are biological findings to support each regime.

First, the regular kernel regime, which disperses neural
activity pattern over the coding space, is closely related
to the decorrelation between GrC activities serving for
the dimensionality expansion of the cerebellar input layer
(Albus, 1971; Fujita, 1982; Marr and Thach, 1991). Various
studies have been made on circuit-level properties that
facilitate decorrelation, including sparse coding (Albus,
1971; Marr and Thach, 1991; Olshausen and Field, 2004),
sparse synaptic connectivity (Billings et al., 2014; Cayco-Gajic
et al., 2017; Litwin-Kumar et al., 2017), and neuronal non-
linearities (thresholding) whose effect is amplified by recurrent
connections (Wiechert et al., 2010). There was also a study
of cell-level properties that lead to decorrelation between
individual neurons; Different types of glutamate receptors on
unipolar brush cells, which relay MF inputs to GrCs, contribute
to the phase dispersion of GrC response (Zampini et al.,
2016). It ensures that a subset of GrC is always active at any
point during vestibular input, allowing coding resources to be
distributed to cover the entire input space.

The common characteristic of task-independent regimes
other than regular kernel regime is to utilize prior knowledge
for the input distribution. One significant study suggested
that the cerebellum can encode temporal statistics of inputs
using Bayesian estimation with a bias toward the mean of
the prior distribution (Narain et al., 2018). They demonstrated
that principal anatomical and physiological components of the
cerebellar circuit for using prior distributions of time intervals
are heterogenous temporal basis set across GrCs, learning of
synaptic weights onto PCs, and integration of PC activity in the
cerebellar deep nuclei. There was also one study whose findings
agreed with the concept of frequency kernel regime. They
showed that given a population of noisy neurons, each with its
own tuning curve, the information-maximizing solution leads
to a more precise representation for frequently encountered
stimuli (Ganguli and Simoncelli, 2014).

On the other hand, recent experimental findings may lend
support to task-dependent regimes in which encoding of task-
relevant features takes priority over encoding of task-irrelevant
features. According to a one research, GrCs encode more task-
related information after learning, and the dimensionality of
the neuronal population decreases, indicating an increased
correlation (Wagner et al., 2019). This distinct change in neural
encoding was observed concurrently in the cortex, implying
that shared dynamics emerge and propagate during learning.
Though it is largely unknown how feature selection is guided,
it is known that during motor learning, the cerebellum can
modify ongoing predictive responses based on the widespread
predictive feedback signal (Giovannucci et al., 2017), and this
feedback may help detect task-relevant inputs. In particular, one
recent research suggests that projection from deep cerebellar
nuclei to pontine nuclei may be taught in a supervised way
by exploiting feedback signal between them to detect task-
relevant components sent to GrCs (Muscinelli et al., 2022). In
addition, it has been discovered that reward-related signals are
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transmitted to the cerebellar cortex via both mossy and climbing
fibers (Kostadinov and Häusser, 2022), and the emergence of
GrCs tuned to specific combinations of actions and reward
(Wagner et al., 2019) implies that they learn to associate a
specific sensorimotor feature with an upcoming reward.

Compatibility with other models of the
cerebellum

Though our experiment is about spatial input pattern
classification, it can be broadly interpreted. The input data
matrix, in particular, can be viewed as a concatenation of
time-varying static inputs, and the GrCs tuned to a particular
data sample can then be interpreted as spatiotemporal kernels.
Obviously, the data used in our experiments lacks typical
temporal structures and it may be needed to examine how the
temporal pattern of the input affects our findings in future
research. However, we believe the major conclusions drawn
from our findings will remain valid.

Given the fact that the GrC layer provides temporal
basis filters, the proposed kernel machine can be compared
to representative cerebellar microcircuit models such as the
adaptive filter model (Fujita, 1982) and the liquid state machine
(Yamazaki and Tanaka, 2007). Indeed, both the proposed kernel
machine and liquid state machine are analysis-synthesis filters,
which belong to a flexible class of adaptive filters in which input
signals are decomposed into component signals by a set of filters
and then recombined with adjustable weights (Dean et al., 2010).
One of the key differences between these models and our kernel
machine model is how filters are built. In liquid state machines,
the granular layer is modeled as a random recurrent inhibitory
network of spiking model neurons (also known as a reservoir),
in which temporal integration of recurrent connections for
GrC activity makes populations to behave as temporal basis
filters with varying time constants. In comparison, we explicitly
model the cerebellar circuit as a feedforward network, implicitly
assuming that spatiotemporal kernels could be formed as a
result of spatial contrast or temporal integration provided by
recurrent connections in the granular layer. In other words,
feedforward propagation through kernel functions accounts
for recurrent connections in the GrC layer. Our proposal to
model the cerebellum as a kernel machine is distinctive in
that it proposes a specific form of GrC computing, which
provides unique insights. Because individual GrCs are modeled
as kernel functions tuned to previously experienced stimuli, the
discussion is broadened to include which experiences should be
retained in the face of limited capacity. Notably, there is a study
that models the GrCs as Gaussian kernels across time (Narain
et al., 2018), the same as our model. Yet, it was a simplification
for the facts that each GrC is likely to be activated at multiple
time intervals and exhibit a temporally diverse activity pattern,
whereas our focus in introducing the kernel functions was their
computational features in terms of kernel machine.

Biological plausibility for Gaussian
tuning of granule cells

The Gaussian kernel we suggested is a popular and powerful
kernel for pattern recognition, but the hidden unit in a neural
network with a single hidden layer cannot produce Gaussian
tuning. Although the GrC layer has typically been modeled as
a single layer, we suggest that it be modeled as a multi-layer
in order to account for the negative feedback loop between
excitatory GrCs and inhibitory Golgi cells. Even though Golgi
cell inhibition is included in the cerebellar cortex model, it
has typically been treated such that GrCs get homogenous
inhibition proportional to the overall activity of the input
layer, reflecting the fact that Golgi cells are electrically coupled
through a gap junction. Recent observation shown, however,
that local Golgi cell circuits exhibit multidimensional population
activity during spontaneous behavior, including heterogeneous
dynamics localized to a subset of neurons as well as dynamics
shared by the whole population (Gurnani and Silver, 2021).
This justifies modeling the connections between MFs, Golgi
cells, and GrCs on multiple layers. In addition, there were
experimental results implying GrC’s Gaussian tuning for specific
input patterns. Zebrafish GrCs demonstrated a receptive field
spanning 5–25% of the visual field (Knogler et al., 2017), and
mouse GrCs exhibited narrow tuning to whisker set point at
the level of individual cell while populations seemed to linearly
encode a broad range of movement (Chen et al., 2017).

Two distinct solutions found in artificial
neural networks

Proposed candidate regimes for identifying kernel basis
functions are divided into task-independent and task-dependent
approach, with each approach assuming that the neural
representation is organized irrespective of a particular task
or according to task needs. Intriguingly, an analogous debate
exists in machine learning over the relationship of neural
representations with a given task; artificial neural networks
address non-linear problems in two distinct ways. One is the
so-called lazy regime, in which the hidden layer representation
of a neural network is nothing more than a random projection
of inputs into high-dimensional space, and only manipulation
of readout weight may induce associative learning. Alternately,
the network may learn a structured projection to a hidden
layer depending on the task requirements (aka rich regime)
(Chizat et al., 2019; Woodworth et al., 2020). The random
projection model we adopted as a control model corresponds
to this lazy regime, and the candidate regimes provided here
may be regarded as a compromise between the lazy and rich
regimes. The novelty or support vector kernel regime is close to
the rich regime since it is supervised to discover task-relevant
samples. The task-independent regimes, though they are not
random, but they share task-agonistic characteristics with the
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lazy regimes. The lazy and rich regimes emerge during the
training of neural networks when the variance of the weight
initialization distribution is high and small, respectively (Chizat
et al., 2019). Likewise, the distribution of synaptic weight might
affect the degree of decorrelation between GrCs, requiring its
incorporation into further experimental validation.

Biological implications of experimental
conditions

Since the sparseness of activation of GrCs is still debated,
specifying the number of GrCs recruited for a certain task was
challenging in our study. Hence, instead of using the known
anatomical ratio of MFs, GrCs, and PCs in constructing the
model, we imposed varying levels of resource constraint for
the number of hidden units. According to our results, the
ideal regime may differ depending on whether GrC coding is
sparse or dense.

Typically, input noise referred to the degree to which
relevant signals are corrupted by internal or external noise.
However, given the diversity of information encoded in the
granular layer, including multimodal sensory inputs (Ishikawa
et al., 2015), motivation and cerebellar internal state (Badura
and De Zeeuw, 2017), the MF input of individual GrCs may
comprise both irrelevant and relevant variables to the present
task. In this regard, we added an irrelevant dimension to the
input in different ratios. Given that evaluation for each regime
is often based on the tradeoff between pattern separability and
noise robustness, the design of the input noise will be a crucial
element.

It has been acknowledged that the number of task
parameters will establish the upper limit of the representation’s
dimension (Gao and Ganguli, 2015). Though we only adjusted
the complexity of data distribution in a single binary
classification task, it would be preferable to construct richer
tasks and quantify their dimensionality in future research.

Does decorrelation of hidden units
always guarantee high performance?

The decorrelation between hidden units has been
recognized as an important determinant of representational
dimensionality, which is related to the tradeoff between
representational power and generalizability. In our regimes,
frequency regime tends to have considerable redundancy
between kernel bases. The redundancy can increase precision
in a local region where kernel centers are densely distributed.
In contrast, regular kernel regime disperses the center position
throughout the whole input space, therefore the correlation
between kernel bases will be relatively low, hence increasing
the capacity for representation (Figure 2D). Despite having
the highest dimensionality of the expanded representation, the

regular regime was generally graded poorly, and it suffered
greatly from a large ratio of irrelevant dimension. This suggests
that increasing the dimensionality of a representation by
restricting decorrelation does not always ensure optimal
performance in all circumstances. The findings of the
experiment demonstrated that the task-dependent regimes
performed better on average. This result suggests that it could
be advantageous to invest redundant resources on precisely
encoding the task-relevant information, despite this strategy
would not maximize the dimensionality of the representation.

Kernel machine can be an alternative
model of biological neural networks
with biologically plausible learning rule

The artificial neural networks were inspired by neural
computing and brain structure at first, and the approach that
employs them as a computational model of the brain has gained
popularity (Richards et al., 2019). However, the backpropagation
algorithm’s end-to-end training is a non-biological facet of deep
learning, raising the question of how similar the computational
concept of an artificial neural network is to that of the brain.

In this regard, backpropagation is not always needed for
the kernel basis function to emerge. Indeed, since any target
function that reside in reproducing kernel Hilbert space can
be represented as a linear combination of kernel functions
(Príncipe et al., 2011), learning can be confined to the readout
weight alone. Even when utilizing kernel functions centered
at randomly picked samples (random kernel regime), the
performance in our experiment was quite impressive, indicating
the strength of the kernel approach itself. We speculate that
Hebbian learning could be a feasible mechanism for the
emergence of a kernel function in that the basic idea of
reinforcement of a frequently observed pattern is similar. In
addition, the learning of the readout layer may be readily taught
in a biologically plausible way, such as a covariance learning rule.
It is worth noting that expansion coding is seen in diverse brain
regions, (Mombaerts et al., 1996; Brecht and Sakmann, 2002;
DeWeese et al., 2003; Turner et al., 2008; Chacron et al., 2011)
implying that the kernel machine might be a suitable model in a
variety of brain regions.

Closing remarks

We suggested potential regimes and compared their readout
accuracy since the purpose of the experiment was to simply
demonstrate the pros and cons of them under varying
experimental settings. However, representation of each regime
might be better evaluated based on broader range of factors
(e.g., dimensionality, convergence speed of readout classifier,
and computing load). It is also noteworthy that the performance
reported here may not be the maximum for each regime. There
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is room for improvement in performance by doing a more
extensive grid search on hyperparameters and using efficient
optimization techniques. Also, if adaptive learning was allowed
for the width of each Gaussian kernel, the local structure of the
data might be captured with more accuracy. The cerebellum,
whose characteristic of the circuit is well understood, is a great
place to study the computational principle of neural population
based on physiological, anatomical, and theoretical reasoning.
By actively introducing viewpoints in machine learning, it is
not only beneficial to use well-established theories and analytical
tools, but also to raise questions from a different angle. Inversely,
the solution of biological neural networks may serve as a crucial
reference in the field of machine learning.

Method

Dataset

We generated datasets in which data from two distinct
classes are entangled to varying degrees while distributed in a
limited area of a two-dimensional input space. Each dataset was
modeled as a mixture of Gaussian distribution with 2K clusters,
parameterized by a mean vector µk ∈ R2 corresponding to the
cluster centers and an isotropic covariance matrix 6k = σ2

kI2 ∈

R2 x 2 corresponding to the cluster covariances, where K is the
number of clusters in each class (2, 5, and 25 for each dataset)
and k = 1,. . ., 2K.

For each dataset, 100,000 data points are sampled from the
specified distribution, with 70% used as a training set and 30%
used as a test set to evaluate performance. The class of each
center was randomly assigned, and the class of each sample
was determined by the class of the nearest center. Data labels
are corrupted independently by random noise with rate 0.05.
To mimic the situation that MFs convey diverse information
such as external stimuli, interpretation of the context, and
internal state of the cerebellum, we added additional input
dimensions that have no relevant information to the given task
(i.e., irrelevant dimensions). Values for irrelevant dimensions
were drawn from the uniform distribution, spanning the same
range as values for relevant dimensions.

Neural network model

The artificial neural model with one hidden layer was
constructed. The input is a p-dimensional real vector, the
hidden representation is a m-dimensional real vector, and the
output is a scalar (p and m are varying parameters under
experimental conditions). In the random projection regime,
the output of the model can be described as follows; y =∑m

j=1 αjf
(∑p

i=1 wijxi + b1

)
+ b2, where αj denotes the weight

from the hidden unit j to the output, f denotes the activation

function, wij denotes the weight from the input unit i to the
hidden unit j, and b1 and b2 denotes the bias of the hidden
and output layer, respectively. The elements of projection
matrix wij were drawn from N

(
0, 32), and the readout weights

α = (α1, ...αm) were determined to be a closed-form solution of
the linear least-squares problem in all regimes; α = (HTH)−1y,
where H ∈ Rnxm and y ∈ Rn represent the mean-centered
hidden layer matrix and the label vector, where n and m denote
the number of training data and dimension of the hidden layer,
respectively. In the kernel regimes, the output of the model can
be formulated as follows; y =

∑m
j=1 αjκ

(
·, xj

)
+ b, where αj

denotes the weight from the hidden unit j to the output, κ
(
·, xj

)
:

X x X→ R is Gaussian kernel function centered on xj ∈ X; X

is the input domain, a subset of Rp, κ(x, xj) = 1
√

2πσj
e
−
(x−xj)

2

2σ2
j

for every x ∈ X, where σj is width of the jth Gaussian kernel, and
they are fixed to 1 for every kernel functions in our experiment.
The set of kernel centers Xc = {xj}mj=1 was determined by
each kernel regime.

Selecting kernel samples under
candidate regimes

The number of allowed kernel functions (the dimension of
hidden layer) m was varied between 5, 20, and 100, and within
this number, m-training samples were chosen as the kernel
centers for each regime.

The random kernel regime randomly selected m-training
samples with equal probability. For the regular kernel regime,
all dimensions in the input space were binned linearly with
a bin size of

⌈
p√m
⌉

, where p indicates the input dimension.
Regular coordinates were then generated by the Cartesian
product of discretized dimensions, and 1,000 subsets with
m-coordinates were sampled. The kernel centers were chosen
to be the samples closest to each coordinate. The average of
performances for each subset was reported, representing the
empirical expected value. For the frequency regime, the input
space was divided into a lattice of equal volume subspaces
and the number of samples in each subspace was counted
(Space division was performed with varying levels of v,
meaning that the greater this value, the narrower the range
for considering similar patterns to be identical). Sorted by the
frequency, top m-grids were selected and the samples closest
to the subspace centroids were chosen as the kernel center.
In the K-means kernel regime, K-means clustering algorithm
assuming m-clusters was applied to the trainset and the closest
samples to the captured centroids were chosen as the kernel
centers. For the novelty kernel regime, novelty criterion idea
(Platt, 1991) was applied with slight modification. The kernel
center dictionary began with a single random sample, and
training samples are given to the model in a random order.
Based on the current set of kernels, the model makes prediction
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for each incoming sample. If the error has increased by more
than the pre-set value δ since the previous stage, it is determined
that the novelty (surprise) of that sample is high, and it is added
as a kernel center. When the number of centers in the dictionary
exceeded m, the pruning procedure was used to eliminate the
center with the least readout weight whenever a new sample was
entered as a kernel center. A grid search across a feasible range
was used to choose the hyperparameters (v and δ).
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