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Among the main features of biological intelligence are energy e�ciency,

capacity for continual adaptation, and risk management via uncertainty

quantification. Neuromorphic engineering has been thus far mostly driven

by the goal of implementing energy-e�cient machines that take inspiration

from the time-based computing paradigm of biological brains. In this paper,

we take steps toward the design of neuromorphic systems that are capable

of adaptation to changing learning tasks, while producing well-calibrated

uncertainty quantification estimates. To this end, we derive online learning

rules for spiking neural networks (SNNs) within a Bayesian continual learning

framework. In it, each synaptic weight is represented by parameters that

quantify the current epistemic uncertainty resulting from prior knowledge and

observed data. The proposed online rules update the distribution parameters

in a streaming fashion as data are observed. We instantiate the proposed

approach for both real-valued and binary synaptic weights. Experimental

results using Intel’s Lava platform show the merits of Bayesian over frequentist

learning in terms of capacity for adaptation and uncertainty quantification.

KEYWORDS

spiking neural networks, Bayesian learning, neuromorphic learning, neuromorphic

hardware, artificial intelligence

1. Introduction

Recent advances in machine learning and artificial intelligence systems have been

largely driven by a pursuit of accuracy via resource-intensive pattern recognition

algorithms run in a train-and-then-deploy fashion. In stark contrast, neuroscience

paints a picture of intelligence that revolves around continual adaptation, uncertainty

quantification, and resource budgeting (allostasis) for the parsimonious processing

of event-driven information (Doya et al., 2007; Friston, 2010; Feldman Barrett,

2021; Hawkins, 2021). Taking inspiration from neuroscience, over the last decade,

neuromorphic engineering has pursued the goal of implementing energy-efficient

machines that process information with time via sparse inter-neuron binary signals—

or spikes (Davies et al., 2021). The main aim of this paper is to introduce algorithmic

solutions to endow neuromorphic models, namely spiking neural networks (SNNs),

with the capacity for adaptation to changing learning tasks, while ensuring the reliable

quantification of uncertainty of the model’s decisions.
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1.1. Managing uncertainty via Bayesian
learning

Training algorithms for SNNs have been overwhelmingly

derived by following the frequentist approach which consists in

minimizing the training loss with respect to themodel parameter

vector (Shrestha and Orchard, 2018; Zenke and Ganguli, 2018;

Bellec et al., 2020; Kaiser et al., 2020). This is partly motivated by

the dominance of frequentist learning, and associated software

tools, in the literature on deep learning for conventional artificial

neural networks (ANNs). Frequentist learning is well justified

when enough data are available to make the training loss a

good empirical approximation of the underlying population loss

(Clayton, 2021). When this condition is not satisfied, while the

model’s average accuracy may be satisfactory on test data, the

decisions made by the trained model can be badly calibrated,

often resulting in overconfident predictions (Nguyen et al.,

2015; Guo et al., 2017). The problem is particularly significant

for decisions made on test data that differ significantly from

the data observed during training—a common occurrence for

applications such as self-driving vehicles. Furthermore, the

inability of frequentist learning to account for uncertainty limits

its capacity to adapt to new tasks while retaining the capacity to

operate on previous tasks (Ebrahimi et al., 2020).

The main cause of the poor calibration of frequentist

learning is the selection of a single parameter vector, which

disregards any uncertainty on the best model to use for a

certain task due to the availability of limited data. A more

principled approach that has the potential to properly account

for such epistemic uncertainty, i.e., for uncertainty related to the

availability of limited data, is given by Bayesian learning (Jaynes,

2003) and by its generalized form known as information risk

minimization (see, e.g., Zhang, 2006; Guedj, 2019; Knoblauch

et al., 2019; Jose and Simeone, 2021; Simeone, 2022). Bayesian

learning maintains a distribution over the model parameter

vector that represents the partial information available to the

learner. This way, Bayesian models can provide well-calibrated

decisions, which quantify accurately the associated degree of

uncertainty and can be used to detect out-of-distribution inputs

(Daxberger and Hernández-Lobato, 2019). In the self-driving

example provided earlier, the vehicle may hand back control to

the driver when the certainty of its decision is below a certain

threshold.

Bayesian reasoning is at the core of the Bayesian brain

hypothesis in neuroscience, according to which biological brains

constantly update an internal model of the world in an

attempt to minimize their information-theoretic surprise. This

hypothesis is formalized by the free energy principle, which

measures surprise in terms of a variational free energy (Friston,

2012). In this context, synaptic plasticity has been hypothesized

to be well-modeled as Bayesian learning, which keeps track of

the distributions of synaptic weights over time (Aitchison et al.,

2021).

In the present paper, we propose (generalized) Bayesian

learning rules for SNNs with binary and real-valued synaptic

weights that can adapt over time to changing learning tasks.

1.2. Related work

Bayesian learning, and its application to deep ANNs,

typically labeled as Bayesian deep learning, is receiving

increasing attention in the literature. We refer to the following

work for a recent overview (Wang and Yeung, 2020). Natural

gradient descent rule known as the Bayesian learning rule was

introduced in Khan and Lin (2017), then applied in Meng et al.

(2020) to train binary ANNs, and to a variety of other scenarios

in Khan and Rue (2021). Khan and Rue (2021) demonstrates

that the Bayesian learning rule recovers many state-of-the-art

machine learning algorithms in a principled fashion. We also

point to the Kreutzer et al. (2020) that explores the use of natural

gradient descent for frequentist learning in spiking neurons.

As mentioned, the choice of a Bayesian learning framework

is in line with the importance of the Bayesian brain hypothesis

in computational neurosciences (Friston, 2012). The recent

Aitchison et al. (2021) explores a Bayesian paradigm to model

biological synapses as an explanation of the capacity of the brain

to perform learning in the presence of noisy observations. A

Bayesian approach to neural plasticity was previously proposed

for synaptic sampling, by modeling synaptic plasticity as

sampling from a posterior distribution (Kappel et al., 2015).

Apart from the conference version (Jang et al., 2021) of the

present work, this paper is the first to explore the definition

of Bayesian learning and Bayesian continual learning rules

for general SNNs adopting the standard spike response model

[SRM, see, e.g., (Gerstner and Kistler, 2002)].

Continual learning is a key area of machine learning

research, which is partly motivated by the goal of understanding

how biological brains maintain previously acquired skills

while adding new capabilities. Unlike traditional machine

learning, whereby one performs training based on a single data

source, in continual learning, several datasets, corresponding

to different tasks, are sequentially presented to the learner.

A challenge in continual learning is the ability of the

learning algorithm to perform competitively on previous tasks

after training on the subsequently observed datasets. In this

context, catastrophic forgetting indicates the situation in which

performance drops sharply on previously encountered tasks

after learning new ones. Many continual learning techniques

follow the principle of preserving synaptic connections that

are deemed important to perform well on previously learned

tasks via a regularization of the learning objective (Kirkpatrick

et al., 2017; Zenke et al., 2017). Bayesian approaches have also

been proposed for this purpose, whereby priors are selected

as the posterior evaluated on the previous task to prevent

the new posterior distribution from deviating too much from
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learned states. Biological mechanisms are explicitly leveraged

in works such as Laborieux et al. (2021) and Soures et al.

(2021), which combine a variety of neural mechanisms to

obtain state-of-the-art performance for SNNs on standard

continual learning benchmarks. Putra and Shafique (2022)

also proposes a continual learning algorithm for SNNs in an

unsupervised scenario by assuming limited precision for the

weights. In the present paper, we demonstrate how Bayesian

learning allows obtaining similar biologically inspired features

by following a principled objective grounded in information

risk minimization.

Traditionally, training of SNNs has relied on biologically

realistic Hebbian rules, among which spike-timing dependent

plasticity (STDP) is the most popular. STDP modulates the

synaptic weight between two neurons based on the firing

times of both neurons. A long-term potentiation (i.e., an

increase in the weight) of the synapse occurs when the pre-

synaptic neuron spikes right before the post-synaptic neuron,

while long-term depression (i.e., a decrease in the weight)

of a synapse happens when the pre-synaptic neuron spikes

after the post-synaptic neuron. STDP implements a form of

unsupervised learning, and can be leveraged to perform tasks

such as clustering, while also supporting continual learning

(Vaila et al., 2019).

Supervised learning based on the minimization of the

training loss is challenging in SNNs due to the activation

function of spiking neurons, the derivative of which is

always zero, except at the spike time, where it is not

differentiable. Modern training algorithms (Zenke and Ganguli,

2018; Bellec et al., 2020; Kaiser et al., 2020) overcome

this difficulty through the use of surrogate gradients, i.e.,

by replacing the true derivative with that of a well-defined

differentiable function (Neftci et al., 2019). An alternative

approach, reviewed in Jang et al. (2019), is to view the SNN

as a probabilistic model whose likelihood can be directly

differentiated. Further extensions of the probabilistic modeling

approach and associated training rules are presented in Jang and

Simeone (2022) and Jang et al. (2020b).

An application of Bayesian principles to SNNs has first

been proposed in the conference version of this paper

(Jang et al., 2021). Jang et al. (2021) focuses on SNNs

with binary synaptic weights and offline learning, presenting

limited experimental results. In contrast, the current paper

provides all the necessary background, including frequentist

learning; it covers frequentist and Bayesian continual learning;

and it provides extensive experimental results on a variety

of tasks.

1.3. Main contributions

In this work, we derive online learning rules for SNNs within

a Bayesian continual learning framework. In it, each synaptic

weight is represented by parameters that quantify the current

epistemic uncertainty associated with prior knowledge and

data observed thus far. Bayesian methods are key to handling

uncertainty over time, providing the model knowledge of what

is to be retained, and what can be forgotten (Ebrahimi et al.,

2020). The main contributions are as follows.

i) We introduce general frameworks for the definition of

single-task and continual Bayesian learning problems for SNNs

that are based on information risk minimization and variational

inference. Following the desiderata formulated in Farquhar and

Gal (2019a), we focus on the standard formulation of continual

learning in which there exist clear demarcations between

subsequent tasks, but the learner is unaware of the identity

of the current task. For example, in the typical example of an

autonomous vehicle navigating in several environments, the

vehicle may be aware that it is encountering a new terrain, while

being a priori unaware of the type of new terrain. Furthermore,

the model is not modified between tasks, and tasks may be

encountered more than once;

ii) We instantiate the general Bayesian learning frameworks

for SNNs with real-valued synapses. To this end, we adopt

a Gaussian variational distribution for the synaptic weights,

and demonstrate learning rules that can adapt the parameters

of the weight distributions online. This choice of variational

posterior has been previously explored for ANNs, and

can yield state-of-the-art performance on real-life datasets

(Osawa et al., 2019);

iii) We then introduce Bayesian single-task and continual

learning rules for SNNs with binary weights, with

the main goal of supporting more efficient hardware

implementations (Courbariaux et al., 2016; Rastegari et al.,

2016), including platforms based on beyond-CMOS memristors

(Mehonic et al., 2020);

iv) Through experiments on both synthetic and real

neuromorphic datasets, we demonstrate the advantage of

the Bayesian learning paradigm in terms of accuracy and

calibration for both single-task and continual learning. As

neuromorphic algorithms are designed to be run on dedicated

hardware, we run the experiments using Intel’s Lava software

emulator platform (Intel Corporation, 2021), accounting for the

limited precision of synaptic weights in hardware.

2. Methods

We first introduce the adopted SNN model,

namely the standard spike response model (SRM),

before giving a short overview of frequentist, Bayesian,

continual, and biologically inspired learning. We

then detail learning rules for offline and continual

frequentist learning, and derive associated online Bayesian

learning rules.
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FIGURE 1

Illustration of the internal architecture of an SNN. The behavior

of neurons in the read-out layer is guided by the training data,

while that of neurons in the hidden layer is adjusted to fit the

data. The blue shaded area represents the set of pre-synaptic

neurons Pi to neuron i.

2.1. SNN model

2.1.1. Spike response model

The architecture of an SNN is defined by a network of

spiking neurons connected over an arbitrary graph, which

possibly includes (directed) cycles. As illustrated in Figure 1, the

directed graph G = (N , E) is described by a set N of nodes,

representing the neurons, and by a set E of directed edges i→ j

with i 6= j ∈ N , representing synaptic connections.

Focusing on a discrete-time implementation, each spiking

neuron i ∈ N produces a binary value si,t ∈ {0, 1} at discrete

time t = 1, 2, . . ., with “1” denoting the firing of a spike. We

collect in an |N | × 1 vector st = (si,t : i ∈ N ) the spikes emitted

by all neurons N at time t, and denote by st = (s1, . . . , st)

the spike sequences of all neurons up to time t. Without loss of

generality, we consider time-sequences of length T, and write

s : = sT . Each neuron i receives input spike signals {sj,t}j∈Pi
=

sPi,t at time t from the set Pi = {j ∈ N :(j→ i) ∈ E} of parent,

or pre-synaptic, neurons, which are connected to neuron i via

directed links in the graph G. With some abuse of notations, this

set is taken to include also exogeneous input signals.

Each neuron i maintains a scalar analog state variable ui,t ,

known as the membrane potential. Mathematically, neuron i

outputs a binary signal si,t , or spike, at time t when the

membrane potential ui,t is above a threshold ϑ , i.e.,

si,t = 2(ui,t − ϑ), (1)

with 2(·) being the Heaviside step function and ϑ being the

fixed firing threshold. Following the standard discrete-time SRM

(Gerstner and Kistler, 2002), the membrane potential ui,t is

obtained by summing filtered contributions from pre-synaptic

neurons in set Pi and from the neuron’s own output. In

particular, the membrane potential evolves as

ui,t =
∑

j∈Pi

wij
(

αt ∗ sj,t
)

− βt ∗ si,t , (2)

where wij is a learnable synaptic weight from pre-synaptic

neuron j ∈ Pi to post-synaptic neuron i; and we collect in

vector w = {wi}i∈N the model parameters, with wi : =

{wij}j∈Pi
being the synaptic weights for each neuron i. We have

denoted as αt and βt the spike responses of synapses and somas,

respectively; while ∗ denotes the convolution operator ft ∗ gt =
∑

δ>0 fδgt−δ . When implemented with autoregressive filters,

the SRM is equivalent to leaky integrate-and-fire (LIF) neuron

model (Gerstner and Kistler, 2002; Kaiser et al., 2020). The

techniques developed in this work can be directly generalized to

other, more complex, neuron models, such as resonate-and-fire

(Izhikevich, 2001), but we leave an investigation of this point to

future work.

2.1.2. Real-valued and binary-valued synapses

In this paper, we will consider two implementations

of the SRM introduced in the previous subsection. In the

first, the synaptic weights in vector w are real-valued, i.e.,

wij ∈ R, with possibly limited resolution, as dictated

by deployment on neuromorphic hardware (see Section 3).

In contrast, in the second implementation, the weights are

binary, i.e., wij ∈ {+1,−1}. The advantages of models with

binary-valued synapses, which we call binary SNNs, include

a reduced complexity for the computation of the membrane

potential ui,t in Equation (2). Furthermore, binary SNNs are

particularly well suited for implementations on chips with

nanoscale components that provide discrete conductance levels

for the synapses (Mehonic et al., 2020). In this regard,

we note that the methods described in this paper can be

generalized to models with weights having any discrete number

of values.

2.2. Frequentist vs. Bayesian learning

With traditional frequentist learning, the vector of synaptic

weights w is optimized by minimizing a training loss. The

training loss is adopted as a proxy for the population loss, i.e.,

for the loss averaged over the true, unknown, distribution of

the data. Therefore, frequentist learning disregards the inherent

uncertainty caused by the availability of limited training data,

which causes the training loss to be a potentially inaccurate

estimate of the population loss. As a result, frequentist learning is

known to potentially yield poorly calibrated, and overconfident

decisions for ANNs (Nguyen et al., 2015).

In contrast, as seen in Figure 2A, Bayesian learning

optimizes over a distribution q(w) in the space of the synaptic

weight vector w. The distribution q(w) captures the epistemic

uncertainty induced by the lack of knowledge of the true
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FIGURE 2

Illustration of Bayesian learning in an SNN. (A) In a Bayesian SNN, the synaptic weights w are assigned a joint distribution q(w), often simplified as

a product distribution across weights. (B) An ensemble decision is obtained by sampling several times from the distribution q(w), and by

averaging the predictions of the sampled models. Sampling is done independently for each new input. (C) In a committee machine, the weights

for several models are drawn only once from q(w), and the same models are run in parallel for any new input.

distribution of the data. This is done by assigning similar

values of q(w) to model parameters that fit equally well the

data, while also being consistent with prior knowledge. As a

consequence, Bayesian learning is known to produce better

calibrated decisions, i.e., decisions whose associated confidence

better reflects the actual accuracy of the decision (Guo et al.,

2017). Furthermore, models trained via Bayesian learning can

better detect out-of-distribution data, i.e., data that is not

covered by the distribution of the training set (Daxberger and

Hernández-Lobato, 2019; Kristiadi et al., 2020).

Once distribution q(w) is optimized via Bayesian learning,

at inference time a decision on any new test input is made by

averaging the decisions of multiple models, with each being

drawn from the distribution q(w). The average over multiple

models can be realized in one of two ways.

i) Ensemble predictor: Given a test input, as seen in Figure 2B,

one draws a new synaptic weight vector several times from

the distribution q(w), and an ensemble decision is obtained by

averaging the decisions produced by running the SNN with

each sampled weight vector;

ii) Committee machine: Alternatively, one can sample a number

of realizations from the distribution q(w) that are kept

fixed and reused for all test inputs. This solution foregoes

the sampling step at inference time as illustrated in

Figure 2C. However, the approach generally requires a

larger memory to store all samples w to be used for

inference, while the ensemble predictor can make decisions

using different weight vectors w ∼ q(w) sequentially

over time.

2.3. O	ine vs. continual learning

Offline learning denotes the typical situation where the

system is presented with a single training dataset D, which is

used to measure a training loss. In offline learning, optimization

of the training loss is carried out once and for all, resulting in a

synaptic weight vector w or in a distribution q(w) for frequentist

or Bayesian learning, respectively. Offline learning is hence, by

construction, unable to adapt to changing conditions, and it is

deemed to be a poor representation of how intelligence works in

biological organisms (Kudithipudi and Aguilar-Simon, 2022).

In continual learning, the system is sequentially presented

datasets D(1),D(2), . . . corresponding to distinct, but related,

learning tasks, where each task is selected, possibly with

replacement, from a pool of tasks, and its identity is unknown

to the system. For each task k, the system is given a training set

D(k), and its goal is to learn to make predictions that generalize

well on the new task, while causing minimal loss of accuracy on

previous tasks 1, . . . , k−1. In frequentist continual learning, the

model parameter vector w is updated as data from successive

tasks is collected. Conversely, in Bayesian continual learning, the

distribution q(w) is updated over time as illustrated in Figure 3.

The updates should be sufficient to address the needs of the
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FIGURE 3

Illustration of Bayesian continual learning: the system is successively presented with similar, but di�erent, tasks. Bayesian learning allows the

model to retain information about previously learned information.

new task, while not disrupting performance on previous tasks,

operating on a stability-plasticity trade-off.

2.4. Biological principles of learning

Many existing works on continual learning draw their

inspiration from the mechanisms underlying the capability

of biological brains to carry out life-long learning (Soures

et al., 2021; Kudithipudi and Aguilar-Simon, 2022).

Learning is believed to be achieved in biological systems

by modulating the strength of synaptic links. In this

process, a variety of mechanisms are at work to establish

short-to intermediate-term and long-term memory for the

acquisition of new information over time (Kandel et al.,

2014). These mechanisms operate at different time and spatial

scales.

One of the best understood mechanisms, long-term

potentiation, contributes to the management of long-term

memory through the consolidation of synaptic connections

(Morris, 2003; Malenka and Bear, 2004). Once established,

these are rendered resistant to disruption by changing their

capacity to change via metaplasticity (Abraham and Bear,

1996; Finnie and Nader, 2012). As a related mechanism,

return to a base state is ensured after exposition to small,

noisy changes by heterosynaptic plasticity, which plays a key

role in ensuring the stability of neural systems (Chistiakova

et al., 2014). Neuromodulation operates at the scale of neural

populations to respond to particular events registered by the

brain (Marder, 2012). Finally, episodic replay plays a key role in

the maintenance of long-term memory, by allowing biological

brains to re-activate signals seen during previous active periods

when inactive (i.e., sleeping) (Kudithipudi and Aguilar-Simon,

2022).

2.5. Frequentist o	ine learning

We now review frequentist offline training algorithms for

SNNs, under the SRMmodel described in Section 2.1.1. This will

provide the necessary background for Bayesian learning and its

continual version, described in Sections 2.6 and 2.8, respectively.

2.5.1. Empirical risk minimization

To start, as illustrated in Figure 1, we divide the set N of

neurons of the SNN into two subsets Y and H with N =

Y ∪ H: a set of read-out, or output, neurons Y and a set of

hidden neurons H. The set of exogeneous inputs is defined as

X . We focus on supervised learning, in which a dataset D is

given by |D| pairs (x, y) of signals generated from an unknown

distribution p(x, y), with x being exogeneous input signals, one

for each element of the set X , and y the corresponding desired

output signals. Both x and y are vector sequences of length

T, with x comprising |X | signals, and y including |Y| signals.

Each output samples ym,t in y dictates the desired behavior

of the mth neuron in the read-out set Y . The sequences in x

and y can generally take arbitrary real values (see Section 3 for

specific examples).

In frequentist learning, the goal is to minimize the training

loss over the parameter vector w using the training dataset D =

{(x, y)}. To elaborate, we define the loss Lx,y(w) measured with

respect to a data (x, y) ∈ D as the error between the reference

signals y and the output spiking signals produced by the SNN

with parameters w, given the input x. Accordingly, the loss is

written as a sum over time instants t = 1, . . . ,T and over the

|Y| read-out neurons as

Lx,y(w) =

T
∑

t=1

Lxt ,yt
(w) =

T
∑

t=1

∑

m∈Y

L
(

ym,t , fm(w, x
t)

)

, (3)
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where function L
(

ym,t , fm(w, x
t)

)

is a local loss measure

comparing the target output ym,t of neuron m at time t and

the actual output fm(w, x
t) of the same neuron. The notations

fm(w, x
t) andLxt ,yt

(w) are used as a reminder that the output of

the SNN and the corresponding loss at time t generally depend

on the input xt up to time t, and on the target output yt at time t.

Specifically, the notation fm(w, x
t) makes it clear that the output

of neuronm ∈ Y is produced with the model parametersw from

exogeneous input xt , consisting of all input samples up to time

t, using the SRM (Equations 1, 2).

The training loss LD(w) is an empirical estimate of the

population loss based on the data samples in the training dataset

D, and is given as

LD(w) =
1

|D|

∑

(x,y)∈D

Lx,y(w). (4)

Frequentist learning addresses the empirical risk

minimization (ERM) problem

min
w

LD(w). (5)

Problem (Equation 5) cannot be directly solved using

standard gradient-based methods since: (i) the spiking

mechanism (Equation 1) is not differentiable in w due to the

presence of the threshold function 2(·); and (ii) in the case of

binary SNNs, the domain of the weight vector w is the discrete

set of binary values.

To tackle the former problem, as detailed in Section 2.5.2,

surrogate gradients (SG) methods replace the derivative of

the threshold function 2(·) in Equation (1) with a suitable

differentiable approximation (Neftci et al., 2019). In a similar

manner, for the latter issue, optimization over binary weights

is conventionally done via the straight-through estimator (STE)

(Bengio et al., 2013; Jang et al., 2021), which is covered in

Section 2.5.3.

2.5.2. Surrogate gradient

As discussed in the previous subsections, the gradient

∇wLx,y(w) is typically evaluated via SGmethods. SG techniques

approximate the Heaviside function 2(·) in Equation (1) when

computing the gradient ∇wLx,y(w). Specifically, the derivative

2′(·) is replaced with the derivative of a differentiable surrogate

function, such as rectifier or sigmoid. For example, with a

sigmoid surrogate, given by function σ (x) = (1 + e−x)−1,

we have ∂si,t/∂ui,t ≈ σ ′(ui,t − ϑ), with derivative σ ′(x) =

σ (x)(1 − σ (x)). Using the loss decomposition in Equation (3),

the partial derivative of the training loss Lxt ,yt
(w) at each time

instant t with respect to a synaptic weight wij can be accordingly

approximated as

∂Lxt ,yt
(w)

∂wij
≈

∑

m∈Y

∂L(ym,t , fm,t)

∂si,t
︸ ︷︷ ︸

ei,t

·
∂si,t

ui,t
︸︷︷︸

σ ′(ui,t−ϑ)

·
∂ui,t

∂wij
︸ ︷︷ ︸

αt∗sj,t

, (6)

where the first term ei,t is the derivative of the loss at time t

with respect to the output si,t of post-synaptic neuron i at time

t; and the third term can be directly computed from Equation

(2) as the filtered pre-synaptic trace of neuron j. For simplicity

of notation, we have defined fm,t : = fm(w, x
t) and omitted

the explicit dependence of si,t and ui,t on exogeneous inputs xt

and synaptic weights w. The second term is the source of the

approximation, as the derivative of the threshold function 2′(·)

from Equation (1), which is zero almost everywhere, is replaced

using the derivative of the sigmoid function.

At every time instant t = 1, . . . ,T, using Equation (6),

the online update is obtained via stochastic gradient descent

(SGD) as

wij,t+1 ← wij,t − η ·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(wt)

∂wij
, (7)

where η > 0 is a learning rate, and B ⊆ D is a mini-

batch of examples (x, y) from the training dataset. Note that

the sequential implementation of the update (Equation 7) over

time t requires running a number of copies of the SNN model

equal to the size of the mini-batch B. In fact, each input x, with

(x, y) ∈ B, generally causes the spiking neurons to follow distinct

trajectories in the space of themembrane potentials. Henceforth,

when referring to online learning rules, we will implicitly assume

that parallel executions of the SNN are possible when the mini-

batch size is larger than 1.

The weight update in the direction of the negative gradients

in Equation (7) implements a standard three-factor rule. Three-

factor rules generalize two-factor Hebbian updates such as STDP

(Gerstner et al., 2018), and can be implemented on hardware

with similar complexity (Zenke and Ganguli, 2018; Kaiser

et al., 2020; Stewart et al., 2020). In fact, the partial derivative

(Equation 6) can be written as

∂Lxt ,yt
(w)

∂wij
= ei,t

︸︷︷︸

error signal

· σ ′(ui,t − ϑ)
︸ ︷︷ ︸

posti,t

·
(

αt ∗ sj,t
)

︸ ︷︷ ︸

prej,t

, (8)

where we distinguish three terms. The first is the per-neuron

error signal ei,t , which can be in principle computed via

backpropagation through time (Huh and Sejnowski, 2018).

In practice, this term is approximated, e.g. via local signals

(Bellec et al., 2020), or via random projections (Kaiser et al.,

2020). The latter technique has previously been likened to

the biological mechanisms behind short-term memory (Zou

et al., 2022). We will discuss a specific implementation

in Section 3.2. The second contribution is given by the

local post-synaptic term σ ′(ui,t − ϑ), which measures the
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current sensitivity to changes in the membrane potential

of the neuron i. Finally, the last term is the local pre-

synaptic trace αt ∗ sj,t that depends on the activity of the

neuron j.

2.5.3. Straight-through estimator

As mentioned in Section 2.5.1, optimization over binary

weights can be carried out using STE (Bengio et al., 2013;

Jang et al., 2021), which maintains latent, real-valued weights

to compute gradients during training. Binary weights, obtained

via quantization of the real-valued latent weights, are used as

the next iterate. To elaborate, in addition to the binary weight

vector w ∈ {+1,−1}|w|, we define the real-valued weight vector

wr ∈ R
|w|×1. We use |w| to denote the size of vector w. With

STE, gradients are estimated by differentiating over the real-

valued latent weights wr, instead of discrete binary weights w,

to compute the gradient ∇wrLxt ,yt
(wr)|wr=w. The technique

can be naturally combined with the SG method, detailed in

Section 2.5.2, to obtain the gradients with respect to the real-

valued latent weights.

The training algorithm proceeds iteratively by selecting a

mini-batch B of examples (x, y) from the training dataset D at

each iteration as in Equation (7). Accordingly, the real-valued

latent weight vector wr is updated via online SGD as

wr
ij,t+1 ← wr

ij,t − η ·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(wr

t )

∂wr
ij,t

∣
∣
∣
∣
wr
ij,t=wij,t

, (9)

and the next iterate for the binary weights w is obtained by

quantization as

wij,t+1 = sign
(

wr
ij,t+1

)

, (10)

where the sign function is defined as sign(x) = +1 for x ≥ 0 and

sign(x) = −1 for x < 0.

2.6. Bayesian o	ine learning

In this section, we describe the formulation of

Bayesian offline learning, and then develop two Bayesian

training algorithms for SNNs with real-valued and binary

synaptic weights.

2.6.1. Information risk minimization

Bayesian learning formulates the training problem as the

optimization of a probability distribution q(w) in the space of

synaptic weights, which is referred to as the variational posterior.

To this end, the ERM problem (Equation 5) is replaced by the

information risk minimization (IRM) problem

min
q(w)

{

F
(

q(w)
)

= Eq(w)

[

LD(w)
]

+ ρ · KL
(

q(w)||p(w)
)
}

,

(11)

where ρ > 0 is a “temperature” constant, p(w) is an arbitrary

prior distribution over synaptic weights, and KL(·||·) is the

Kullback-Leibler divergence

KL(q(w)||p(w)) = Eq(w)

[

log
q(w)

p(w)

]

. (12)

The objective function in IRM problem (Equation 11) is

known as (variational) free energy (Jose and Simeone, 2021).

The problem of minimizing the free energy in Equation (11)

must strike a balance between fitting the data—i.e., minimizing

the first term—and not deviating too much from the reference

behavior defined by prior p(w)—i.e., keeping the second term

small. Note that with ρ = 0, the IRM problem (Equation 11)

reduces to the ERM problem (Equation 5) in the sense that

the optimal solution of the IRM problem with ρ = 0 is a

distribution concentrated at the solution of the ERM problem

(assuming that the latter is unique). The KL divergence term

in Equation (11) is hence essential to Bayesian learning, and

it is formally justified as a regularizing penalty that accounts

for epistemic uncertainty due to the presence of limited data

in the context of PAC Bayes theory (Zhang, 2006). It can

also be used as a model of bounded rationality accounting for

the complexity of information processing (Jose and Simeone,

2021).

If no constraints are imposed on the variational posterior

q(w), the optimal solution of Equation (11) is given by the

Gibbs posterior

q⋆(w) =
p(w) exp

(

− LD(w)/ρ
)

Ep(w)

[

exp
(

− LD(w)/ρ
)
] . (13)

Due to the intractability of the normalizing constant in

Equation (13), we adopt a mean-field variational inference

(VI) approximation that limits the optimization domain for

problem (Equation 11) to a class of factorized distributions

(see, e.g., Angelino et al., 2016; Simeone, 2022). More

specifically, we focus on Gaussian and Bernoulli variational

approximations, targeting SNN models with real-valued and

binary synaptic weights, respectively, which are detailed in the

rest of this section.

2.6.2. Gaussian mean-field variational inference

In this subsection, we derive a Gaussian mean-field VI

algorithm that approximately solves the IRM problem (Equation

11) by assuming variational posteriors of the form q(w) =
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1: Input: dataset D, learning rate η, temperature

parameter ρ, prior (m0, p0)

2: Output: learned parameters pair (m, p)

3: initialize parameters (m1, p1)

4: repeat

5: select mini-batch B ⊆ D

6: for each time-step t = 1, . . . ,T do

7: sample weights w as w ∼ N (w|mt ,P
−1
t ).

8: for each (x, y) ∈ B do

9: compute the gradient ∇wLxt ,yt
(w) locally at

each synapse using SG (see Section 2.5.2).

10: end for

11: update the mean and precision parameters

(mij,t , pij,t) for all synapses (i, j) ∈ E as

pij,t+1 ← (1− ηρ) · pij,t

+ η ·

[
1

|B|

∑

(x,y)∈B

(
∂Lxt ,yt

(w)

∂wij

)2

+ ρ · pij,0

]

mij,t+1 ← mij,t − η · p−1ij,t+1

·

[
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · pij,0 ·

(

mij,0 −mij,t

)
]

.

12: end for

13: set (m1, p1) = (mT , pT )

14: until convergence

Algorithm 1. Bayesian o	ine learning with real-valued

synapses.

N (w|m,P−1), where m is a mean vector and P is a precision

diagonal matrix with positive vector p on the main diagonal. For

the |w| × 1 weight vector w, the distribution of the parameters

w is defined by the |w| × 1 mean vectorm and |w| × 1 precision

vector p = {pij}(i,j)∈E with pij > 0 for all (i, j) ∈ E . This

variational model is well suited for real-valued synapses, which

can be practically realized to the fixed precision allowed by the

hardware implementation (Davies et al., 2018). We choose the

prior p(w) as the Gaussian distribution p(w) = N (w|m0,P
−1
0 )

with mean m0 and precision matrix P0 with positive diagonal

vector p0.

We tackle the IRM problem (Equation 11) with respect

to the so-called variational parameters (m, p) of the Gaussian

variational posterior q(w) via the Bayesian learning rule (Khan

and Rue, 2021). The Bayesian learning rule is derived by

applying natural gradient descent to the variational free energy

F(q(w)) in Equation (11). The derivation leverages the fact

that the distribution q(w) is an exponential-family distribution

with natural parameters λ = (Pm,−1/2P), sufficient statistics

T = (w,wwT) and mean parameters µ = (m,P−1 +

mmT). Updates to the mean mt and precision pt parameters

at iteration t can be obtained as Osawa et al. (2019) and

Khan and Rue (2021).

pij,t+1 ← (1− ηρ) · pij,t

+ η · Eqt(w)

[
1

|B|

∑

(x,y)∈B

(
∂Lxt ,yt

(w)

∂wij

)2

+ ρ · pij,0

]

(14)

mij,t+1 ← mij,t − η · p−1ij,t+1

· Eqt(w)

[
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · pij,0 ·

(

mij,0 −mij,t
)
]

(15)

where η > 0 is a learning rate; B ⊆ D is a mini-batch

of examples (x, y) from the training dataset; and qt(w) =

N (w|mt ,P
−1
t ) is the variational posterior at iteration t with mt

and pt .

In practice, the updates (Equations 14, 15) are estimated by

evaluating the expectation over distribution qt(w) via one or

more randomly drawn samples w ∼ qt(w). Furthermore, the

gradients ∇wLxt ,yt
(w) can be approximated using the online

SG method described in Section 2.5.2. The overall training

algorithm proceeds iteratively by selecting a mini-batch B ⊆ D

of examples (x, y) from the training dataset at each iteration,

and is summarized in Algorithm 1. Note that, as mentioned in

Section 2.5.2, the implementation of a rule operating with mini-

batches requires running |B| SNN models in parallel, where |B|

is the cardinality of the mini-batch. When this is not possible,

the rule can be applied with mini-batches of size |B| = 1.

2.6.3. Bernoulli mean-field variational inference

In this subsection, we turn to the case of binary synaptic

weightswij ∈ {+1,−1}. For this setting, we adopt the variational

posterior q(w) = Bern
(

w|p
)

, with

q(w) =
∏

i∈N

∏

j∈Pi

p

1+wij
2

ij (1− pij)
1−wij

2 , (16)

where the |w| × 1 vector p = {{pij}j∈Pi
}i∈N defines the

variational posterior, with pij being the probability that synaptic

weights wij equals+1.

The variational posterior (Equation 16) can be

reparameterized in terms of the mean parameters

µ = {{µij}j∈Pi
}i∈N as

q(w) = Bern
(

w
∣
∣
∣

µ+ 1

2

)

(17)

by setting pij = (µij+ 1)/2, where 1 is the all-ones vector. It can

also be expressed in terms of the logits, or natural parameters,

wr = {{wr
ij}j∈Pi

}i∈N as q(w) = Bern
(

w|σ (2wr)
)

by setting

wr
ij =

1

2
log

(
pij

1− pij

)

=
1

2
log

(
1+ µij

1− µij

)

, (18)
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1: Input: dataset D, learning rate η, temperature

parameter ρ, GS trick parameter τ, logits wr0 of

prior distribution

2: Output: learned real-valued weights wr

3: initialize real-valued weights wr1

4: repeat

5: select mini-batch B ⊆ D

6: for each time-step t = 1, . . . ,T do

7: sample relaxed binary weights as

wij = tanh

(
wrij,t + δij

τ

)

,

with δij =
1
2 log

ǫij
1−ǫij

and ǫij
i.i.d.
∼ U (0, 1) for all

(i, j) ∈ E.

8: for each (x, y) ∈ B do

9: compute the gradient ∇wLxt ,yt
(w) locally at

each synapse using SG (see Section 2.5.2).

10: end for

11: update the real-valued weights wrij,t for all

synapses (i, j) ∈ E as

wrij,t+1 ← (1− ηρ) · wrij,t − η ·
[ 1− w2

ij

τ
(

1− tanh2(wrij,t)
)

·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · wrij,0

]

.

12: end for

13: set wr1 = wrT

14: until convergence

Algorithm 2. Bayesian o	ine learning with binary-valued

synapses.

for all (i, j) ∈ E . The notation wr has been introduced to suggest

a relationship with the STEmethod described in Section 2.5.3, as

defined below. We assume that the prior distribution p(w) also

follows a mean-field Bernoulli distribution of the form p(w) =

Bern(w|σ (2wr
0)), for some vector of wr

0 logits. For example,

settingwr
0 = 0 indicates that the binary weights are equally likely

to be either+1 or−1 a priori.

In a manner similar to the case of Gaussian VI developed

in the previous subsection, we apply natural gradient descent

to minimize the variational free energy in Equation (11) with

respect to the variational parameters wr defining the variational

posterior q(w). Following Meng et al. (2020), and applying the

online SGD rule detailed in Section 2.5.2, this yields the update

wr
ij,t+1 ← (1− ηρ) · wr

ij,t

− η ·

[
∂

∂µij,t
Eqt(w)

[ 1

|B|

∑

(x,y)∈B

Lxt ,yt
(w)

]

− ρ · wr
ij,0

]

, (19)

where η > 0 is a learning rate and qt(w) the variational

posterior with wr
t and µt related through (Equation 18). Note

that the gradient in Equation 19 is with respect to the mean

parameters µt .

In order to estimate the gradient in Equation 19, we leverage

the reparameterization trick via the Gumbel-Softmax (GS)

distribution (Jang et al., 2016; Meng et al., 2020). Accordingly,

we first obtain a sample w that is approximately distributed

according to qt(w) = Bern
(

w|σ (2wr
t )

)

. This is done by

drawing a vector δ = {{δij}j∈Pi
}i∈N of i.i.d. Gumbel variables,

and computing

wij = tanh

(wr
ij,t + δij

τ

)

, (20)

where τ > 0 is a parameter. When τ in Equation (20) tends

to zero, the tanh(·) function tends to the sign(·) function, and

the vector w follows distribution qt(w) (Meng et al., 2020). To

generate δ, one can set δij =
1
2 log

(
ǫij

1−ǫij

)

, with ǫij ∼ U(0, 1)

being i.i.d. samples.

With this sample, for each example (x, y), we then obtain

an approximately unbiased estimate of the gradient in Equation

(19) by using the following approximation

∂

∂µij,t
Eqt(w)

[

Lxt ,yt
(w)

]

(a)
≈ Ep(δ)

[
∂Lxt ,yt

(w)

∂µij,t

∣
∣
∣
∣
w=tanh

(wrt+δ

τ

)

]

(b)
= Ep(δ)

[
∂Lxt ,yt

(w)

∂wij
·

∂

∂µij,t
tanh

(wr
ij,t + δij

τ

)
]

= Ep(δ)

[
∂Lxt ,yt

(w)

∂wij
·

1− w2
ij

τ
(

1− tanh2(wr
ij,t)

)

]

, (21)

where the approximate equality (a) is exact when τ → 0 and

the equality (b) follows the chain rule. We note that the gradient

∇wLxt ,yt
(w) can be computed as detailed in Section 2.5.2.

As summarized in Algorithm 2, the resulting rule proceeds

iteratively by selecting a mini-batch B of examples (x, y) from

the training dataset D at each iteration. Using the samples wij

from Equation (20), we obtain at every time-step t the estimate

of the gradient (Equation 19) as

∂

∂µij,t
Eqt(w)

[

Lxt ,yt
(w)

]

≈
1− w2

ij

τ
(

1− tanh2(wr
ij,t)

)

·
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · wr

ij,0. (22)

This is unbiased when the limit τ → 0 holds.
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2.7. Frequentist continual learning

We now consider a continual learning setting, in which

the system is sequentially presented datasets D(1),D(2), . . .

corresponding to distinct, but related, learning tasks. Applying

a frequentist approach, at every subsequent task k, the system

minimizes a new objective based on dataset D(k) in order to

update the model parameter vector w, where we have used

superscript (k) to denote the quantities corresponding to the

kth task. We first describe an algorithm based on coresets

and regularization (Farquhar and Gal, 2019b). Then, we briefly

review a recently proposed biologically inspired rule.

2.7.1. Regularization-based continual learning

In a similar manner to Equation (4), let us first define as

LD(k) (w) =
1

|D(k)|

∑

(x,y)∈D(k)

Lx,y(w) (23)

the training loss evaluated on dataset D(k) for the kth task.

A general formulation of the continual learning problem in a

frequentist framework is then obtained as the minimum of the

objective

LD(k) (w)+

k−1
∑

k′=1

L
C(k′) (w)+ α · R

(

w, {w(k′)}k−1
k′=1

)

, (24)

where L
C(k′) (w) is the training loss evaluated on a coreset, that

is, a subset C(k
′) ⊂ D(k′) of examples randomly selected from

a previous task k′ < k and maintained for use when future

tasks are encountered; α ≥ 0 determines the strength of the

regularization; and R(w, {w(k′)}k−1
k′=1

) is a regularization function

aimed at preventing the current weights from differing toomuch

from previously learned weights {w(k′)}k−1
k′=1

, hence mitigating

the problem of catastrophic forgetting (Parisi et al., 2019).

A popular choice for the regularization function, yielding

the Elastic Weight Consolidation (EWC) method, proposes to

estimate the relative importance of synapses for previous tasks

via the Fisher information matrices (FIM) computed on datasets

k′ < k (Kirkpatrick et al., 2017). This corresponds to the choice

of the regularizer

R
(

w, {w(k′)}k−1
k′=1

)

=

k−1
∑

k′=1

(w − w(k′))TF(k
′)(w(k′))(w − w(k′)),

(25)

where F(k)(w) = diag
(∑

(x,y)∈D(k) (∇wLx,y(w))
2
)

is an

approximation of the FIM estimated on datasetD(k). The square

operation in vector (∇wLx,y(w))
2 is evaluated element-wise.

Intuitively, a larger value of an entry in the diagonal of thematrix

F(k)(w) indicates that the corresponding entry of the vector w

plays a significant role for the kth task.

2.7.2. Biologically inspired continual learning

The authors of Soures et al. (2021) introduce a biologically

inspired, frequentist, continual learning rule for SNNs, which

we briefly review here. The approach operates online in discrete

time t, and implements themechanisms described in Section 2.4.

It considers a leaky integrate-and-fire (LIF) neuron model. The

LIF is a special case of the SRM (Equations 1, 2) in which

the synaptic response α implemented as the alpha-function

spike response αt = exp(−t/τmem) − exp(−t/τsyn) and the

exponentially decaying feedback filter βt = − exp(−t/τref)

for t ≥ 1 with some positive constants τmem, τsyn, and τref.

This choice enables an autoregressive update of the membrane

potential (Jang et al., 2020a; Kaiser et al., 2020).

Ametaplasticity parameter νij is introduced for each synapse

(i, j) ∈ E that determines the degree to which the synapse is

prone to change. This quantity is increased by a fixed step 1ν as

νij,t+1 ← νij,t +1ν (26)

when the pre- and post-synaptic neurons spiking rates, i.e.,

the spiking rate of neuron i and j, respectively, pass a pre-

determined threshold. Furthermore, each synapse (i, j) ∈ E

maintains a reference weight wref
ij to mimic heterosynaptic

plasticity by adjusting the weight updates to drive synaptic

weights toward this resting state. It is updated over time as

wref
ij,t+1 ← wref

ij,t + κ ·
(

wij,t − wref
ij,t

)

, (27)

where κ > 0, and serves as a reference to implement

heterosynaptic plasticity.

With these definitions, the update of each synaptic weight w

is computed according to the online learning rule

wij,t+1 ← wij,t − exp
(

− |νij · wij,t|
)

(

η · ei,t · sj,t · σ
′(ui,t − ϑ)+ γ · (wij,t − wref

ij,t) · si,t

)

, (28)

where η and γ are respectively learning and decay rates, and

ei,t is an error signal from neuron i (see Soures et al., 2021 for

details). The rule (Equation 28) takes a form similar to that of

three-factor rules (Equation 8), with the term ei,t ·sj,t ·σ
′(ui,t−ϑ)

evaluating the product of error, post-synaptic, and pre-synaptic

signals. The update (Equation 28) implements metaplasticity via

the term exp
(

− |νij · wij,t|
)

that decreases the magnitude of the

updates during the training procedure for active synapses. It

also accounts for heterosynaptic plasticity thanks to the term

(wij,t − wref
ij,t), which drives the updates toward learned “resting”

weight wref
ij,t when the pre-synaptic neuron is active.

2.8. Bayesian continual learning

In this section, we generalize the Bayesian formulation seen

in Section 2.6 from the offline setting to continual learning.
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2.8.1. Bayesian continual learning

To allow the adaptation to task k without catastrophic

forgetting, we consider the problem (Farquhar and Gal, 2019a).

min
q(k)(w)

F (k)(q(k)(w)
)

(29)

of minimizing the free energy metric

F (k)(q(k)(w)
)

= Eq(k)(w)

[

LD(k) (w)+

k−1
∑

k′=1

L
C(k′) (w)

]

+ ρ · KL
(

q(k)(w)||q(k−1)(w)
)

, (30)

which combines the IRM formulation (Equation 11) with the

use of coresets. Minimizing the free energy objective (Equation

30) must strike a balance between fitting the new training

data D(k), as well as the coresets {C(k
′)}k−1

k′=1
from the previous

tasks, while not deviating too much from previously learned

distribution q(k−1)(w). Comparing (Equation 30) with the free

energy (Equation 11), we observe that the distribution q(k−1)(w)

plays the role of prior for the current task k.

2.8.2. Continual gaussian mean-field variational
inference

Similarly to the approach for offline learning described in

Section 2.6, we first assume a Gaussian variational posterior

q(w), and address the problem (Equation 30) via natural

gradient descent. To this end, we adopt the variational posterior

q(k)(w) = N (w|m(k), (P(k))−1), with mean vector m(k) and

diagonal precision matrix P(k) with positive diagonal vector p(k)

of size |w| × 1 for every task k. We choose the prior p(w) for

dataset D1 as the Gaussian distribution p(w) = N (w|m0,P
−1
0 )

with positive diagonal vector p0 of size |w| × 1. Applying the

Bayesian learning rule (Khan and Rue, 2021) as in Section 2.6.2,

updates to the mean and precision parameters can be obtained

via online SGD as

p
(k)
ij,t+1 ← (1− ηρ) · p

(k)
ij,t + η · E

q
(k)
t (w)

[
1

|B|

∑

(x,y)∈B

(
∂Lxt ,yt

(w)

∂wij

)2

+ ρ · p
(k−1)
ij

]

(31)

m
(k)
ij,t+1 ← m

(k)
ij,t − η · (p

(k)
ij,t+1)

−1 · E
q
(k)
t (w)

[
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
− ρ · p

(k−1)
ij ·

(

m
(k−1)
ij −m

(k)
ij,t

)
]

,

(32)

wheremini-batchB is now selected at random from both dataset

D(k) and coresets from previous tasks, i.e.,B ⊆ D(k)∪k
k′=1

C(k
′).

The rule can be directly derived by following the steps detailed

in Section 2.6.2, and using for prior at every task k the mean

m(k−1) and precision P(k−1) obtained at the end of training on

the previous task.

2.8.3. On the biological plausibility of the
Bayesian learning rule

The continual learning rule (Equations 31, 32) exhibits

some of the mechanisms thought to enable memory retention

in biological brains as described in Section 2.4. In particular,

synaptic consolidation and metaplasticity for each synapse

(i, j) ∈ E are modeled by the precision pij. In fact, a larger

precision pij,t+1 effectively reduces the step size 1/pij,t+1 of

the synaptic weight update (Equation 32). This is a similar

mechanism to the metaplasticity parameter νij,t introduced

in the rule (Equation 28). Furthermore, by Equation 31, the

precision pij is increased to a degree that depends on the

relevance of the synapse (i, j) ∈ E as measured by the

estimated FIM (∂Lxt ,yt
(w)/∂wij)

2 for the current mini-batch B

of examples.

Heterosynaptic plasticity, which drives the updates toward

previously learned and resting states to prevent catastrophic

forgetting, is obtained from first principles via the IRM

formulation with a KL regularization term, rather than from

the addition of the reference weight wref in the previous work

(Soures et al., 2021). This mechanism drives the updates of

the precision p
(k)
ij,t+1 and mean parameter m

(k)
ij,t+1 toward the

corresponding parameters of the variational posterior obtained

at the previous task, namely p
(k−1)
ij andm

(k−1)
ij .

Finally, the use of coresets implements a form of replay, or

reactivation, in biological brains (Buhry et al., 2011).

2.8.4. Continual bernoulli mean-field
variational inference

We now consider continual learning with a Bernoulli mean-

field variational posterior, and force the synaptic weight wij to

be binary, i.e., wij ∈ {+1,−1}. Following Equation (16), the

posterior is of the form q(k)(w) = Bern
(

w|p(k)
)

.

We leverage the Gumbel-softmax trick, and use the

reparametrization in terms of the natural parameters at task k

w
r,(k)
ij =

1

2
log

(1+ µ
(k)
ij

1− µ
(k)
ij

)

. (33)

We then apply the Bayesian learning rule, and, following the

results obtained in the offline learning case of Section 2.6.3, we

obtain the learning rule at task k as

w
r,(k)
ij,t+1 ← (1− ηρ) · w

r,(k)
ij,t − η

·

[

Ep(δ)

[
1

|B|

∑

(x,y)∈B

∂Lxt ,yt
(w)

∂wij
·

1− w2
ij

τ
(

1− tanh2
(

w
r,(k)
ij,t

))

]

− ρ · w
r,(k−1)
ij

]

, (34)

where we denote as wr,(k−1) the logits obtained at the end of the

previous task k − 1, and mini-batch B is selected at random as

B ⊆ D(k) ∪k
k′=1

C(k
′).
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3. Experiments

In this section, we compare the performance of frequentist

and Bayesian learning schemes in a variety of experiments, using

both synthetic and real neuromorphic datasets. All experiments

consist of classification tasks with C classes. In each such task,

we are given a datasetD′ consisting of spiking inputs x and label

cx ∈ {0, 1, . . . ,C − 1}. Each pair (x, cx) is converted into a pair

of spiking signals (x, y) to obtain the dataset D. To do this, the

target signals y are such that each sample yt is the C× 1 one-hot

encoding vector of label cx for all time-steps t = 1, . . . ,T.

3.1. Datasets

3.1.1. Two-moons dataset

We first consider an offline 2D binary classification task on

the two-moons dataset (Scikit-Learn library, 2020). Training is

done on 200 examples per class with added noise with standard

deviation σ = 0.1 as proposed in Meng et al. (2020) for 100

epochs. The inputs x are obtained via population encoding

following (Jang et al., 2020a) over T = 100 time-steps and via

10 neurons.

3.1.2. DVS-gestures

Next, we consider a real-world neuromorphic dataset for

offline classification, namely the DVS-Gestures dataset (Amir

et al., 2017). The dataset comprises 11 classes of hand

movements, captured with a DVS camera. Movements are

recorded from 30 different persons under 5 lighting conditions.

To evaluate the calibration of Bayesian learning algorithms, we

obtain in- and out-of-distribution dataset Did and Dood by

partitioning the dataset by users and lighting conditions. We

selected the first 15 users for the training set, while the remaining

15 users are used for testing. The first 4 lighting conditions are

used for in-distribution testing; and the one left out from the

training set is used for out-of-distribution testing. Images are of

size 128×128×2, and preprocessed following (Amir et al., 2017)

to yield inputs of size 32× 32× 2, with sequences of length 500

ms for training and 1, 500 ms for testing, with a sampling rate

of 10ms.

3.1.3. Split-MNIST and MNIST-DVS

For continual learning, we first conduct experiments on the

5-ways split-MNIST dataset (Farquhar and Gal, 2019a; Soures

et al., 2021). Examples from the MNIST dataset, of size 28 × 28

pixels, are hence rate-encoded over T = 50 time-steps (Jang

et al., 2020a), and training examples drawn from subsets of two

classes are successively presented to the system for training. The

order of the pairs is selected as {0, 1}, then {2, 3}, and so on. We

restrict here our study to rate encoding, although the proposed

methods are applicable to any spike encoding scheme. In a

similar way, we also consider a neuromorphic continual learning

setting based on the neuromorphic counterpart to the MNIST

dataset, namely, the MNIST-DVS dataset (Serrano-Gotarredona

and Linares-Barranco, 2015). Following the preprocessing

adopted in Skatchkovsky et al. (2020a,b, 2021), we cropped

images spatially to 26 × 26 pixels, capturing the active part

of the image, and temporally to a duration of 2 s. For each

pixel, positive and negative events are encoded as (unsigned)

spikes over two different input channels, and the input x is of

size 1, 352 spiking signals. Uniform downsampling over time

is then carried out to restrict the length to T = 80 time-

samples. The training dataset is composed of 900 examples per

class, and the test dataset contains 100 examples per class. For

continual learning, classes are presented to the network in pairs

by following the lexicographical order, i.e., the classes {0, 1} are

presented first, then {2, 3}, and so on.

3.2. Implementation

All schemes are implemented using the SG technique

DECOLLE (Kaiser et al., 2020) to compute the gradients. In

DECOLLE, the SNN is organized into L layers, with the first

L− 1 layers encompassing the hidden neurons in setH, and the

Lth layer containing the read-out neurons in set Y . To evaluate

the partial derivative (Equation 8), we need to specify how to

compute error signals ei,t for each neuron i ∈ N . To this end, at

each time t, the spiking outputs s
(l)
t of each layer l ∈ {1, . . . , L}

are used to compute local per-layer errors

L(ym,t , s
(l)
t ) = −ym,t · log

(

Softmaxm
(

B(l)s
(l)
t

)
)

, (35)

where B(l) ∈ R
C×|l| are random, fixed weights, |l|

is the cardinality of layer l, and Softmaxm(a) =

exp(am)/
∑

1≤n≤C exp(an) is the ith element of the softmax of

vector a with length C. The local losses (Equation 35) at every

time-step t are then used to compute the error signals ei,t in

Equation (8) for every neuron i ∈ l as

ei,t =
∑

m∈Y

∂L(ym,t , s
(l)
t )

∂si,t
. (36)

While the algorithms introduced in this work are valid for

any SNN architecture as highlighted in Figure 1, DECOLLE is

limited to feedforward layered architectures, which we hence

adopt for our experiments (Kaiser et al., 2020). Furthermore, we

consider autoregressive filters for the spike responses of synapses

αt and somas βt in the membrane potential (Equation 2), as

discussed in Section 2.1.1.

Results have been obtained by using Intel’s Lava software

framework (Intel Corporation, 2021), under Loihi-compatible
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fixed-point precision (Davies et al., 2018)1.We use as benchmark

the frequentist algorithms detailed in Sections 2.5, 2.7, for

which gradients are as described in the previous paragraph. For

Bayesian learning with real-valued (fixed-precision) synapses,

we set the threshold of each neuron as ϑ = 64; while for binary

synapses the threshold ϑ is selected as the square-root of the

fan-in of the corresponding layer.

Implementation of the proposedmethods on hardware is left

for future work. While Loihi supports the injection of Gaussian

noise to the membrane potential of the neurons (Davies et al.,

2018), it does not provide mechanisms for the sampling of the

model parameters. In contrast, recent work (Dalgaty et al., 2021)

has proposed leveraging the inherent noise of nanoscale devices

in order to implement Bayesian inference.

3.3. Performance measures

Apart from the test accuracy, performance metrics include

calibration measures, namely reliability diagrams and expected

calibration error (ECE), which are described next. We note

that, as the hardware implementation of Bayesian SNNs is

currently an open problem (see Section 3.2), we are unable

to provide measurements in terms of energy expenditure

and computation time. As a general remark, as discussed in

Section 2.2, Bayesian learning requires a larger memory to store

all samples for the weights distribution to be used for inference

using a committee machine implementation, while an ensemble

predictor implementation increases inference latency.

3.3.1. Confidence levels

For frequentist learning, predictive probabilities are

obtained from a single pass through the network with parameter

vector w as

p
(

cx = k | x,w
)

=
1

T

T
∑

t=1

Softmaxk
(

B(L)f (w, xt)
)

, (37)

where f (w, xt) is the output of read-out layer L for weights w, as

detailed in the previous subsection.

In contrast, for Bayesian learning, decisions and confidence

levels are obtained by drawing NS samples {ws}
NS
s=1 from the

distribution q(w), and by averaging the read-out outputs of the

model to obtain the probability assigned to each class as

p
(

cx = k | x, {ws}
NS
s=1

)

=
1

NS

1

T

NS∑

s=1

T
∑

t=1

Softmaxk
(

B(L)f (ws, x
t)

)

.

(38)

1 Our implementation can be found at: https://github.com/kclip/

bayesian-snn.

Unless mentioned otherwise, the predictions (Equation 38)

are obtained by using the committee machine approach, and

hence the weights {ws}
NS
s=1 are kept fixed for all test inputs x

(see Section 2.2). All results presented are averaged over three

repetitions of the experiments and 10 draws from the posterior

distribution q(w), i.e., we set NS = 10 in all experiments.

For Bayesian learning, the hard prediction of the model is

hence obtained as

c∗x = argmax
1≤k≤C

p
(

cx = k | x, {ws}
NS
s=1

)

, (39)

corresponding to the predictive probability

p
(

c∗x | x, {ws}
NS
s=1

)

= max
1≤k≤C

p
(

cx = k | x, {ws}
NS
s=1

)

. (40)

The probability (Equation 40) can be interpreted as the

confidence of the model in making decisions (Equation 39).

A model is considered to be well calibrated when there

is no mismatch between confidence level p
(

c∗x | x, {ws}
NS
s=1

)

and the actual probability for the model to correctly classify

input x (Guo et al., 2017). Definitions (Equations 39, 40) can be

straightforwardly adapted to the frequentist case by replacing the

average over draws {ws}
NS
s=1 with a single parameter vector w.

3.3.2. Reliability diagrams

Reliability diagrams plot the actual probability of correct

detection as a function of the confidence level (Equation 40).

This is done by first dividing the probability interval [0, 1] into

M intervals of equal length, and then evaluating the average

accuracy and confidence for all inputs x in each mth interval

(m−1M , mM ], also referred to as mth bin. We denote as Bm the

subset of examples whose associated confidence level p
(

c∗x |

x, {ws}
NS
s=1

)

lies within binm, that is, Guo et al. (2017)

Bm =

{

x ∈ D

∣
∣
∣ p

(

c∗x | x, {ws}
NS
s=1

)

∈
(m− 1

M
,
m

M

]
}

. (41)

The average empirical accuracy of the predictor within bin

m is defined as

acc(Bm) =
1

|Bm|

∑

x∈Bm

1(c∗x = cx), (42)

with 1(·) being the indicator function; while the average

empirical confidence of the predictor for binm is defined as

conf(Bm) =
1

|Bm|

∑

x∈Bm

p
(

c∗x | x, {ws}
NS
s=1

)

. (43)

Reliability diagrams plot the per-bin accuracy acc(Bm)

vs. confidence level conf(Bm) across all bins m. A model

is said to be perfectly calibrated when, for all bins m, the
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FIGURE 4

Predictive probabilities (Equation 40) evaluated on the two-moons dataset after training with di�erent values of the temperature ρ in

Equation (11) for Bayesian learning. Top row: Real-valued synapses; Bottom row: Binary synapses.
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FIGURE 5

Top: Reliability diagrams (for in-distribution data) with real-valued synapses for the DVS-Gestures dataset. Bottom: Corresponding empirical

confidence histograms for in-distribution data.
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Top: Reliability diagrams (for in-distribution data) with binary synapses for the DVS-Gestures dataset. Bottom: Corresponding empirical

confidence histograms for in-distribution data.
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FIGURE 7

Out-of-distribution empirical confidence histograms for SNNs with real-valued and binary synapses on the DVS-Gestures dataset.

equality acc(Bm) = conf(Bm) holds. If in the mth bin, the

empirical accuracy and empirical confidence are different, the

predictor is considered to be over-confident when the inequality

acc(Bm) < conf(Bm) holds, and under-confident when the

reverse inequality acc(Bm) > conf(Bm) holds.

3.3.3. Expected calibration error

While reliability diagrams offer a fine-grained

description of calibration, the ECE provides a

scalar measure of the global miscalibration of the

model. This is done by computing the average
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difference between per-bin confidence and accuracy as

Guo et al. (2017).

ECE =
1

|D|

M
∑

m=1

|Bm|
∣
∣conf(Bm)− acc(Bm)

∣
∣. (44)

Models with a lower ECE are considered to be

better calibrated.

3.3.4. Out-of-distribution empirical confidence

Reliability diagrams and ECE assume that the test data

follows the same distribution as the training data. A well-

calibrated model is also expected to assign lower probabilities

to out-of-distribution data, i.e., data that does not follow the

training distribution (DeGroot and Fienberg, 1983). To gauge

the capacity of a model to recognize out-of-distribution data,

a common approach is to plot the histogram of the predictive

probabilities
{

p
(

c∗x|x, {ws}
NS
s=1

)}

x∈Dood
evaluated on a dataset

Dood of out-of-distribution examples (DeGroot and Fienberg,

1983; Daxberger and Hernández-Lobato, 2019). Such examples

may correspond, as discussed, to examples recorded in different

lighting conditions with a neuromorphic camera.

3.4. O	ine learning

3.4.1. Two-moons dataset

We start by considering the two-moons dataset. For this

experiment, the SNN comprises two fully connected layers

with 256 neurons each. Bayesian learning is implemented with

different values of the temperature parameter ρ in the free

energy (Equation 11). In Figure 4, triangles indicate training

points for a class “0,” while circles indicate training points

for a class “1.” The color intensity represents the predictive

probabilities (Equation 37) for frequentist learning and Equation

(38) for Bayesian learning: the more intense the color, the higher

the prediction confidence determined by the model. Bayesian

learning is observed to provide better calibrated predictions, that

are more uncertain outside the input regions covered by training

data points.

For both real-valued and binary synapses, the temperature

parameter ρ has an important role to play in preventing

overfitting and underfitting of the training data, while also

enabling uncertainty quantification. When the parameter ρ is

too large, the model cannot fit the data correctly, resulting in

inaccurate predictions; while when ρ is too small, the training

data is fit more tightly, leading to a poor representation of the

prediction uncertainty outside the training set. A well-chosen

value of ρ strikes the best trade-off between faithfully fitting

the training data and allowing for uncertainty quantification.

Frequentist algorithms, obtained in the limit when ρ → 0, yield

the most over-confident estimates.

3.4.2. DVS-gestures

We now turn to the DVS-Gestures dataset, for which

we plot the performance for real-valued and binary-valued

SNNs, in terms of accuracy, reliability diagrams (DeGroot and

Fienberg, 1983), and ECE (Guo et al., 2017) in Figures 5,

6. In all cases, the SNNs have two fully connected layers

comprising 4, 096 neurons each, and they are trained for

200 epochs. The architecture was chosen to highlight the

benefits of Bayesian learning over frequentist learning in regimes

characterized by epistemic uncertainty, and it was not optimized

for maximal accuracy. The figures confirm that Bayesian SNNs

generally produce better calibrated outcomes. In fact, reliability

diagrams (top rows) demonstrate that frequentist learning

algorithms produce overconfident decisions, while Bayesian

learning outputs decisions whose confidence levels match well

the test accuracies. This improvement is reflected, for models

with real-valued synapses (with fixed precision), in a lower

ECE of 0.064, as compared to 0.088 for frequentist SNNs;

while, for binary SNNs, the reduction in ECE is from 0.085

for frequentist learning, to 0.069 for Bayesian learning. This

benefit may come at the cost of a slight decrease in terms

of accuracy, which is only observed here for binary synapses.

The bottom parts of Figures 5, 6 also show that frequentist

learning tends to output high-confidence decisions with a larger

probability.

We now turn to evaluate the performance in terms

of robustness to out-of-distribution data. As explained in

Section 3.3, to this end, we evaluate the histogram of the

confidence levels produced by frequentist and Bayesian learning,

as shown in Figure 7. From the figure, it is remarked that

Bayesian learning correctly provides low confidence levels on

out-of-distribution data, while frequentist learning outputs

decisions with confidence levels similar to the case of in-

distribution data, which are shown in Figures 5, 6.

This point is further illustrated in Figure 8 by showing the

three largest probabilities assigned by the different models on

selected examples, considering real-valued synapses in the top

row and binary synapses in the bottom row. In the left column,

we observe that, when both models predict the wrong class,

Bayesian SNNs tend to do so with a lower level of certainty,

and typically rank the correct class higher than their frequentist

counterparts. Specifically, in the examples shown, Bayesian

models with both real-valued and binary synapses rank the

correct class second, while the frequentist models rank it third.

Furthermore, as seen in the middle column, in a number of

cases, the Bayesian models manage to predict the correct class,

while the frequentist models predict a wrong class with high

certainty. Finally, in the right column, we show that even when

frequentist models predict the correct class and Bayesian models

fail to do so, they still assign lower probabilities (i.e., < 50%) to

the predicted class.

A key advantage of SNNs is the possibility to obtain

intermediate decisions during the observation of the T
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FIGURE 8

Top three classes predicted by both Bayesian and frequentist models on selected examples. Top: real-valued synapses. Bottom: binary

synapses. The correct class is indicated in bold font.
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FIGURE 9

Evolution of the accuracy (top), ECE (middle), and predictive probabilities (bottom) during the presentation of out-of-distribution test examples

for the DVS-Gestures dataset. The horizontal axis represents the time instants t within the presentation of each test example. Left: Real-valued

synapses. Right: Binary synapses.

samples of a test example. To elaborate on this aspect,

Figure 9 reports the evolution of the mean test accuracy,

ECE, and predictive probabilities (Equations 38, 37) for all

examples in the out-of-distribution dataset as a function

of the discrete time-steps t = 1, 2, . . . ,T. Although both

Bayesian and frequentist methods show similar improvements

in accuracy over time, frequentist algorithms remain poorly

calibrated, even after the observation of many time samples.

The bottom plots show that frequentist learning tends

to be more confident in its decisions, especially when

a few samples t have been observed. On the contrary,

Bayesian algorithms offer better calibration and confidence

estimates, even when only part of the input signal x has

been observed.

TABLE 1 Final average test accuracy and ECE on the split-MNIST

dataset (real-valued synapses).

Model Accuracy ECE

TACOS (Soures et al., 2021) (Full Precision) 83.45± 0.55% N/A

Frequentist (Kirkpatrick et al., 2017) 77.19± 0.65% 0.39± 0.01

Bayesian committee machine 85.44 ± 0.16% 0.36 ± 0.01

Bayesian ensemble decision 85.03± 0.54% 0.36 ± 0.01

3.5. Continual learning

We now turn to continual learning benchmarks. Starting

with the rate encoded MNIST dataset, we use coresets
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Distribution of the mean parameter m at the end of training on the MNIST and MNIST-DVS datasets.
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FIGURE 11

Evolution of the average test accuracies and ECE on all tasks of the split-MNIST-DVS across training epochs, with Gaussian and Bernoulli

variational posteriors, and frequentist schemes for both real-valued and binary synapses. Continuous lines: test accuracy, dotted lines: ECE,

bold: current task. Blue: {0, 1}; Red: {2, 3}; Green: {4, 5}; Purple:{6, 7}; Yellow: {8, 9}.

representing 7.5% of randomly selected training examples

for each class. To establish a fair comparison with the

protocol adopted in Soures et al. (2021), we train SNNs

comprising a single layer with 400 neurons for one epoch

on each subtask. This choice was found to be advantageous

for Bayesian techniques—a result that may be related to the

known asymptotic behavior of Bayesian neural networks as

non-parametric models (Neal, 1996). In Table 1, we show the

average accuracy over all tasks at the end of training on the

last task, as well as the average ECE at that point for real-

valued synapses, enabling a comparison with Soures et al.

(2021). Bayesian continual learning is seen to achieve the best

accuracy and calibration across all the methods studied here,

including the solution introduced in Soures et al. (2021). The

latter incurs a 2.5× memory overhead as compared to standard

frequentist methods. Considering that we performed training
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Box plots for final test accuracy (top) and ECE (bottom) across all tasks for Bayesian and frequentist learning with real-valued and binary

synapses after the 500th epoch of training on the MNIST-DVS dataset (see Figure 11). The horizontal bar represents the median value across the

tasks, while the box extends from the first to the third quartile. The whiskers extend from the box by 1.5 times the inter-quartile range. Circles

represent outliers.

using the 8-bit precision imposed by the neuromorphic chip

Loihi, our solution outperforms the state-of-the-art with a

5× memory consumption improvement. This saving can be

leveraged, e.g., to store several samples of the weights for a

committee machine implementation.

Next, for the MNIST-DVS dataset (Serrano-Gotarredona

and Linares-Barranco, 2015), we use coresets representing 10%

of randomly selected training examples for each class, and

implement multilayer SNNs with 2, 048 − 4, 096 − 4, 096 −

2, 048−1024 neurons per layer, that we train on each subtask for

100 epochs. This task requires a larger architecture and longer

training time to allow for the processing of the richer spatio-

temporal information recorded by neuromorphic cameras, as

compared to the spatial information from static image datasets,

such as MNIST, encoded into spikes via rate encoding (Jang

et al., 2020a).

We highlight the requirement for a larger architecture on the

MNIST-DVS dataset in Figure 10 by comparing the distribution

of the mean parameter m at the end of training on the MNIST

and MNIST-DVS datasets. For the larger network trained on the

MNIST-DVS dataset, 83.5% of the mean parameters are non-

zero, a larger proportion than that of the network trained on

the MNIST dataset, for which only 80.1% of the mean weight

parameters are non-zero. This demonstrates that the larger

number of weights used for this task is important for the network

to perform well.

In Figure 11, we show the evolution of the test accuracy

and ECE on all tasks, represented with lines of different colors,

during training. The performance on the current task is shown

as a thicker line. We consider frequentist and Bayesian learning,

with both real-valued and binary synapses. With Bayesian

learning, the test accuracy on previous tasks does not decrease

excessively when learning a new task, which shows the capacity

of the technique to tackle catastrophic forgetting. Also, the

ECE across all tasks is seen to remain more stable for Bayesian

learning as compared to the frequentist benchmarks. For both

real-valued and binary synapses, the final average accuracy and

ECE across all tasks show the superiority of Bayesian over

frequentist learning.

This point is further elaborated in Figure 12, which shows

test accuracy and ECE on all tasks at the final epoch—the

500th—in Figure 12. Bayesian learning can be seen to offer a

better test accuracy and ECE on average across tasks, as well as a

lower dispersion among tasks.

4. Conclusion

In this work, we have introduced a Bayesian learning

framework for SNNs with both real-valued and binary-valued

synapses. Bayesian learning is particularly well suited for

applications characterized by limited data—a situation that

is likely to be encountered in use cases of neuromorphic

computing such as edge intelligence. We have demonstrated

the benefits of Bayesian learning in terms of calibration metrics

that gauge the effectiveness of uncertainty quantification

over a variety of offline and continual learning. We have also

argued that the proposed rules exhibit mechanisms resembling

those that enable lifelong learning in biological brains from

a theoretically motivated information risk minimization

framework. While this work focused on variational inference

Bayesian learning methods, future research may explore

Monte-Carlo based solutions. Finally, we recall the importance

of investigating solutions for hardware design, adopting either
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ensemble predictors or committees of machines. As an example,

consider ensemble predictions based on binary synapses. An

implementation based on digital hardware would need to store

the real-valued parameters of the parameter vector distribution,

and to sample from the distribution using auxiliary circuitry,

which incurs energy and memory overheads. Alternatively, one

could leverage the inherent stochasticity of analog hardware for

sampling (Dalgaty et al., 2021), a line of research that we reserve

for future work.
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