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Introduction:Analysis and prediction of seizures by processing the EEG signals

could assist doctors in accurate diagnosis and improve the quality of the

patient’s life with epilepsy. Nowadays, seizure prediction models based on

deep learning have become one of the most popular topics in seizure studies,

and many models have been presented. However, the prediction results

are strongly related to the various complicated pre-processing strategies of

models, and cannot be directly applied to raw data in real-time applications.

Moreover, due to the inherent deficiencies in single-frame models and the

non-stationary nature of EEG signals, the generalization ability of the existing

model frameworks is generally poor.

Methods: Therefore, we proposed an end-to-end seizure prediction model

in this paper, where we designed a multi-frame network for automatic

feature extraction and classification. Instance and sequence-based frames

are proposed in our approach, which can help us simultaneously extract

features of di�erent modes for further classification. Moreover, complicated

pre-processing steps are not included in our model, and the novel frames can

be directly applied to the raw data. It should be noted that the approaches

proposed in the paper can be easily used as the general model which has been

validated and compared with existing model frames.

Results: The experimental results showed that the multi-frame network

proposed in this paper was superior to the existing model frame in accuracy,

sensitivity, specificity, F1-score, and AUC in the classification performance of

EEG signals.

Discussion: Our results provided a new research idea for this field. Researchers

can further integrate the idea of the multi-frame network into the state-

of-the-art single-frame seizure prediction models and then achieve better

results.

KEYWORDS

deep learning, EEG, multi-frame network, seizure prediction, feature extraction,

pre-ictal
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1. Introduction

Epilepsy is a neurological disease characterized by recurrent

seizures, repeats long or short severe convulsions, which may

cause physical injury or even fracture (Wirrell, 2006). According

to the statistics of the World Health Organization, there are

about 50 million patients with epilepsy in the world (Carney

et al., 2011). Among them, about 70% of patients with can be

controlled by medical means such as drugs, but the seizures of

the remaining 30% of patients with epilepsy can be controlled

by anti-drug (Gadhoumi et al., 2016). For anti-drug seizures,

surgical resection of the epileptogenic area or neural stimulation

usually is considered by doctors to cure it. The methods

based on neural stimulation promote the studies of seizure

prediction models. However, one reliable seizure prediction

model can be utilized to improve the quality of life of patients

with anti-drug seizure, so that they can take safety measures

and electrical stimulation in advance before a seizure, which

can prevent serious adverse consequences (Freestone et al.,

2017).

As we all know, the seizure is usually caused by abnormal

brain activity, and the analysis of an EEG signal is a powerful

means to discover the brain patterns (Litt et al., 2001). The

traditional method of recording EEG signals is placing the

electrode on the surface of the head, and the obtained signal is

called scalp EEG (sEEG) (Rasheed et al., 2020). With the further

development of medical technology, the electrode is implanted

into the brain through minimally invasive methods. The EEG

signal obtained in this way is called intracranial EEG (iEEG)

(Lachaux et al., 2003). Compared with sEEG, the electrical

activities of the cerebral cortex can be directly recorded by iEEG,

which can avoid the influence of transmission media, such as

scalp and cerebrospinal fluid, and the interference of artifacts,

such as ECG and body movements. iEEG has a high signal-

to-noise ratio which can intuitively reflect the symptoms of

the seizure.

Another main feature of EEG is the relatively low hardware

cost, which can be used to process a large scale data of

huge number of patients and record EEG signals for a long

time. Neurologists usually study EEG signals recorded for

several days, weeks, or even several months to analyze seizure

symptoms, which require a lot of human labor and time.

Therefore, the seizure prediction model based on EEG data has

always been a hot research topic.

The recent research on EEG-based seizure prediction

originated in the 1970s (Mormann et al., 2007). Early researchers

used linear methods, such as autoregressive analysis (Rogowski

et al., 1981), to extract features that can predict seizures

from EEG signals. In the 1980s, with the development of

nonlinear methods, researchers utilized nonlinear analysis to

do seizure prediction for feature extraction and achieved some

improved results (Iasemidis et al., 1990; Martinerie et al.,

1998; Le Van Quyen et al., 1999). In addition to linear and

nonlinear methods, a variety of univariate and multivariate

features have been proposed by researchers during this period,

and Zhang et al. (2018) have made a relatively good summary of

these features.

Though the state-of-the-art methods mentioned above have

achieved good results in seizure prediction, they are not easy

to be generalized (Mormann et al., 2007). In recent years, with

the development of data science and big data technology, the

acquisition of large EEG data sets has turned to be easier.

Many researchers proposed seizure prediction models based

on machine learning and deep learning methods which can be

applied to large scale datasets, such as CHB-MIT (Shoeb, 2009)

and Kaggle datasets (Brinkmann et al., 2016), and have achieved

better results than the traditional ones. However, the framework

of the model is relatively single and cannot deal with complex

and dynamic data (Ung et al., 2017). Therefore, we proposed

a seizure prediction model based on a multi-frame network in

this paper, which aims to solve the above problems, and we

designed ablation experiments to verify the effectiveness of the

model as well.

The contributions of this paper are listed as follows. First,

we proposed an efficient end-to-end seizure prediction model,

which has no complicated preprocessing steps and can be

directly used for raw data. Second, we designed a multi-frame

network for automatic feature extraction and classification. The

network contains instance-based and sequence-based frames,

which can simultaneously extract features of different modes

for further classification. Finally, we conducted experiments

on two kinds of EEG datasets, namely the Kaggle dataset

(iEEG) and the CHB-MIT dataset (sEEG), to demonstrate

the generalizability of our model. A multi-frame network is

proposed and validated in this paper, which can extract more

effective embeddings even without preprocessing methods. In

addition, we also conducted some comparisons on the existing

models with similar applications to show the effectiveness of

our approaches. It is worth noting that the presented method by

combining two basic model architectures is generally compatible

with most of the state-of-the-art single-frame seizure prediction

frames, which can be used to boost the performance of these

methods to achieve better results.

The structure of the rest of the paper is organized as follows.

Section 2 briefly reviews the relevant background and research

works. Section 3 introduces the main model frame multi-frame

network in detail. Section 4 introduces the datasets, shows

the evaluation methods, and reports the experimental results.

Section 5 compares the model frame proposed in this paper with

the existing model frame and discusses the experimental results.

Finally, Section 6 draws the conclusions and puts forward the

future research directions.
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FIGURE 1

Part of the data of channel 20 of chb01 in the CHB-MIT dataset,

in which 0–1.5 h is the inter-ictal, 1.5–2.5 h is the pre-ictal,

there is a seizure onset near 2.5 h which is marked with a red

arrow, which will last for tens of seconds, and the subsequent

period is the post-ictal.

2. Related work

According to EEG signals, the human brain can be divided

into four states: pre-ictal, which refers to a period before a

seizure and usually lasts for tens of minutes; ictal, which refers

to the period from the onset to the offset of the seizure; post-

ictal, which refers to a period after the end of the seizure; the

rest is called inter-ictal (Ullah et al., 2018). Before the onset of

the seizure, the EEG signal in the pre-ictal will change slightly

compared with the signal in the inter-ictal. This change indicates

that the seizure will occur soon, which can assist doctors

to make timely interventions to minimize the impact of the

seizure episode. Therefore, in the study of the seizure prediction

model, identifying pre-ictal from EEG signal is the main task,

especially identifying pre-ictal from inter-ictal. Figure 1 shows

the four states.

The seizure prediction models can be divided into two

categories. The first is the traditional method, which extracts the

features related to pre-ictal through complex feature engineering

and then determines an appropriate threshold. When the

features are lower than the threshold, the seizure will occur

(Iasemidis et al., 2005). For example, Schelter et al. (2006) used

the dynamic similarity index to predict seizure. The core of

traditional methods is feature extraction. Features can be divided

into time-domain features, frequency-domain features, time-

frequency features, and nonlinear features (Yang et al., 2018).

There are also studies that combine feature extraction with

anomaly detection and stochastic processes to solve this problem

(Fujiwara et al., 2015). However, these features do not take the

individual differences between patients into consideration, and

whether these features are applicable to all patients or not is

still unclear. Moreover, due to the non-stationary characteristics

of EEG signals, the traditional methods suffer from poor

generalization and demonstrate performance close to random

(Rasheed et al., 2020). The second category is based on machine

learning and deep learning. The core task is the classification

of inter-ictal and pre-ictal. Specifically, the feature space is

obtained by extracting predefined features. After appropriate

transformation of the feature space, the classifier is trained by

labeled data and then will be used to classify pre-ictal and inter-

ictal. The large datasets, such as CHB-MIT and Kaggle datasets,

are very contributive to the training of the model. Therefore, the

seizure prediction model based on machine learning and deep

learning is the focus of seizure prediction research nowadays.

The advantages of machine learning are lightweight and

artificially specified features, which are interpretative and can

be implemented quickly so as to be deployed to devices (Cook

et al., 2013; Teijeiro et al., 2019). For example, Messaoud

and Chavez (2021) extracted 24 features from CHB-MIT and

Kaggle datasets, input the reduced features into a random forest

classifier, and achieved good results. Yuan et al. (2018) proposed

a novel feature named diffusion distance, and Bayesian linear

discriminant analysis was used for classification. Anandaraj and

Alphonse (2022) incorporated the feature extraction phase and

feature selection phase to enhance the generalization capability

and input the features to a boosted ensemble model for training

and prediction. In addition, logistic regression, support vector

machine, and k-nearest neighbor are also commonly used in

classification. A review showed that random forest is the best

classifier in these methods (Lekshmy et al., 2022). However, due

to the wide variety of features that can be extracted, sometimes

additional feature selectionmethods were needed to improve the

efficiency of feature extraction (Wang and Lyu, 2014).

The advantage of deep learning is to automatically extract

appropriate features (Abdelhameed and Bayoumi, 2021; Li et al.,

2022; Xu et al., 2022), saving the work of selected features

for specific patients or specific times. Acharya et al. used a

convolutional neural network (CNN) to analyze EEG signals

for the first time (Acharya et al., 2018). He preprocessed the

initial EEG signals, converted them into a format with a mean

of 0 and a standard deviation of 1, and then input them into

CNN to obtain the final classification results. The most common

preprocessing method is time-frequency analysis, such as fast

fourier transform (FFT), short time fourier transform (STFT),

and wavelet transform (WT). The EEG signals are transformed

into spectrums and then are fed into the network. For example,

the multi-view CNN (Liu et al., 2019) proposed by C. L. Liu

et al. obtained the time-domain features and frequency-domain

features after FFT and principal component analysis of EEG

signals, respectively, and used them as the input of the model.

In addition, Truong et al. (2018) obtained the spectrum of EEG

signal through STFT as the input of CNN, which also achieved

good results. Khan et al. (2017) obtained the spectrum of EEG

signal through WT as the input of CNN.
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In addition to the CNN-based models, there are also

recurrent neural network-based models, which extracted the

time dependency in EEG signals. K. M. Tsiouris et al. first

used Long Short-Term Memory deep learning network (LSTM)

to predict seizures (Tsiouris et al., 2018). After extracting

EEG signals as feature vectors, he used LSTM to classify

sequences consisting of feature vectors and achieved the

expected performance. Singh and Malhotra (2022) proposed a

spectral feature-based two-layer LSTM network model for the

automatic prediction of epileptic seizures using long-termmulti-

channel EEG signals. Moreover, LSTM is sometimes used in

conjunction with CNN. For example, Shahbazi and Aghajan

(2018) proposed a CNN-LSTM architecture, which captures

the time-frequency features using CNN first and then captures

temporal patterns using LSTM second. There are some models

based on transfer learning that have similar architectures.

Abdelhameed and Bayoumi (2018) proposed a semi-supervised

seizure prediction model based on CNN self-encoder, which

reduces the dimension and compresses the original EEG data

in an unsupervised way and then trains an LSTM classifier

with supervised learning. They both first use CNN to extract

features and then use LSTM to extract features. The two steps

are not simultaneous.

The seizure prediction models mentioned above showed

that the existing methods relied heavily on complex feature

extraction or preprocessing methods and were based on either

CNN or RNN. Despite there being CNN-LSTM networks,

however, its feature extraction is not simultaneous and needs

to be in a certain order. The framework of the above model

is relatively single. A single-frame model usually transforms

the raw data into a low dimensional feature mapping, which

may lead to the excessive dimensionality reduction of data

after the first feature extraction using CNN and affect the

RNN’s secondary feature extraction or classification. In seizure

prediction applications, it is necessary to develop a new model

framework to extract more discriminative features. Therefore,

this paper proposed a seizure prediction model based on multi-

frame network to solve the above problems and provided a new

research idea in this field.

3. Methodology

In this paper, the seizure prediction model based on a

multi-frame network mainly included two parts: preprocess and

classification. The framework of the whole model is shown in

Figure 2. The specific implementation will be introduced step by

step in this section.

3.1. Data preprocessing

To separate the useful signal from the noise and improve the

signal-to-noise ratio of the signal, we need to filter out the noise

and artifacts. This step can be completed by using a Butterworth

bandpass filter to filter the original signal (Robertson and

Dowling, 2003). Then, the obtained signal is further divided

into non-overlapping segments with a duration of 1 s. The size

of each segment is (N, M), where N represents the number of

channels of the subject and M is the frequency.

To extract the spatial information of segments, we need

to transform the original segments, which can also reduce

the dimension of the data and model complexity. For

the segment with the size of (N, M), we use principal

component analysis (Abdi and Williams, 2010) to extract

the first N principal components to transform it into a

matrix with the size of (N, N). In the matrix, each

row represents an electrode, and each column represents a

principal component.

In addition, for N channels, we calculated the Pearson

correlation coefficient in pairs to obtain the similarity matrix R

with the size of (N, N), which was to consider the correlation

between electrodes in feature extraction. Taking a segment of

Dog_1 in the Kaggle dataset as an example, the similarity matrix

we obtained is shown in Figure 3. The Pearson correlation

coefficient rxy of channel x and channel y is calculated as follows.

rxy =
n

∑

xiyi −
∑

xi
∑

yi
√

n
∑

x2i −
(
∑

xi
)2

√

n
∑

y2i −
(
∑

yi
)2

(1)

Finally, the segment with a size of (N,M) will be transformed

into a third-order tensor with a size of (2, N, N). It is worth

noting that usually the number of segments in the pre-ictal

period is much less than that in the inter-ictal period, thus,

the two types of segments in the dataset are imbalanced. As a

result of imbalanced training data, it will affect the training of

the model, we randomly selected the same number of inter-ictal

segments as that in the pre-ictal period, which ensured that the

above two types of data are balanced.

3.2. Multi-frame network classification

In previous studies, some researchers regarded the signal

as an instance and used a CNN to extract spatial features.

On the other hand, other researchers regarded the signal as

a time series to use an RNN to extract sequence features.

Therefore, the signal features can be extracted from two

frames: instance-based or sequence-based. However, to the best

of our knowledge, there is no model to extract two types

of features simultaneously. Although there are some models

similar to CNN-LSTM (Abdelhameed and Bayoumi, 2018;

Shahbazi and Aghajan, 2018) using CNN first and then LSTM

to extract features, due to the deep configuration network,

there is the possibility of losing information in the process

of propagation.
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FIGURE 2

Structure of the multi-frame seizure prediction model.

For the above reasons, for each segment, we extracted

instance-based and sequence-based features simultaneously

through two sub networks in parallel and then concatenated the

two features to obtain a high-level representation of the segment.

3.2.1. Instance-based feature detection

LeNet was first proposed by LeCun et al. in 1989 to recognize

handwritten digits in images (LeCun et al., 1998). Later, AlexNet

proposed by Krizhevsky et al. (2012) made a great improvement
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FIGURE 3

The heat map of the correlation coe�cient matrix extracts the

position information through the correlation between the

electrodes. Source data is from the CHB-MIT dataset.

in the 2012 ImageNet challenge, and CNN began to be widely

used in the field of computer vision. CNN can be used to extract

high-order spatial features and has relatively few parameters.

To extract the spatial information of a segment, in

preprocess period, a segment with a size of (N, M) was

transformed into a third-order tensor with a size of (2, N, N),

which is beneficial for CNN to extract spatial features. This is

because the convolution kernel of CNN is two-dimensional, and

its receptive field can extract local spatial features.

The convolutional neural network in this paper consists

of three convolution blocks. Each convolution block contains

convolution layer, batch normalization, and ReLU nonlinear

activation function. Except for the last convolution block, each

convolution block also contains a maximum pooling layer. The

details are shown in Figure 4.

Through CNN, we have completed the extraction of spatial

information, which we call an instance-based feature.

3.2.2. Sequence-based feature detection and
prediction

While extracting an instance-based feature, we used LSTM

to extract a sequence-based feature simultaneously. To extract

the sequence information of a segment, we did not to transform

the segment. Given a segment with a size of (N, M), we regarded

it as a time series with a length of M, and each element of the

sequence is an N-dimensional vector. That is to say, the segment

matrix is regarded as a time series composed of column vectors,

which we can input it into LSTM to extract a sequence feature.

FIGURE 4

The convolutional neural network (CNN) for instanced-based

feature extraction. Note that the last two dimensions of input

are the number of channels. For example, the Dog_1 in the

Kaggle dataset has 16 channels.

The difference between RNN and traditional multilayer

perceptron is that it is a neural network with a hidden state.

The hidden state can capture the historical information of the

sequence up to the current time step, to extract the sequence

information, and the number of parameters will not increase

with the increase of the time step. However, the basic RNN is

difficult to save the sequence information for a long time. One of

the earliest methods to solve this problem is LSTM (Hochreiter
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and Schmidhuber, 1997). LSTM is a higher-order version

of RNN, which can overcome many problems encountered

during RNN training, such as gradient explosion and gradient

vanishing. The LSTM contains memory cells. To control the

memory cell, LSTM also includes input, forget, and output gates,

which can decide when to remember or ignore the input in the

hidden state through a special mechanism. The specific structure

of the LSTM memory cell is shown in Figure 5. We use 256

LSTMmemory cells in this model.

Through LSTM, we have completed the extraction of

sequence information, which we call the sequence-based feature.

So far, we have obtained instance-based features using CNN

and sequence-based features using LSTM. For the instance-

based feature, we flat it into a vector and concatenate it with the

sequence-based feature to obtain the final high-order feature.

The two sub-networks are followed by the three fully

connected layers. The first and second fully connected layers

were activated with ReLU nonlinear activation function, while

the last used the SoftMax activation function to obtain the final

probability distribution. The output sizes were 128, 64, and 2,

respectively. Both of the fully connected layers have a dropout

rate of 0.5. It is only used in the training stage, which can prevent

overfitting and improve the robustness of the model.

3.2.3. Loss function and hyperparameter setting

Since the model is a binary classification model, we use the

cross-entropy loss function, and its formula is as follows, where

y is the predicted output and ŷ is the desired output.

l(y, ŷ) = −[y log(ŷ)+ (1− y) log(1− ŷ)] (2)

When training the model, this paper used the Adam

algorithm to update the weight parameters, with the batch size

set to 512, and the learning rate set to 0.0003. The proposed

model is implemented in Python 3.8.11 using TensorFlow 2.3.1,

with Ubuntu 18.04 operating system. The flowchart of our

proposed model is shown in Figure 2.

4. Case studies

4.1. Data description

4.1.1. Kaggle dataset

In this paper, the first dataset we used is the American

Seizure Society Seizure Prediction Challenge (Kaggle) dataset

(Brinkmann et al., 2016), which is publicly available. The dataset

consists of a long-term iEEG of five canine subjects and two

human subjects. It contains 50 seizures and 627.6 inter-ictal

hours. For canine subjects, the EEG signals are sampled at a

sampling rate of 400 Hz, recorded from 16 implanted electrodes

for Dog_1 to Dog_4 and 15 electrodes for Dog_5. While for

human subjects, the EEG signals are sampled at a sampling rate

of 5,000Hz, recorded from 15 implanted electrodes for Patient_1

and 24 implanted electrodes for Patient_2. To the influence of

different kinds of subjects on the experimental results, we only

selected canine subjects as the research objects. In addition, like

most recent studies (Cheng et al., 2021; Gao et al., 2022; Yan

et al., 2022), a period of 30 min before each seizure was defined

as the prei-ctal period.

4.1.2. CHB-MIT scalp EEG dataset

This dataset (Shoeb, 2009) was collected at the Boston

Children’s Hospital, consisting of sEEG recordings from

pediatric subjects with intractable seizures. It consisted of 24

cases from 23 subjects, as well as the gender and age data of each

subject. Each case contains 9–42 consecutive EDF files, most of

which record sEEG signals with a duration of 1 h. All signals are

sampled with 16-bit resolution at a sampling frequency of 256

Hz. The International 10–20 system of EEG electrode positions

and nomenclature are used for these recordings. The annotation

file records the specific time information of the beginning and

end of each seizure. Because the dataset does not specifically

distinguish between inter-ictal and pre-ictal episodes, this paper

follows the labeling method of the Kaggle dataset. In addition,

due to the limitation of hardware, some files have the problem of

inconsistent channels.

To avoid the heterogeneity of data, we selected 18 electrodes

that are included in most EEG signals: P8-O2, F8-T8, F7-T7,

P7-O1, FZ-CZ, FP1-F7, FP2-F8, T8-P8, F3-C3, C4-P4, CZ-PZ,

T7-P7, F4-C4, C3-P3, P3-O1, FP2-F4, FP1-F3, and P4-O2. We

treated seizures with intervals of less than 30 min as the same

seizure, and we required cases to have at least three seizures

and sufficient inter-ictal data. Under the constraints of the above

conditions, we selected a total of 18 cases, including 84 seizures.

4.2. Model evaluation

In this paper, we used a Leave-one-out cross to ensure the

robustness and generalization ability of the proposed model.

Specifically, given a data of a subject, if it has N pre-ictal data,

one was considered as the test set, and the remaining N-1

as the training set and validation set. In addition, the ratio

of the training set and validation set is 80%:20%. The same

processing method is used for inter-ictal data. After that, the

model is trained on the N-1 inter-ictal and pre-ictal data, and

the remaining one is tested. The process is then repeated by

changing the pre-ictal data under test, which can cover all the

pre-ictal data and the tested pre-ictal data is unseen during the

training. After the N experiments, the mean value is taken to get

the final result.

Performance measures used in this work are based on

the analysis of true positives (TP), true negatives (TN), false

positives (FP), and false negatives (FN) instances classified
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FIGURE 5

LSTM memory cell.

TABLE 1 Results achieved in the Kaggle dataset using the

convolutional neural network (CNN) and the multi-frame network.

Subject No.Seia CNN multi-frame

(instance-based) network

Acc Sen Spe Acc Sen Spe

(%) (%) (%) (%) (%) (%)

Dog_1 4 63.05 60.18 65.91 67.13 60.94 73.31

Dog_2 7 73.34 75.87 70.82 73.40 74.11 72.70

Dog_3 12 59.29 70.83 47.77 59.56 64.77 54.35

Dog_4 17 59.58 56.98 62.31 60.86 58.64 63.19

Dog_5 5 75.10 76.01 74.19 76.49 81.50 71.50

Mean 66.07 67.98 64.20 67.49 67.99 67.01

aNumber of seizures.

during the testing phase. When evaluating the model on the

test set, such as the general binary classification problem, we

calculated the Acc(accuracy), Sen(sensitivity), Spe(specificity),

and F1-score which are defined as follows:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

sensitivity = recall =
TP

TP + FN
(4)

specificity =
TN

TN + FP
(5)

TABLE 2 Results achieved in the Kaggle dataset using LSTM and the

multi-frame network.

Subject No.Seia CNN multi-frame

(instance-based) network

Acc Sen Spe Acc Sen Spe

(%) (%) (%) (%) (%) (%)

Dog_1 4 62.07 54.24 69.89 67.13 60.94 73.31

Dog_2 7 55.46 48.08 62.84 73.40 74.11 72.70

Dog_3 12 52.04 44.79 59.28 59.56 64.77 54.35

Dog_4 17 51.84 44.78 59.25 60.86 58.64 63.19

Dog_5 5 61.11 60.63 61.58 76.49 81.50 71.50

Mean 56.50 50.50 62.57 67.49 67.99 67.01

aNumber of seizures.

precision =
TP

TP + FP
(6)

F1-score =
2× recall × precision

recall + precision
(7)

In addition to Acc, Sen, Spe, and F1-score, we also calculated

area under the curve (AUC) for model evaluation.

5. Results

In this section, we evaluated the model with two datasets:

the Kaggle dataset and the CHB-MIT dataset. We first uniformly
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FIGURE 6

F1-score analysis of the three models for subjects in the Kaggle dataset.

FIGURE 7

The area under the curve (AUC) analysis of the three models for subjects in Kaggle dataset.

resampled all EEG signals at 256 Hz. Then, we performed

ablation experiment to compare the performance of three

models: CNN, LSTM, and multi-frame network to verify that

our proposed multi-frame model is better than the model of a

single frame. Since the model we proposed is patient-specific,

for each dataset, we evaluated the model for the specific patient

of the dataset.

Table 1 summarizes the experimental results of CNN and

multi-frame network on the Kaggle dataset. We observed that

the performance of the multi-frame network is better than CNN

in terms of mean accuracy, sensitivity, and specificity. This

is because CNN extracts instance-based features, while multi-

frame network extracts instance-based features and sequence-

based features simultaneously, which improves the average

values of accuracy, sensitivity, and specificity by 1.42, 0.01, and

2.81%, respectively. Table 2 summarizes the results of LSTM and

multi-frame network on the Kaggle dataset. Similarly, compared

with LSTM, the mean accuracy, sensitivity, and specificity of the

Frontiers inComputationalNeuroscience 09 frontiersin.org

https://doi.org/10.3389/fncom.2022.1059565
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org


Lu et al. 10.3389/fncom.2022.1059565

TABLE 3 Results achieved in the CHB-MIT dataset using CNN and the

multi-frame network.

Subject No.Seia CNN multi-frame

(instance-based) network

Acc Sen Spe Acc Sen Spe

(%) (%) (%) (%) (%) (%)

chb01 7 91.29 91.86 90.71 96.24 95.34 97.14

chb02 3 64.28 96.22 32.33 88.13 78.26 97.99

chb03 6 72.30 82.18 62.43 85.81 79.29 92.33

chb04 3 62.53 58.91 66.16 78.73 89.13 68.32

chb05 5 76.08 70.66 81.50 77.77 72.53 83.00

chb07 3 68.07 99.54 36.59 94.34 91.00 97.68

chb08 5 77.01 79.44 73.97 77.89 82.04 72.70

chb09 4 65.34 48.00 82.68 65.84 51.01 80.67

chb10 6 57.96 71.84 44.08 64.54 61.90 67.19

chb13 5 50.00 60.00 40.00 95.24 94.91 95.57

chb14 5 54.20 62.09 46.32 56.89 60.59 53.18

chb16 6 52.97 45.36 60.57 57.36 54.89 59.84

chb17 3 92.41 88.19 96.64 93.35 89.00 97.70

chb18 6 87.70 85.10 90.30 89.90 89.56 90.25

chb19 3 76.29 61.09 91.49 77.44 61.98 92.89

chb20 5 97.53 97.53 97.52 97.82 97.47 98.17

chb21 4 60.84 41.97 79.70 67.43 58.13 76.74

chb23 5 80.96 97.70 65.43 92.63 97.69 87.94

Mean 71.54 74.32 68.80 80.96 78.04 83.85

aNumber of seizures.

multi-frame network are improved by 10.99, 17.49, and 4.44%,

respectively. Therefore, from the average of the results of all

subjects, the multi-frame network is better than the single-frame

network in the classification of inter-ictal and pre-ictal episodes

based on EEG.

In addition, we also evaluated the performance of each

subject in the dataset. Specifically, we compared the F1-score

and AUC of CNN, LSTM, and multi frame networks on each

subject’s data. The F1-score and AUC analysis are illustrated

in Figures 6, 7, respectively. We found that the F1-score and

AUC of the multi-frame network were higher than those of

the single-frame network except for Dog_3 whose F1-score

of the multi-frame network is slightly lower than that of

its CNN. It clearly illustrates the advantages of the multi-

frame network over the single-frame network. Higher F1-score

and AUC showed that the proposed model in this paper is

more stable and robust. For most patients, the prediction

ability of the multi-frame network is better than that of the

single-frame network.

We also performed the same experiment on the CHB-MIT

dataset. Table 3 summarizes the experimental results of CNN

and multi-frame network on the CHB-MIT dataset. Table 4

summarizes the experimental results of LSTM andmulti-frame

TABLE 4 Results achieved in the CHB-MIT dataset using LSTM and the

multi-frame network.

Subject No.Seia CNN multi-frame

(instance-based) network

Acc Sen Spe Acc Sen Spe

(%) (%) (%) (%) (%) (%)

chb01 7 89.90 86.82 92.99 96.24 95.34 97.14

chb02 3 84.22 73.09 95.34 88.13 78.26 97.99

chb03 6 74.70 61.04 88.36 85.81 79.29 92.33

chb04 3 76.00 81.39 70.61 78.73 89.13 68.32

chb05 5 60.80 55.90 65.69 77.77 72.53 83.00

chb07 3 87.98 83.43 92.53 94.34 91.00 97.68

chb08 5 69.29 78.45 57.87 77.89 82.04 72.70

chb09 4 59.94 54.47 65.41 65.84 51.01 80.67

chb10 6 55.99 47.80 64.18 64.54 61.90 67.19

chb13 5 85.58 81.94 89.22 95.24 94.91 95.57

chb14 5 53.24 46.18 60.31 56.89 60.59 53.18

chb16 6 50.19 41.64 58.74 57.36 54.89 59.84

chb17 3 89.21 86.04 92.39 93.35 89.00 97.70

chb18 6 83.19 84.34 82.05 89.90 89.56 90.25

chb19 3 73.10 57.52 88.69 77.44 61.98 92.89

chb20 5 78.78 68.51 89.04 97.82 97.47 98.17

chb21 4 57.83 43.45 72.21 67.43 58.13 76.74

chb23 5 87.68 92.50 83.20 92.63 97.69 87.94

Mean 73.20 68.03 78.27 80.96 78.04 83.85

aNumber of seizures.

network on the CHB-MIT dataset. F1-score and AUC analysis

for each subject are illustrated in Figures 8, 9, respectively.

We observed that the accuracy, sensitivity, and specificity of

the multi-frame network were improved by 9.42, 3.72, and

15.05%, respectively, compared with CNN, and 7.76, 10.01, and

5.58%, respectively, compared with LSTM. In addition, for each

case, the F1-score and AUC of the multi-frame network were

higher than that of the single-frame network, thus, our proposed

framework still has advantages.

It should be noted that in the CHBMIT dataset (sEEG),

the sampling frequency is 256 Hz, and in the Kaggle dataset

(iEEG), the sampling frequency of canine subjects is 500 Hz.

Since we uniformly downsampled to 256 Hz in the experiment,

some information may be lost. This led to experimental

results on the Kaggle dataset that were not as good as the

CHBMIT dataset, but the experimental results still showed

that the performance of the multi-frame network was better

than that of the single-frame network. Therefore, through

experiments on the Kaggle dataset and the CHB-MIT dataset,

respectively, we concluded that whether on sEEG or iEEG,

a multi-frame network is always superior to the single-

frame network.
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FIGURE 8

F1-score analysis of the three models for subjects in the CHBMIT dataset.

FIGURE 9

AUC analysis of the three models for subjects in the CHBMIT dataset.
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6. Discussion

In this paper, a model using the multi-frame network is

proposed to predict seizure episodes because it has the advantage

of extracting instance-based features and sequence-based

features simultaneously. To further evaluate the effectiveness of

our model, we compared it with CNN-LSTM and conducted

experiments on the same datasets. The difference between the

two models was the feature extraction methodology, where the

CNN-LSTM first used CNN to extract instance-based features,

and then used LSTM to extract sequence-based features. For

each dataset, the mean accuracy, sensitivity, specificity, F1-

score, and AUC of all subjects were utilized to test the final

experimental results.

Table 5 summarizes the experimental results of the two

networks on the Kaggle dataset. We observed that according

to all performance measures, the multi-frame network was

higher than CNN-LSTM. In addition, Figure 10 shows that

TABLE 5 CNN-LSTM vs. multi-frame network in the Kaggle dataset.

Model architecture Acc (%) Sen (%) Spe (%) F1-score AUC

CNN-LSTM 64.79 66.36 63.26 0.66 0.73

multi-frame network 67.49 67.99 67.01 0.67 0.76

the reason for accuracy improvement mainly comes from

the optimization of specificity, and it is an important index

to measure the discriminative of the model for inter-ictal.

It can reduce the false alarm rate of epilepsy prediction

model, which has important practical significance. Moreover,

Figure 11 and Table 6 are the experimental results on the

CHB-MIT dataset, which also show the advantages of our

proposed approach.

According to the experimental results, we found

that the features extracted by the multi-frame network

were more discriminative than those extracted by CNN-

LSTM, especially in the inter-ictal. Analyzing the reasons

for the experimental results, it can be concluded that

CNN-LSTM first extracts instance-based features and

then extracts sequence-based features, which may result

in the loss of some information. Therefore, it can

be improved by using multi-frame network to extract

features simultaneously.

TABLE 6 CNN-LSTM vs. multi-frame network in the CHB-MIT dataset.

Model architecture Acc (%) Sen (%) Spe (%) F1-score AUC

CNN-LSTM 75.32 76.87 73.76 0.74 0.81

multi-frame network 80.96 78.04 83.85 0.80 0.87

FIGURE 10

The performance analysis of CNN-LSTM and the multi-frame network in the Kaggle dataset.
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FIGURE 11

The performance analysis of CNN-LSTM and the multi-frame network in the CHB-MIT dataset.

FIGURE 12

Comprehensive performance analysis of the four models in two datasets.
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Finally, we summarized all the experimental results,

and Figure 12 shows the numerical ones. In the figure,

each point represents the mean value of the corresponding

performance measure of different networks on the two

datasets. We concluded that with the continuous optimization

of network architecture, accuracy, sensitivity, specificity,

F1-score, and AUC of the model were also gradually

improved. Specifically, compared with LSTM, CNN, and

CNN-LSTM, the accuracy of the multi-frame network

increased over 9.38, 5.42, and 3.68% respectively, the sensitivity

was improved by 13.75, 1.87, and 0.40%, respectively,

the specificity was improved by 5.01, 8.93, and 6.92%,

respectively, the F1-score was improved by 0.11, 0.05, and

0.03, respectively, and the AUC was improved by 0.12, 0.05,

and 0.05, respectively.

7. Conclusions and future work

The seizure prediction model has an important practical

significance to improve the quality of life of patients with

epilepsy. Most of the existing models are based on the

traditional methods, such as CNN or RNN, and the framework

is relatively not easy to be improved and generalized for

further research on prediction accuracy. In this paper, we

proposed a multi-frame network to extract instance-based and

sequence-based features simultaneously to get discriminative

high-order features. Based on the results from the ablation

analysis, the effectiveness of themulti-frame network is validated

and compared with a single-frame network, which provides

a novel and interesting research idea in designing the seizure

prediction model. Most importantly, we verified that the

model proposed in this paper can not only obtain the most

discriminant features but also identify inter-ictal episodes

more effectively, which is of great practical significance. In

addition, the model demonstrated good generalization and the

experiments on iEEG represented by the Kaggle dataset and

sEEG represented by the CHB-MIT dataset, which is superior

to existing methods.

Since this paper aimed to study the architecture of themodel,

the experiments were conducted only based on the basic CNN

and LSTMmodels, and some novel and advanced frames or their

variants were not considered. However, researchers can change

these frames by combining them according to the novel idea we

proposed, which is also considered one of our future works.
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