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Advances in artificial intelligence, machine learning, and deep neural networks

have led to new discoveries in human and animal learning and intelligence.

A recent artificial intelligence agent in the DeepMind family, muZero, can

complete a variety of tasks with limited information about the world in

which it is operating and with high uncertainty about features of current

and future space. To perform, muZero uses only three functions that are

general yet specific enough to allow learning across a variety of tasks

without overgeneralization across different contexts. Similarly, humans and

animals are able to learn and improve in complex environments while

transferring learning from other contexts and without overgeneralizing. In

particular, the mammalian extrahippocampal system (eHPCS) can guide

spatial decision making while simultaneously encoding and processing spatial

and contextual information. Like muZero, the eHPCS is also able to adjust

contextual representations depending on the degree and significance of

environmental changes and environmental cues. In this opinion, we will argue

that the muZero functions parallel those of the hippocampal system. We

will show that the different components of the muZero model provide a

framework for thinking about generalizable learning in the eHPCS, and that

the evaluation of how transitions in cell representations occur between similar

and distinct contexts can be informed by advances in artificial intelligence

agents such as muZero. We additionally explain how advances in AI agents

will provide frameworks and predictions by which to investigate the expected

link between state changes and neuronal firing. Specifically, we will discuss

testable predictions about the eHPCS, including the functions of replay

and remapping, informed by the mechanisms behind muZero learning. We

conclude with additional ways in which agents such as muZero can aid in

illuminating prospective questions about neural functioning, as well as how

these agents may shed light on potential expected answers.
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Introduction

A goal of artificial intelligence research is to design
programs that can solve problems as well as, or better
than humans. Algorithms such as AlphaGo and MuZero can
compete with and beat the best trained humans at tasks such
as Chess, Go, and Atari (Silver et al., 2016; Schrittwieser
et al., 2020). Other artificial intelligence programs can do
image classification at accuracy on par with and speeds
surpassing humans (Krizhevsky et al., 2012). Ideally, advances
in artificial intelligence and machine learning would transfer to
understanding human intelligence. However, this often fails to
be the case as machines and humans use different mechanisms
to learn. For instance, while a supervised image classifier can
only distinguish between an elephant and a dog after being
presented with 1,000s of images, a child can distinguish between
these animals after only a few stimulus exposures (Krizhevsky
et al., 2012; Zador, 2019).

However, advances in artificial intelligence, machine
learning, and deep neural networks have also led to new
discoveries in human and animal learning and intelligence
(Richards et al., 2019). Notably, artificial intelligence research
has proposed cellular and systems level mechanisms of
reinforcement learning (Wang et al., 2018; Dabney et al., 2020),
auditory processing (Kell et al., 2018; Jackson et al., 2021), object
recognition (Cichy et al., 2016), and spatial navigation (Banino
et al., 2018; Bermudez-Contreras et al., 2020; Lian and Burkitt,
2021). In several of these studies, artificial intelligence showed
that specific inputs or parameters, such as grid cell coding, were
sufficient to create a representation of the environment in which
performance on a task closely resembles or surpasses human
ability (Banino et al., 2018; Kell et al., 2018).

A recent artificial intelligence agent in the DeepMind
family, muZero, can complete a variety of tasks with limited
information about the world in which it is operating and with
high uncertainty about features of current and future space
(Schrittwieser et al., 2020). For instance, unlike in chess, where
each move results in a predictable board layout, Atari games
(as well as real-world scenarios) involve complex environments
with unknown action consequences. MuZero can perform
impressively in these environments using only three functions.
These functions first encode the environment, then compute
potential actions and rewards, and then finally predict an
estimation of the future environment. These three functions
are both general and specific enough to allow learning across
a variety of tasks without overgeneralization across different
contexts.

Like muZero, humans and animals can learn context
dependent and independent task schema. Decisions by humans
and animals are also made in complex spaces and result in
unknown consequences, and, like muZero, humans and animals
are still able to learn and improve in these environments. In
particular, the mammalian extrahippocampal system (eHPCS)

can guide spatial decision making while simultaneously
encoding and processing spatial and contextual information
(O’Keefe, 1976; Penick and Solomon, 1991; Hafting et al., 2005;
Moser et al., 2008; Wirtshafter and Wilson, 2021). The eHPCS
is also able to adjust contextual representations depending on
the degree and significance of environmental changes and the
significance of environmental cues (Hollup et al., 2001; Leutgeb
et al., 2005; Lee et al., 2006; Fyhn et al., 2007; Wikenheiser and
Redish, 2015b; Boccara et al., 2019; Wirtshafter and Wilson,
2020). In this opinion, we will argue that the muZero functions
parallel those of the hippocampal system. We will show that
the different components of the muZero model provide a
framework for thinking about generalizable learning in the
eHPCs.

Parallels in muZero with
hippocampal function can help
explain mechanisms of context
independent learning

The ability to generalize learning to unknown contexts
is a key component of human and animal intelligence. For
instance, a driver is able to generalize that a red light
means stop, regardless of the location of the intersection,
the car being driven, or the time of day. While the neural
mechanisms behind generalization remain largely unknown,
most artificial intelligence models generalize using either model-
free or model-based learning. Model-free systems, which learn
through experience, are inflexible, fast to run but slow to
adapt to change, and estimate the best action based on cached
values. Conversely, model-based systems, which aim to learn
a model of the environment, are flexible but inefficient, highly
sensitive to details of task representations, and easily adaptive
to environmental changes (Stachenfeld et al., 2017; Gershman,
2018; Vértes and Sahani, 2019). Although model-based, muZero
improves on many shortcomings of model-based and model-
free systems by modeling only the elements of the environment
important for decision making: the value (the strength of the
correct position), the policy (the best action to take), and the
reward (the benefit of the previous action). It models these
three components using a representation function, a dynamics
function, and a predictions function (Schrittwieser et al., 2020).
Below, we argue these functions parallel functions found in the
hippocampal system, and can be used to provide further insight
into and build on current theories of hippocampal function
during learning generalization.

The representation function

The first step of muZero processing is to encode the actual
environment to a hidden state using a representation function
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(Schrittwieser et al., 2020). This hidden state is a rendition of the
environment that contains crucial information for performing
the task. Similarly, several structures in the eHPCS flexibly
represent environmental cues, with some regions placing
emphasis on cues and locations of significance. Specifically,
the entorhinal cortex (EC), CA regions of the hippocampus
(HPC), and the lateral septum (LS) all contain cells whose firing
rate is modulated by the location of the animal (termed grid
cells, place cells, and “place-like” cells, respectively) (O’Keefe,
1976; Hafting et al., 2005; Moser et al., 2008; Wirtshafter and
Wilson, 2019). Spatial representations in all three regions can
be restructured by the presence of reward or cues/landmarks
of interest, in which cells show a bias for coding for these
significant locations (Hollup et al., 2001; Lee et al., 2006; Boccara
et al., 2019; Wirtshafter and Wilson, 2020). When there are
large changes to the environment, HPC and EC cell populations
change representations and are said to “remap” (Fyhn et al.,
2007; Colgin et al., 2008). It is likely that this phenomenon also
occurs in the LS but it has not been studied.

Selectively coding and over-representing causal features of
the environment is important for generalization of learning
across contexts (Collins and Frank, 2016; Lehnert et al.,
2020). The refinement of this coding allows the inference
of critical salient environmental features that may allow
or preclude generalization to other contexts—if the salient
features are shared among two contexts, learning may be
generalizable between the contexts (Collins and Frank, 2016;
Abel et al., 2018; Lehnert et al., 2020). This muZero processing
parallels the theory that the hippocampus can generalize
across different contexts during learning by treating states
that have equivalent actions or rewards as equivalent states.
By compressing environmental representations into lower
dimensionality abstractions, learning can be sped up and more
easily transferred between environments with shared features
(Lehnert et al., 2020). As such, the representation function
provides a means by which learning can be generalized through
contextual learning (Figure 1).

The dynamics and prediction
functions and the Monte Carlo
tree search algorithm

In muZero, a simulation always begins with the
representation of the current state (environment), as created
using the representation function. From this initial state, a
number of hypothetical new states and their corresponding
potential actions and rewards are derived using the dynamics
and prediction functions, which both rely on the use of a Monte
Carlo tree search (MCTS) algorithm.

A MCTS allows a guided search of possible future actions. In
brief, at a certain stage of the environment (such as a position in
a game), subsequent possible actions and the resulting rewards
are evaluated. Using these potential actions and rewards, a new

hypothetical internal state is created and evaluated. Potential
future states of this states are then considered and evaluated.
This process occurs iteratively, forming expansive nodes off of
the actual initial state, to allow for deeper search to evaluate
more distant outcomes of potential actions. After expansion,
the computed rewards are back-propagated up the tree to the
current state and the mean value of an expansion is computed.
Only then does the agent choose the optimal move or action and
progress to the next state.

Unlike AlphaGo, in which the rules of the game are known,
MuZero learns the mechanics of the game and environment,
and can relatively reliably only expand nodes that will likely
result in rewarding actions. This expansion is first done using
the dynamics function, progressive states are mapped, in a
reoccurring process, based on different possible action choices.
At each hypothetical state, the function computes a reward and
a potential new internal hidden state (the future environment).
Both the reward and the new state are computed based on the
previous hidden state (Schrittwieser et al., 2020).

Following the creation of each new state in muZero, a
prediction function computes potential actions (a policy) and
rewards (value) (Schrittwieser et al., 2020). The policy represents
how the agent might act in this hidden state, while the value is an
estimate of future rewards based on the current state. The value
function is updated at each iteration of the dynamics function,
as discussed.

This iterative process, of predicting and evaluating
future actions in an environment has multiple corollaries
in hippocampal processing: predictive place cell coding (the
“successor representation”), theta sequences, and replay
(Figure 1).

Place cells and the successor
representation

In an animal model, it is possible that place cell coding plays
a predictive role in cognition: in the “successor representation”
(SR) view of place cells, place cells encode features of the
environment in relation to their predictive relationship with
other features, including the potential presence of reward or
potential future trajectories (Stachenfeld et al., 2017; Gershman,
2018). The SR view of place and grid cells explain the
aforementioned bias toward significant features in coding.
This view would also explain why cells in the HPC and EC
maintain stable environmental representations in environments
that vary in small ways that do not change the predictive
value of contextual clues. In noisy or partially observable
environments, models of SR place cells function better than
pure cognitive map place cell models. Additionally, in the SR
model, state relationships can be learned latently, while reward
values are learned locally, allowing for fast updating of changes
in reward structure in different contexts (Stachenfeld et al., 2017;
Gershman, 2018; Vértes and Sahani, 2019).
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FIGURE 1

MuZero mirrors hippocampus processing. (Left) Functions of muZero. (Right) Analogous/similar hippocampal functions. (Left top) In muZero,
the representation functions maps the initial state, such as the position on a checker board, to an internal hidden state that emphasizes
important features of the environment. (Right top) A similar processing in the extrahippocampal system (EHPCs) represents the environment in
a cognitive map as a serious of cell positions encoded by grid and place cells. Place cells tend to have fields clustered around the location of a
reward, such as the destination of a candy shop. (Left center) From the hidden state, a prediction function computes potential actions (policies)
and rewards (values) of the location in the current state. (Right center) In the EHPCs, place cells encode features of the environment in relation
to their predictive relationship with other features, such as the potential presence of reward. Additionally, state prediction in HPC (via theta
sequences) can be coupled through theta coordination coherence to other areas of the brain that process action and reward. (Bottom left) In
muZero, the dynamics function calculates reward (such as a captured checkers piece) and computes a new hidden state. (Bottom right) In the
EHPCs, offline replay, which occurs during periods of sleep, emphasizes locations of previous reward. During replay, events can be selectively
sampled from visited event space, with priority given to representations or locations that correspond with reward. Reward-predictive
representations can then be compressed into a lower dimensional space. Replay can be comprised of novel state configurations that have not
been experienced, such as a novel route to the reward location.

Theta sequences

The HPC also has an additional “lookahead” mechanism
to evaluate future trajectory choices after an animal has
experienced an environment and formulated a “map” with place
cells. This hippocampal phenomenon, termed theta sequences,
is a time-compressed and sequential firing of HPC place
cells as if the animal were traversing a trajectory (Foster and
Wilson, 2007). Because theta sequences can represent future
possible trajectories, they are believed to play a role in planning
(Wikenheiser and Redish, 2015a,b). Consistent with this idea,
theta sequences incorporate information about future goal
locations, and can use phase coupling of these rhythms to
coordinate processing with other brain areas, much like the
prediction function in muZero (Wikenheiser and Redish, 2015b;
Penagos et al., 2017) (Figure 1).

In addition, the eHPC work in coordination with other
structures to link present and future states with potential
future actions. For instance, state prediction in HPC (via
theta sequences) can be coupled through theta coordination

coherence to other areas of the brain that process action and
reward, including executive systems such as the prefrontal
cortex (policy function) and dopaminergic areas like the VTA
(reward function). Disruption of this coherence may, therefore,
interrupt functions that require accurate predictions and may
thus impact learning (Sigurdsson et al., 2010; Lesting et al., 2013;
Igarashi et al., 2014).

Replay

In muZero, sampling of future states occurs without the
performance of an action and is most analogous to hippocampal
offline processing that occurs during non-REM sleep and quiet
wake. During these periods, cells in the hippocampus engage
in replay: highly compressed (100s of ms) place cell sequences
that form a trajectory (Wilson and McNaughton, 1994; Diba
and Buzsaki, 2007). It is believed that hippocampal replay plays
a fundamental role in memory consolidation and may also be
important for planning (Gupta et al., 2010; O’Neill et al., 2010;
Pfeiffer and Foster, 2013; Singer et al., 2013).
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In one theory of hippocampal function, hippocampal
replay also plays an important role in generalization by
aiding in the offline construction of compressed environmental
representations (Vértes and Sahani, 2019). During replay, events
can be selectively sampled from visited event space, with priority
given to representations that are reward predictive (Pfeiffer
and Foster, 2013; Olafsdottir et al., 2015; Michon et al., 2019).
Reward-predictive representations can then be compressed into
a lower dimensional space that can be reused to plan future
novel trajectories (Penagos et al., 2017). Replay may then use
saved states to construct novel trajectories without the need
for additional sampling or experience. Consistent with this
idea, HPC replay selectively reinforces rewarded and significant
locations, and it is possible that the shifting of place fields
toward rewarded locations (a modification of representation) is
dependent on replay. Additionally, replay can be comprised of
novel sequences that have not been experienced, suggesting an
environmental map can be generalized beyond prior experience
(Gupta et al., 2010; Olafsdottir et al., 2015).

Questions for context dependent
learning

The means by which the HPC is involved in the differential
encoding of separate spatial environments is well studied.
This process, known as “remapping,” occurs when place cells
change spatial representations in new environments (Colgin
et al., 2008). In addition to the remapping that occurs when
moving between starkly different environments, when exposed
to continuous environmental change, place cells will gradually
morph to remap to the new environment (Leutgeb et al., 2005).
Although modeling experiments have shown that no threshold
for remapping exists (Sanders et al., 2020), it is still unknown,
experimentally if there is a threshold level of difference required
to induce remapping between environments.

Importantly, learning also does not appear to be fully
transferred between different environments where remapping is
presumed to occur. For example, learning in both classical and
operant conditioning tasks is nearly always context dependent,
although the conditioned or operant response can be “re”-
learned more quickly in the second environment (Urcelay and
Miller, 2014). However, environmental changes may not affect
the performance of navigational tasks to the same extent (Jeffery
et al., 2003). Although cells in the HPC can encode conditioned
and operant stimuli (as well as spatial location) (McEchron
and Disterhoft, 1999; Wirtshafter and Wilson, 2019), it is not
yet known whether any representation of the learned stimuli
exists between remapped environments. Interestingly, however,
animals with hippocampal lesions will transfer associative
conditioning tasks across different environments (Penick and
Solomon, 1991). It is similarly unknown whether this “failure”
of context-dependent learning is due to an inappropriate

preservation of stimuli encoding, or a remapping failure in
which the representation of the first environmental interferes
with the representation of the second.

Although muZero doesn’t explicitly perform context
discrimination, using the model it has built of the environment,
muZero must infer, probabilistically, whether enough
contextual elements have changed to require a new map
and, potentially, new learning. Studying how probabilistic
inference gives rise to context independent learning in
muZero may provide insight into human and animal learning
and generalization. Establishing what rules muZero uses to
determine when a new map is needed and when learning is
context dependent may shed light on the mechanisms behind
contextual learning in animals.

Conceptual equivalence can result
in predictions about hippocampal
function

How might the advances made by muZero direct
brain research? The evaluation of how transitions in cell
representations occur between similar and distinct contexts is an
under-researched topic in hippocampal systems neuroscience,
and can be informed by advances in artificial intelligence
agents such as muZero.

As previously explained, we believe AI can shed important
light on the processes involved in contextual generalization. In
muZero, there is a representational bias toward significant cues,
and then this biased representation is compressed into a lower
dimensionality. Representational bias allows for dimensionality
reduction by beginning the selection of the most significant
contextual elements (Lehnert et al., 2020). This reduction
enables generalization by allowing learning inferences between
environments with similarly compressed maps; i.e., in muZero,
carry over of biased compressed representations allows for
generalization (Lehnert et al., 2020).

In muZero, compression, which occurs during the dynamics
function, plays an essential role in the generalization of learning.
As previously explained, compression in the hippocampus
may occur during hippocampal replay during sleep (Figure 1)
(Penagos et al., 2017), and, like in muZero, this compression
may be an important component of learning generalization
(Vértes and Sahani, 2019). We might expect, therefore, for
disruptions in sleep replay to cause deficits in task generalization
(Hoel, 2021), and for increased replay (such as sleep sessions
between tasks) to enhance learning generalization (Djonlagic
et al., 2009). If replay plays an important role in generalization,
we also might expect replay sequences and structure to be
similar between two environments with the same task rules.
Specifically, replay may be structured around task organization
and reward-contingent actions, resulting in a clustering of
replay around shared action states between two environments.
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The compression of salient cues informs the creation
of new hidden states, which may explain mechanisms of
remapping between environments (Sanders et al., 2020).
muZero’s dynamics function does more than calculate a new
hidden state based solely on known context; it also makes
inferences based on policy (action) and value (reward) mapping.
In other words, a state representation not only reflects the
environment, but also the actions that lead to environmental
consequences. If the hippocampus follows a similar mechanism,
it is likely that “knowing” when to remap requires more
than a simple evaluation of environmental cues (there may
be similar contexts that require different actions) but also
necessitates identifying differences in potential policies and
rewards, especially during periods of uncertainty (such as when
experiencing novelty) (Penagos et al., 2017; Sanders et al., 2020;
Whittington et al., 2020). Because a portion of this evaluation
of state similarity and difference happens offline, sleep replay
may be an essential mechanism for remapping. In this context,
remapping may result in the generating or updating of hidden
states when there is uncertainty due to change in inputs.

The speed and type (partial or complete) of remapping
that occurs may therefore depend on how past experience is
evaluated offline during replay (Plitt and Giocomo, 2021). We
might also, therefore, expect disrupting replay to change the
speed at which remapping occurs, or whether it occurs at
all. Failures in remapping would likely also impact the ability
to distinguish different environments during learning, thereby
causing inability to learn skills in a new environment, conflation
of skills learned in different environments, and/or perseverance
of skills in the incorrect environment.

The majority of current hippocampal research focuses on
representational correspondence between neural activity and
context, such as how the brain represents the spatial correlates
of an environment through neuronal firing patterns. Absent
from much of this research is a larger focus on questions
of algorithmic correspondence between neuron activity and
context, such as determining the required difference between
two environments to induce remapping. We believe advances
in AI agents will assist in shifting research toward the
investigation of algorithmic correspondence, via providing
frameworks and predictions (such the necessity for replay in
contextual generalization), by which to investigate the expected
link between state changes and neuronal firing. Agents such as

muZero can aid in illuminating these prospective questions, as
well as shedding light on potential expected answers.
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